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1. Graph theoretical measures included in the study 

1.1 Degree measures 

Degree measures are included in this study.  

Degree is the number of edges connected to the node.   

Strength is the sum of weights of edges connected to the node (Rubinov and Sporns, 2010).  

The assortativity coefficient measures the correlation between  nodal degrees on the two opposite 

sides of a link (Newman, 2002; Leung and Chau, 2007).  

1.2 Similarity measures 

Similarity measures such as Topological overlap and Matching index were also included in this 

study. Topological overlap quantifies the similarity of mth step neighbours between a pair of nodes in 

terms of nodes that are reachable by a path of a maximal length m (Ravasz et al., 2002).  

The matching index computes the overlap of connection patterns for any pair of two nodes (Betzel et 

al., 2013).  

1.3 Physical connectivity measure 

Density is  a physical connectivity measure that represents the fraction between actual and possible 

connections (Sporns, 2006).  

1.4 Clustering measures 

Three clustering measures were assessed: clustering coefficient, transitivity and Get components. 

Clustering coefficient is the fraction of triangles around a node, and it is equivalent to the fraction of 

node’s neighbours that are also each other’s neighbour (Watts and Strogatz, 1998).  

Transitivity is an alternative to the clustering coefficient, representing the ratio of triangles to triplets 

in the network (Newman, 2003).  

Get components measure subnetworks in which all pairs of nodes are connected by a path 

(Corominas-Murtra et al., 2011).  
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1.5 Community measures 

Community structure,  modularity and core periphery were computed.  

Community structure is a subdivision of the network into nonoverlapping groups of nodes with 

maximization of within-group edges, and minimization of between-group edges. We computed 

community with both Louvain detection and finetuning algorithms. 

Modularity quantifies how far the network can be subdivided into such groups (Newman, 2006). 

Modularity was computed with Louvain algorithm only (Newman, 2004, 2006; Newman and 

Newman, 2010).   

Core periphery is a subdivision of the network in two non-overlapping node groups, a core group and 

a periphery group, with maximization of core group edges, and minimization of periphery group 

edges (Borgatti and Everett, 2000).  

1.6 Distance measures 

Distance measures included characteristic path length, global and local efficiency.  

Characteristic path length is defined as the average number of edges in the shortest path (minimal 

sequence of linked nodes) of the network (Watts and Strogatz 1998; Schreiber 2013).  

Global efficiency is inversely correlated to the characteristic path length and is defined as the average 

inverse shortest path length in the network efficiency (Latora and Marchiori, 2001).  

The local efficiency equals to global efficiency computed on  a node’s neighbours (Rubinov and 

Sporns, 2010).  

1.7 Centrality measures 

We analysed weighted and binary centrality measures. Weighted centrality measures included 

Bonacich, Betweenness, eigenvector, shortcuts average range, Pagerank, Closeness, Katz and 

Communicability. Binary centrality measures were Subgraph, Flow coefficient and k-coreness.  

Betweenness centrality is defined as the fraction of all shortest paths in the network that cross a given 

node (Rubinov and Sporns, 2010).  

Eigenvector centrality measures the centrality of a node proportionally to the sum of the centralities 

of the nodes which it is directly connected to (first degree nodes) (Newman, 2003; Bonacich, 2007).  

Katz centrality of a target node is proportional to the cumulative centrality of the nodes which the 

target is directly connected to, and to the sum of the nodes which it is indirectly connected to (that 
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connect to the target node  through its immediate neighbours). This measure is computed with an 

attenuation factor α and extra weight provided to immediate neighbours through a parameter β. In our 

analysis we chose α=0.1 and β=1 (Newman, 2010).   

Bonacich centrality is defined as the weighted sum of paths connecting other nodes (Bonacich, 

2007).  

PageRank centrality is a variant of eigenvector centrality, defined as the stationary distribution of a 

stochastic process whose states are represented by network nodes. This stationary distribution is 

achieved by instantiating a Markov chain on a graph.  

The PageRank centrality of a node is proportional to the number of steps (or amount of time) spent at 

that node as a result of such a process  (Boldi et al., 2005; Morrison et al., 2005). The process 

depends on a damping factor λ ∈ [0 . . 1), which we set to λ = 0.85 , according to previous literature 

(Page et al., 1998).  

Closeness centrality is defined as the inverse of the average shortest path length from one node to all 

the other nodes in the network (Freeman, 1978; Rubinov and Sporns, 2010).  

Shortcuts identify central edges which cause a significant reduction of characteristic path length in 

the network  (van den Heuvel and Sporns, 2013).  

Communicability betweenness centrality identifies nodes that may be regarded as “key players” 

(having a highly active role). Communicability betweenness centrality of a node depends on possible 

paths information can pass through, in a way that longer walks carry less importance (Estrada et al., 

2009).  

The subgraph centrality of a node is the weighted sum of the closed sequences of linked nodes that 

may visit a single node more than once (walks), with different lengths starting and ending at the node 

(Zuo et al., 2012).  

The flow coefficient is a local centrality measure based on local neighbourhoods, similar to 

betweenness centrality (Honey et al., 2007).  

The k-coreness links the centrality of a node to its k-core, which is the largest subgraph comprising 

nodes of degree k at least. k-coreness of a node is equal to k if the node belongs to the k-core but 

does not belong to the (k+1)-core (Hagmann et al., 2008).  

Local measures and global measures were calculated for each of the 100 brain networks randomly 

generated in each subject.  
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