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Supplementary Note 1. Scalable metastatic potential profiling with barcoded cell line pools.  

To enable profiling of in vivo metastatic potential in a scalable manner (Fig. 1a, Extended Data Fig. 

1), we designed a barcoding vector that contained (1) a fluorescence protein (GFP or mCherry) for 

cell sorting, (2) a luciferase for real-time in vivo imaging, and (3) a barcode for cell line identity 

tracing. The three elements constituted a single transcription cassette; thus their expression levels 

were correlated. This ensured that the labeled cell lines harbor close expression levels (and thus 

similar copy numbers) of barcodes through gating the fluorescence expression by FACS (Extended 

Data Fig. 1e). The designed barcodes could be readout at either DNA or RNA level, by TaqMan 

assay or by next-generation sequencing, suitable for both low-throughput and high-throughput 

applications.  

The transcribing barcode design allows for co-capturing of cancer barcodes and cancer 

transcriptomes of metastases from bulk RNA-Seq, so we developed a workflow and analysis 

method that readout both (Fig. 1a). The resultant transcriptomic profiles represent an ensemble 

from multiple constituent cell lines, and yield consensus gene programs and generalizable 

molecular insights about organ-specific metastases. An example of the barcode mapping result 

from the pilot experiment is presented in Extended Data Fig. 1f. The barcodes are expressed at 

high levels, among the top 10% highly expressed genes, allowing robust quantification (Extended 

Data Fig. 1g,h).  

To validate RNA-Seq-quantitated barcode results from the pilot study, we performed RT-qPCR 

using Taqman assays against the barcodes. An examination of individual barcoded lines showed 

that the Taqman probes were highly specific to the engineered barcodes and there was no cross 

detection (Extended Data Fig. 1i). Consistent with RNA-Seq (Extended Data Fig. 1d), RT-qPCR 

showed even distribution of 4 cell lines in the pre-injected pool, but selective enrichment of specific 

cell lines in different organs (Extended Data Fig. 1j). To further validate at single cell resolution, we 

performed single cell RNA-Seq on the isolated cancer cells from different organs, one organ per 

96-well plate (Extended Data Fig. 1k). Principal component analysis (PCA) stratified cells into 2 

clusters. One cluster was characterized by high expression of genes on the HER2 amplicon 

(ERBB2, ORMDL3, GRB7, PGAP3), consistent with the HCC1954 (HER2+) identity (Extended 

Data Fig. 1k,l). The other cluster was characterized by high expression of VIM (vimentin) and low 

expression of CDKN2A (P16), consistent with MDAMB231 harboring P16-loss and being vimentin-

high (Extended Data Fig. 1k,l). Mapping cell line identities to their organ origins indicated that 

HCC1954 was abundant in the brain, whereas MDAMB231 dominated lung, liver and bone 
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(Extended Data Fig. 1m). In both approaches, BT549 and CAL851 were not detected. Collectively, 

these results validated the pilot study with independent methods. 

Having validated the feasibility of in vivo barcoding approach, we set out to map the metastatic 

behaviors of basal-like breast cancers from Cancer Cell Line Encyclopedia (CCLE), which display 

substantial heterogeneity in metastatic patterns from patient to patient. Principal component 

analysis (PCA) of expression profiles stratified breast cancer cell lines into 3 categories: (1) one 

group all initiated with HS and displaying fibroblast characteristics, (2) one enriched in luminal 

subtype, and (3) one enriched in basal subtype (Extended Data Fig. 1a). Since 8 barcoded lines 

could be pooled without obvious bottleneck from the pilot study, we surmised a pool size of 10 

would be suitable, and split the additional 17 lines into 2 pools (group1 and group2, Extended Data 

Fig. 1a). The two non-metastatic lines BT549 and CAL851 were included again in these two larger 

pools for re-assessment. Cell lines were individually barcoded (Supplementary Table 1), pooled at 

equal numbers, and injected into mice. Bioluminescence imaging indicated comparable tumor 

progression kinetics as the pilot experiment (Extended Data Fig. 1b), and thus all mice were 

sacrificed 5 weeks after injection, in a time-matched manner. The total cell numbers and barcode-

quantitated cell line compositions from each organ sample are presented in Extended Data Fig. 

1c,d. 

To quantify the cell line metastatic potentials on an absolute scale, we inferred the cell number for 

each cell line based on the total cancer cell counts and their barcode-quantitated compositions from 

each organ. We used this metric to compare cell lines across the 3 pool studies (Supplementary 

Table 2). For data visualization, we developed a petal plot that encodes 3 metrics: (1) metastatic 

potential as quantified by inferred cell number, (2) its confidence interval that estimates animal 

variability, (3) and penetrance – percentage of animals in the cohort that the particular cell line is 

detected (Fig. 1d). This visualization method effectively displayed the diversity of metastatic 

patterns and differential aggressiveness of cell lines. Four cell lines including MDAMB231, 

HCC1187, JIMT1, HCC1806 were pan-metastatic. Other cell lines showed more selective patterns. 

Among the 21 cell lines, DU4475 and HCC1599 were suspension cells and both displayed 

selective colonization towards bone and lung. Whether the in vivo pattern is associated with cell 

culture status remains unclear.  

Supplementary Note 2. Drafting MetMap with PRISM cell line pools. 

We attempted to expand metastatic potential mapping beyond breast cancer and to draft a 

comprehensive MetMap for all solid tumor types. Focusing on one cancer type at a time would 
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result in custom pooling and different group sizing, which was neither scalable nor standardizable. 

For pan-cancer characterization, it also didn’t make sense to perform bulk RNA-Seq on mixed 

cancer types, as lineage would be a strong confounder. In this case, readout at the DNA level 

would be sufficient. We thus resorted to PRISM, a barcoded cell line mixture approach developed 

for high-throughput in vitro drug screening, and asked whether the PRISM platform could be 

applied for the in vivo MetMap purpose.  

As part of PRISM profiling, cell lines were pooled based on their in vitro doubling time across mixed 

lineages, with a size of 25 lines per pool (Supplementary Table 3). PRISM barcoded cells did not 

harbor GFP or luciferase, thus in the first study, we addressed whether it was critical to introduce 

the labeling markers for cancer cell purification. We chose one PRISM pool (of 25 cell lines) that 

contained JIMT1, labeled with GFP-luciferase vector, and then sorted for GFP+ cells (Extended 

Data Fig. 2a). Consistent with different susceptibilities of cell lines to virus infection, 6/25 cell lines 

showed strong dropout after GFP labeling, but all lines were still detectable (Extended Data Fig. 

2b). In contrast, cell lines prior to labeling displayed a more even barcode distribution, close to 

equal ratio pooling. The GFP-labeled and unlabeled cell pools were then subjected to the same 

animal workflow, tissue dissociation, and mouse cell depletion. The GFP-labeled group was further 

sorted to purify cancer cells. The isolated cancer cells (GFP-labeled group) or the tissue lysates 

(unlabeled group) were then subjected to barcode amplification and sequencing (Extended Data 

Fig. 2a). A comparison of the two experiments showed highly concordant results. Although the 

initial barcode distribution of the pre-injected pools had altered, the enrichment (fold change) of 

barcode abundance showed strong positive correlation after normalizing to the respective pre-

injected input (Extended Data Fig. 2c, one exception U2OS). The positive control JIMT1 was pan-

metastatic as expected. Importantly, cell lines such as MELHO, MHHES1 and PC14 substantially 

dropped in their initial abundance after GFP labeling, yet they gained similar in vivo enrichment as 

in the non-labeled experiment. These results suggested that we could quantitatively detect 

barcodes from crude lysates without the need of pure cancer cell isolation from PRISM.  

We thus employed the simplified workflow using PRISM pools for pan-cancer mapping, and profiled 

a total of 503 cancer cell lines across 21 cancer types (Fig. 2a). Profiling was carried out in two 

different pooling formats (MetMap500 and MetMap125), with 120 cell lines and 4 target organs 

shared in common that allowed reproducibility assessment (Fig. 2b). Prior to injection, cell lines 

displayed an even barcode distribution, consistent with equal ratio pooling (Extended Data Fig. 2d). 

In MetMap500, 10 cell lines had low initial abundance and could not be detected in any in vivo 

organ; they were thus excluded from analysis, leaving data for 488 cell lines (Supplementary Table 

3). PRISM sequencing detected relative barcode abundance which was reflective of relative cell 
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abundance in organs. We thus defined metastatic potential as the enrichment of barcodes in the in 

vivo organs relative to the pre-injected input, and used this metric to compare between cell lines 

(Supplementary Table 4, 5). A comparison of normalized with non-normalized barcode counts 

showed strong linearity (Extended Data Fig. 2e), reflecting that subtle differences in the initial 

abundance had little impact on barcode quantification from in vivo samples. We employed a similar 

petal plot view to display metastatic patterns, including relative metastatic potential as readout by 

PRISM barcode, its confidence interval that depicts animal variability, and penetrance data that 

provides qualitative measures of cell line xenograftability (see MetMap portal at 

pubs.broadinstitute.org/metmap).  

Supplementary Note 3. Analysis of in vivo metastasis transcriptomes with multiplexed cell 
line compositions. 

As stated in the Main Text and Supplementary Note 1, RNA-Seq co-captured cancer cell 

composition and averaged in vivo transcriptomes of metastases from cell line pools in the breast 

cancer cohort study. To understand what metastasis transcriptomes encoded, we performed 

differential analysis on the in vivo transcriptomes versus cells in vitro. To properly account for the 

different cell line compositions in each metastasis, a composite in vitro transcriptome was modeled 

using the barcode composition and single cell line in vitro profiles, and then compared to the actual 

in vivo results (Extended Data Fig. 8a). In this way, the resultant differentially expressed genes 

were uniquely attributed to the in vivo context but not due to cell composition differences. These 

genes were (1) either commonly induced (or selected for) in multiple cell lines, or (2) were uniquely 

enriched in the dominant line. In either case, the revealed genes or pathways would be interesting 

for further study. As expected, the transcriptomes of the pre-injected population which was a direct 

mixture of in vitro cell lines showed a very tight correlation with the in silico profiles, and few genes 

were differentially expressed (Extended Data Fig. 8b). In contrast, the transcriptomes from in vivo 

samples showed genes with large fold changes and the correlation was weaker. These results 

justified the comparison method and showed that the in vivo environment was inducing substantial 

transcriptional changes. Supplementary Table 8 lists the detailed differential comparison analysis.  

To assess whether such comparison identified genes relevant to metastasis, we inspected the top 

differentially expressed genes. Notably, MUCL1 (also termed small breast epithelial mucin, SBEM) 

and SCGB2A2 (also known as Mammaglobin, MGB1) were strongly induced in brain metastases 

as well as in other sites (Extended Data Fig. 8c). These genes are breast lineage markers, whose 

expression is known to be induced during breast tumorigenesis from clinical specimens. Their 

expression has been used as a marker of hematogenous spread, micrometastasis 1,2, and breast 
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cancer metastasis in the brain differentiating from primary brain tumors 3. These results revealed 

that although relevant marker genes were lowly or non-expressed when cells were cultured in a 

dish, their expression could be induced in the in vivo metastasis context. These results highlighted 

the biological relevance of the in vivo transcriptomic results.  

Since MDAMB231 is the most investigated cell line in breast cancer metastasis, we asked whether 

genes previously identified and validated as metastasis mediators were induced in the in vivo 

transcriptomic profiles. In the pilot group experiments, MDAMB231 dominated lung, liver, kidney 

and bone metastases in most samples (Extended Data Fig. 1d); thus the majority of the gene 

expression changes were attributed to MDAMB231. Twenty-seven out of 32 lung metastasis genes 

reported by Minn et al. 4 were upregulated in our lung metastasis profiles, showing a very strong 

agreement (p value = 3.9e-16, Extended Data Fig. 8d). These genes were also enriched in 

metastases at other sites but to a lesser extent. Indeed, although these genes were initially 

identified as lung metastasis mediators, many were shown to function in a pleiotropic fashion, 

mediating primary tumor or metastasis growth at other sites. For example, VCAM1 has been shown 

to mediate both lung and bone metastasis through juxtacrine interaction with myeloid lineage cells 
5,6. TNC, which is a secreted molecule that boosts breast cancer stemness, promotes lung and 

bone metastasis 7. Collectively, these results suggested that the in vivo “induced” genes not only 

included metastasis associated markers but also functional mediators. 

Having confirmed the validity of these profiles, we performed pathway enrichment analysis 8 to 

query consensus programs that the differential genes encode at the 5 organ sites. The results 

revealed a diverse in vivo response to external stimuli, suggestive of richer environmental factors in 

the animal (Extended Data Fig. 8f). In contrast, proliferation and cycling pathways are much 

attenuated in vivo compared to in vitro cells. Consistent with this result, in vitro culture media is 

optimized for maximal cell proliferation by supplementing excess nutrients and supportive elements 
9. Comparing between organs, we found that brain metastases shared less commonality and 

weaker correlation with metastases in other organs (Extended Data Fig. 8e), suggesting a more 

unique microenvironment in the brain. More specifically, inflammatory responses including TNF, 

interleukin and interferon signaling were more prominent in lung, liver, kidney, bone than in brain, 

consistent with less immune response in the brain compared to extracranial organs 10. Similarly, we 

saw evidence of TGFβ activation and epithelial-mesenchymal transition (EMT) in extracranial 

metastatic lesions, but not in brain (Extended Data Fig. 8f). In contrast, brain is uniquely enriched in 

lipid metabolism related pathways (Extended Data Fig. 8f-i). Confirming these experimental 

observations, brain metastasis samples from patients showed less TGFβ, EMT responses and 

enriched expression of lipid metabolism genes, in comparison to extracranial metastases or 
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matched primary breast tumors (Extended Data Fig. 9). Together, these results revealed distinct 

cell transcriptional states between in vitro and in vivo, and between different metastasis sites.  

Supplementary Note 4. Mini-pool in vivo CRISPR screen in brain metastasis.  

To interrogate the importance of lipid metabolism in brain metastasis, we performed a CRISPR 

screen of 29 genes in brain metastasis using the JIMT1 cell model. We adapted the workflow of in 

vivo PRISM to readout relative fitness of different gene perturbations by enumerating CRISPR 

guide abundance from tissue (Fig. 5a). Of note, no control guides were included in the pool as the 

presence of wild-type cells would dominate and limit the resolution of distinguishing between very 

strong hits. To restrict the phenotype to post-seeding events and focus on cellular adaptation to the 

brain microenvironment, we introduced cells through intracranial injection (Fig. 5a). The results 

revealed 13 significant genes which included SREBF1, SCAP, and SCD (FDR < 0.05, Fig. 5b). In 

addition, 2 mevalonate/cholesterol pathway genes, PMVK and UBIAD1 showed deepest in vivo 

depletion (Fig. 5b).  

We selected 6 genes for individual validation, and all 6 resulted in a strong brain metastasis defect 

(Fig. 5c). In contrast to the exponential growth of wild-type cells following injection, SREBF1-knock-

out cells showed minimal increase in tumor burden (Fig. 5c). Perturbing genes upstream and 

downstream of SREBF1, SCAP and SCD respectively, phenocopied the SREBF1-knock-out effect 

and restricted cell proliferation in the brain. Mice displayed a minimal but detectable signal. 

Knocking out PMVK regressed the injected tumor cells and animals were signal-free, validating it 

as the strongest hit from the screen. Together, these results pinpointed the significance of lipid and 

cholesterol metabolism in mediating brain metastasis outgrowth. 

In order to understand the generality of these findings, we further assessed these 6 genes in an 

independent cell model HCC1806 (Extended Data Fig. 10d). Brain metastatic growth was inhibited 

by all the 6 gene knock-outs, but the magnitude of effect was smaller for SREBF1, SCAP, and 

SCD. The results indicated that there was an SREBF-independent mechanism in place to support 

regrowth of HCC1806 in the brain (Extended Data Fig. 10e-i). PMVK-knock-out was the exception 

that resulted in complete tumor cell regression similarly as observed in JIMT1 (Extended Data Fig. 

10d). These results highlighted both selectivity and generality of the lipid metabolism gene 

dependencies in brain metastasis.  
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