Supplementary Materials for

Sex-linked deubiquitinase establishes uniparental transmission of chloroplast DNA

Sunjoo Joo¹, Thamali Kariyawasam¹, Minjae Kim², EonSeon Jin², Ursula Goodenough³, and Jae-Hyeok Lee^{1*}.

Correspondence to: jae-hyeok.lee@botany.ubc.ca

This PDF file includes:

Supplementary Figs. 1 to 13 Supplementary Tables 1 to 6 Supplementary References 1 to 9

Supplementary Figure 1. The dominant control of MT+ locus for the uniparental inheritance of cpDNA in C. reinhardtii. The following genetic experiments postulate two functions genetically linked to MT+ for the uniparental inheritance of cpDNA: a "protector" function that protects cpDNA from degradation in zygotes and a "destroyer" function (elusive) that controls the onset of cpDNA degradation in early zygotes. (a) WT mating between plus and minus gametes produces uniparental progeny predominantly inheriting *plus*-derived cpDNA. *Minus*-derived cpDNA is completely degraded in zygotes (indicated by empty chloroplasts) (1). (b) Mating between MT + /MT + and MT + /MT - diploid gametes produces biparental progeny receiving a mixture of both cpDNAs (2), suggesting that the protection function is linked to MT+. However, whether the *minus* cpDNA from MT+/MT- gametes escapes the zygotic degradation remains unknown (indicated by question marks in the zygotic chloroplasts). (c) Mating between haploid *plus* (*MT*+) and diploid *minus* homozygous at mating-type loci (*MT*-/*MT*-) produces progeny predominantly receiving *plus*-contributed cpDNA, suggesting that an imbalance in the amount cpDNA cannot override the MT+-dependent "protector" function (2). (d) Mating between WT minus gametes and mid-null MT- mutants (thereby behaving as plus) harboring T-FUS1 (allowing the fusion with WT minus gametes) produces biparental progeny (3). This phenotype has been explained by the MT+-encoded "destroyer" function that is absent in MT-.

Supplementary Figure 2. The gene content of the *OTU2p/EZY2* cluster in the R-domain of *MT*+. The *MT*+ R-domain corresponds to 600–792.5 kb in chromosome 6 of v.236 genome at Phytozome (https://phytozome-next.jgi.doe.gov). At least seven copies of *OTU2p/EZY2*- containing 16-kb fragments were found, as reported earlier (3). Orange bars indicate the predicted locations of the three BAC clones used in this study. Gene annotations: green, *OTU2p*-A-F copies; magenta, *EZY2* copies; black, sequencing gaps; light blue, the repeating elements located between *OTU2p* and *EZY2* copies; brown, retrotransposon-like repeating elements; gray, genes outside the *OTU2p/EZY2* repeats.

Supplementary Figure 3. An experimental scheme for testing the "*protector*" function. Experimental details are found in Methods. Below the diagram is an example of the screening result, where two of 40 spots show an increase in the number of surviving zygotes (asterisks).

Supplementary Figure 4. *OTU2* gene structure and polymorphisms among the *OTU2* alleles. Reference *OTU2p* and *OTU2m* sequences were obtained from the BAC clone 33d13 and the lambda phage clone BJ2 *(3)*, respectively. *OTU2p* and *OTU2m* exon-intron structures were confirmed by cDNA cloning. Nine exons were found with two introns in the 5'-UTR. The *OTU2p* 5'-UTR also contained four open reading frames (orange) that terminate before the ATG start codon of the *OTU2* main open reading frame (yellow). *OTU2p*-A/E copies contain a fulllength gene structure, whereas *OTU2p*-B/C/D/F and -G copies are truncated by transposon-like repetitive sequences (indicated by dense black vertical lines between 3900 and 5300 bp), including only the upstream C-terminal segment. None of the truncated *OTU2p* copies include the Cys904 codon, essential for otubain catalysis. Sequences are shaded in gray, where black vertical lines indicate differences among *OTU2* copies. Primers used in this study are indicated by green wedges.

а

Nt (520)

MARKVRETHAALASAIEAAAARASAAASAALLVPPEAHQLESLIRELQAA RV GRAGGGNDGAWAASEGLRSGSNTYI SRTATAATAASTAAGDSYGYQE VSTSSTTDRNNAAAG QYMYSSRSSLEHAPAQPASPEHMYGLTSPSLAA ASQRHASSRPGPAAPASSSGLDYWEGAGPDPSASASASAASAGTAAVDEA VHALRMAREMQRLQAQEAAAAARTPGAGGGGGTVLGVSGGGFAREVWGHR SQQQLAPAPYGGEPLASSTSTLTYPWQREYVELYGGSCATAGGRTSNGSR QQPAESVAIPQTVPASPEKTRPAAQYQASPSLNSAAYDGGRSAGLYAAG DPPATAYAAAPVAAATGQHLGGYSTLAGSSSGDGAGTVNGDYAAVRARLV AHSSGSSVSYGSGIGSGYAGGSSSTAPAVAPAAVATVTSGGRSGSTVRL RMQDAPPSTTAAATSLLSGAAGGGTDLPQPRSRRNHYSDILETAGRTSSR ARTNGPTGYSALAPQPART

Mid (369)

RDLSSSVSWRELEAEA EPAAPEAAAHAAA TWPRGATSVSAVHATSTSRVRTVTQSAQEAPSPEAYDEPSLEQQKPASRT YDSRSAVPTAPLEADSAARVQARFAGPAATNRDDNVSPAPPHASRAYPRG RGGGDTGTESNGAEPAGAAAPAASPSLSPSPSPHRHEHVSSQQLVADTDR ALELYDEAQLQRAIQLSKQEAARAALAAAGMTGLTDSSS-RHRDGDKDG GGDSLGPSHSPRPSSRLRSSSPLLEHLERIGGATTPRVAVAAAMSKAA LQDDEVGRPGSVATPSRRRLGNQEAGA-AASVSPRSTEVQAPPASQAA ATEPGSSNSSSGMLVSALAPLTALHQRYAELLPLLCAK

Ct (290)

TANTTERT.	
RRVAGDGNC	FYRAALFGLLEHVLAAPDPQLAERLDLVVSRHLARLDEPQF
QQQPPPTSP	AANDGRGAGMSPLRLTPARGDPA <mark>R</mark> APM <mark>H</mark> ASPGQPAAAAAAA
GAQVPPRDD	PAAYRGGQRLLRLLRTAWFKCPDAPRPSDV <mark>S</mark> SLERLFNS <mark>V</mark> E
QSGEVIRFA	RSLTARELMAAEEFYTPFIPGCGGDYTGLTLRQICERHVLP
MGVEVEQLQ	IIAACTALGVTLAVLDVAGSAVGAIKHGPAAQQHGPPVAWV
AHLPG <mark>HYDV</mark>	IYP <mark>ARPLDVAPGGQLVAAII*</mark>

Otubain domain A

Ub-interacting motif -

Charge changes Radical changes Similar changes A Insertion/Deletion A

b

Changes	Charged	Radical	Similar
Nt	1.3%	1.7%	0.6%
Mid	2.4%	1.9%	0.0%
Ct	0.0%	1.0%	0.3%

Supplementary Figure 5. Protein sequence comparison between Otu2p and Otu2m. (a) A total of 39 changes were found in 1137 aa. Highlighted sequences indicate aa changes between Otu2p and Otu2m in charged, radical, similar, and insertion/deletion categories by navy, red, light blue, and yellow colors, respectively. Cys904, a critical cysteine for DUB activity, is marked in bold blue in the conserved OTU domain located at the beginning and end of Ct (light red shades). In total, 19, 16, and 4 aa positions differed between Otu2p and Otu2m in the N-terminal, middle, and C-terminal segments, respectively. (b) Summary of aa substitution rate per aa category in the three segments.

Supplementary Figure 6. CRISPR-Cas9-mediated generation of targeted knock-out mutants of OTU2p and OTU2m. (a) Southern blotting confirmed the single-locus insertion of aphVII, conferring hygromycin resistance. Wild-type gDNA did not hybridize with the aphVII probe. (b) gDNA amplification by PCR using the primer pair OTU2-ko-F1 and OTU2-ko-R1p/OTU2-ko-R1m (Supplementary Table 6), and sequencing confirmed insertion of a single copy of aphVII (1361 bp) at the 1-<u>CCC/GAG</u>-6 base in the targeted sequence in otu2p knock-out mutants #2-5 and all five otu2m knock-out mutants. Uninterrupted OTU2p or OTU2m copies should produce 210-bp products (#10 in MT- samples). The lack of 210-bp products indicates the absence of a full-length OTU2 allele. OTU2p knock-out mutant #1 has an insertion at the last site of the targeted sequence (\sim <u>ATC</u>-23/GCT). The different band sizes are due to 5–101-bp deletions at the insertion sites. (c) The mating activities of otu2p-ko #2-#5 and otu2m-ko #1-#5 and selective cpDNA degradation in zygotes following mating with WT gametes were examined. All otu2p-ko mutants showed a significant reduction in the UP rate at 1.5 h after mating. For each sample, a total of 100 zygotes were examined.

		Wild-type 120 min	cOTU2p 120 min	otu2-ko 120 min
(a)	30 min zygotes	0.0005	0.0118	0.4338
(b)	wild-type 120 min	n.a.	0.0036	0.0018

Supplementary Figure 7. The lack of chloroplast DNA degradation in biparental zygotes. Changes in relative quantity between nuclear and chloroplastic DNA show that cpDNA mostly survive in biparental zygotes of otu2p-ko × otu2m-ko and wild-type $plus \times cOTU2p$ minus. gDNA was prepared from the zygotes at the indicated times. Quantitative PCR amplification of two chloroplastic loci (*psbB* and *psbD*) and one nuclear locus (*RCK2*). Relative copy numbers of *psbB* and *psbD* were calculated relative to *RCK2*. Experimental data represent the average \pm s.d. from three biological replicates. Letters above the error bars indicate significant differences relative to samples at 30 min (a) or wild-type samples at the same time after mating (b) using student *t*-test (two-tailed, p < 0.05). All *p*-values are provided in the table.

Supplementary Figure 8. Maximum likelihood phylogeny of OTU family DUBs. The HMMsearch identified a single member in the majority of genomes with three exceptions (red bars): mammals (OTUB1 and OTUB2), monocotyledonous plants (OTU1 and OTU1L), and Chlorophyceae, including *C. reinhardtii* (OTU1 and OTU2). Most single members formed a well-supported OTU1 clade for Viridiplantae and an OTUB clade for animals (blue bars). No

OTUB members were found in Rhodophyta and Glaucophyta. Single members in the SAR clade (Stramenopiles, Alveolates, and Rhizaria) and Euglenozoa were divergent. Outside the core-Reinhardtina lineage, *Chromochloris zofingiensis* and *Raphidocelis subcapitata* in the Sphaeropleales clade and *Ulva mutabilis* in the Ulvophyceae clade contained an OTU2 member, suggesting a deeper origin of OTU1/OTU2 diversification in Chlorophytes. The tree was reconstructed using IQ-TREE, based on the LG+I+G4 substitution model, and the bootstrap scores at the nodes were calculated by the Ultrafast method. Selected OTUD family members were included as outgroup sequences (yellow bar).

Supplementary Figure 9. Alignment of OTU domain aa sequences of the selected OTUB proteins. (a) Alignment of aa sequences for those depicted in Fig. 2a. OTU domains of OTU1 (aa $49-297\Delta6$), OTU2 (aa 866-1166), OsOTU1 (aa 33-274), OsOTU1La (aa $239-548\Delta65$), OTUB1 (human, 53-170 aa), OTUB2 (aa 14-234), YOD1 (human, aa 88-238, outgroup), and ScOTU1 (aa 41-232). Predicted alpha-helices and beta-sheets are indicated above as green rods and yellow arrows, respectively. The catalytic triad residues (D, C, and H) for cys-protease and ubiquitin-interacting residues are highlighted by red and light blue, respectively, below the consensus sequence. (b) Alignment of aa sequences of OTU domains used for the phylogeny in Supplementary Fig. 8 (pages 12-19).

b (1/8)

	1	10	20	30	40	50	60
	1	1	1	1	1	1	1
tii	PLTALHOR	YADLLPL	LCAKLVSLEDD	FPITRRVAG	DGNCFYRAAL	GLLEHVLAAE	PD
tii	PLTALHOR	YAALLPL	LCAKLVSLEDD	FPITRRVAG	DGNCFYRAAL	GLLEHVLAAE	PD.
rta	PLTTLHOR	YADLLPL	LCAKLVSLEDD	FPATRRVAG	DGNCFYRAAL	FGLLEHVLAAE	PD.
eri	PLNALHOR	YADLLPL	LCAKLVSLEDD	FPTTRRVAG	DGNCFYRAAL	FGLLEHVLAAE	PD.
ana	PLOALHOR	YAEPDPL	LCAKLVSLEDD	FPSVRRVAG	DGNCFYRACLE	FALLEHVLAE	PD.
eri	PLTVLHOR	YAOLDPL	LSAKLVSLEDD	FPRTRRVAG	DGNCFYRAAL	FAVLEHVLTVE	PD
ale							
sis	PLGOLTAR	YEDSSPL	LAAKLLSLEAF	FPECRRICG	DGNCFYRGFL	GILEALLE	۶N
ata	PMSRLVER	YRLSSPA	LAARLAALAAD	FPTCRAVOG	DGNCFYRGFVE	FALLEALLEOF	РН
lis	PIAHLIST	СОНКРА	LKAKLEMLLRH	FSOYRPILG	DGNCFYRSYAL	FGMIESVLAG	NO
ens	ELSVLYKE	YAEDDNT	YOOKIKDIHKK	YSYTRKTRP	DGNCFYRAFGE	SHLEALLDD-	
lus	ELSVLYKE	YAEDDNT	YOOKIKDI HKK	YSYTRKTRP	DGNCFYRAFGE	SHLEALLDD-	
er	PLTCLYAE	YSGDET	FTAKIODLSKK	YKFIRRTRPI	DGNCFFRAFA	SYLEYLISN-	
ans	PESTLCAE	YDNETSAA	FLSKATELSEV	YGETRYTRG	DGNCFYRATIA	GLIEIMIKD-	
sis			OSLSAC	YSHVRRTRG	DGNCFFRAFGE	SYFEKILTD-	
ens	DTLSTLRD	HPENRT	VRRKIEELSKR	FTATRKTKG	DGNCFYRALGY	SYLESLIGK-	
1119	DILSILRD	HPENRT	VORKTOFLSKR	FTSIRKTKG	DCNCEYRALGY	SYLESLICK-	
lie	GIDVILAE	VPDPI.	FHTKLETLORR	OASEBRTRG	DCNCEYRSYAR	FGTLEHLLOH-	
ana	PLSSLAAF	YOSGSPT	TTEKIKITOZO	VIGIRETRE	DGNCFFRSFM	SYLEHTLES(סכ
ata	PLSSLAAE	YOSGSPT	LI.EKIKVI.DGO	YAATRETEGI	DGNCFFRGFM	SYLEHTLEAC	
iva	PLSTLAAF	FOSGSPT	LOEKIKLLGEO	YDALBETRG	DGNCEYRSEM	SYLEHTLET(
840	PTVDLADE	FENNT	TKKKITITCEK	VDFFPPVDPI	DCSCEVRAETE	SYMERTUAM	סכ
974	ANHYFRNI	DNSFOOPF	VCLBLKVLSHH	VSEEDVHR	DEFCEVESET	STHERT VAR	IG
190	DIAGADEU	VCIPSCIPPT	MGANITTINE	VSDEPP		FOVI DM	IG
ba	DI GUI AAF	VEACNEV	FDAKVEKICOT	VVATPPAPCI	DONCEEDSEM	CONTENTIETE	
228	PLSVLAAE	VKACSPU	FIARIOTIKOK	VCATRDARC	DGNCFFRSFMI	CONTENT LUTC	
dum .	PLSALAAE	VERGNEV	FRAKIORICET	VGSIRRTRG	DGNCFFRGFM	FAVI.ERI.LHSC	מכ
lie	PLSVIKAE	VEACSDV	WVDKIEMIEUK	FSUFPPTPC	DGNCFYPAFT	FOUL FOLLIS	
- i i	NICALKAE	VENCNON	FUCKICKLEEP	VDTFDDTDC	DGNCFFRGFI	AVIEGIIONS	
	DMCALKEE	TINGNON	FUCKTARIEAC	VerFDDTDC	DGNCFFRGFI	Vevieeiiive	
ari	DMGAIKEE	TINGNON	FUCKICKIEAS	VCTEPPTPC	DGNCFFRGFI	CAVIENTI TE	
ET T	PHOALKEE	YONGNEV	FIVETORICAT	VCCVDDTDC	DGNCFFRGFI	ALLENLLLI	IN
Jila	DIACINAE	IQNGNFV	L TUKI DOTŐMI	FTCMPPTPC	DGNCFIRAFL	TRILESLLDER	NIN
515	PLASLAR	ISAGSDV	FUNKIDOLACD	VCCTDDUDCI	DGNCFIRSFI	CILEWLLAIL	
ald	TLESLMQD	IRAIPV	FVARIRSLASE	VCCMPDEDC	DGNCFFRATA	GLLEWLLVNE	A
lia	SLUALKAE	IANGSQV	FUNKUEVICOD	VETDERO	DGNCFFRSFI	GILEWLLLH	20
LIS	QVLSLKEE	IQD5551	FVARVEILCSL	11F1RRIRQ	DGNCFIRAFL	IGLLEALLVIF	A
bla	DICALEEE		EDDKIDGIEDO	VCCMDDEDCI	CNCEEDCEM		ID.
lea	PLOALEEE	IRQGSAV	FRUKIKSLEIU	UGSMRRIRG	DGNCFFRSFMI	APMEQLVQN	4D
ana	PIDALVAQ	ISSSNDGG	FLQSANLLSQQ	THLRRING	DGNCIIRAFLI	ISLSEDNSKD-	
	PILDLKLE	INESNESR	FLDGVDALSKE	YQSFRKVRG	DGNCYYRAFL	KRTAEFIKÖN-	
jae	SPLCLKAE	YVGNVNAN	FMHGIESLNAR	TEALRRYRG	DGNCFFRGFI	ALCERLLPSI	JS
cei	DGCNLMTE	ESDNPP	MLVKVVSLETK	YKGIRYARR	DGNCFYRSVVI	GMHESLLNNK	(E
Lor	PMSNLREE	YENGSAA	FVNQIDSLTAR	YDSVRRTRG	DGDCFYRSLAF	AYVERILQSE	?E
gra	SSSVIAME	YANADPA	FATKSNALALT	HPWTRTMKG	DGNCGWRAVAI	GALENTT-TČ	2N
ssa	PSTAITEE	YAKADPV	YVQKTQSLPAV	YSHYRPMLG	DGNCGWRAIG	GYFETLIKLO	ΞN
ens	AF'I'KR(GASSY	VRETLPV	-LTRTVVPA	DNSCLFTSVY	YVVEGGVLNP-	
Lae	PPQPKPKR	VLKSTEM	SIGGSGENV	-LSVHPVLD	DNSCLFHAIA	GIFKQ	
ens	EIENLTGA	RHMESEK	LAQILAARQ	-LEIKQIPS	DGHCMYKAIEI	DQLKEKDCA	
Lae	ALEASKQPI	DLKKMEQE	SIDQLCELKK-	-LKQFDIQP	DGHCLFASILI	DQLKLRHDP	
ens	IEAMDPAT	VEQQEHW	FEKALRDKKG-	-FIIKQMKE	DGACLFRAVAI	DQVYGDQ	
ens	PESGGGGG	CEEEFVS	FANQLQALG	-LKLREVPG	DGNCLFRALGI	DQLEGHS	

OTU2p Chlamydomonas reinhardt OTU2m Chlamydomonas reinhardt OTU2m Chlamydomonas incer OTU2m_Chlamydomonas_schloesse OTU2m Edaphochlamys debarya OTU2_Volvox_carte OTU2_Gonium_pectora OTU2 Chromochloris zofingiens OTU2_Raphidocelis_subcapita OTU2 Ulva mutabil OTUB1_Homo_sapie OTUB1 Mus muscul OTUB_Drosophila_melanogast OTUB Caenorhapditis elega OTUB_Nematostella_vectens OTUB2_Homo_sapie OTUB2_Mus_muscul OTUB Monosiga_brevicol OTU1 Arabidopsis thalia OTU1_Medicago_trancula OTU1 Oryza sati OTU1La_O.sativa_558 OTU1Lb O.sativa 309 OTU1Lc_0.sativa_32 OTU1 Marchantia polymorp OTU1_Physcomitrella_patens_1819 OTU1 Klebsormidium flaccio OTU1_Haematococcus_pluvia OTU1_Chlamydomonas_reinhardt OTU1_Gonium_pectora OTU1 Volvox carte OTU1 Chalmydomonas eustig OTU1_Chromochloris_zofingiens OTU1 Raphidocelis subcapita OTU1 Scenedesmus obliqu OTU1 Ulva mutabil OTU1_Caulerpa_lentillife OTU1_Cocomyxa_subellipsoid OTU1_Thalassiosira_pseudona OTU1_Phaeodactylum_tricornut OTU1 Phytophthora so OTU1_Trypanosoma_bruc OTU1 Laccaria bicol OTU1 Aspergillus nig OTU1 Neurospora cras YOD1_Homo_sapie OTU1 Saccharomyces cerevisi OTUD6B_Homo_sapie OTU2 Saccharomyces cerevisi OTUD5_Homo_sapie OTUD3 Homo sapie

b (2/8)

---PQLAERLDL-VVS-RHLARLDEPQFQQQP---PPTSP-AANDGRGAGMSPLRLTPAR ---PQLAERLDL-VVS-RHLARLDEPQFQQQP---PPTSP-AANDGRGAGMSPLRLTPAR ---PKLAERLDL-VVS-RHLARLDEPQFQQQQQQQPPSPGPASDGRGAGVSPLR--SAR ---PQLAERLDL-VVS-RHLAQLDEPQFQQQQQQQPGSSP-AAGDARGAGLSPLR--SAR ---PPLGARLEA-AFA-AHLRTLDEPPAASAT---TAAA--APAAGSAGGATSPR--TPR AV-LPNRSRLHELRLE-HLVGRYVRKLEALQDVGGVPQG--GGDEGAGGGRSRSR--AAT ---PSAPYSLPGDSLP-GSARREAVRPE-----PAP---GAASAASGSRSAAR--------LTLYARLRA-SIE-HTWLEMRAHM--------VELHARLLQRVQEAWQLARTRLPP-----RF-KLKSCTVAA-QTW-VWKAQALDIP--------SKEL-RFKA-VSA-KSKEDLVSQG---------SKELQRFKA-VSA-KSKEDLVSQG---------TSAY-EFKK-LAE-ESKEKLVOLG--------RARLEKFIA-SSR-DWTRTLVELG--------EKEYQRFKD-LAA-RSKDELVELN--------SREI-KFKE-RVL-QTPNDLLAAG--------SREI-KFKE-RVL-QTPNDLLAAG--------KDAIDGFLL-RLR-ETYEMALAAG--------RAEVDRIKV-NVE-KCRKTLQNLG--------SAEIDRIKA-NVE-RSRKALQTLG--------KAEVERILK-KIE-QCKKTLADLG--------DLEVSRIGE-RIG-KYKQAYARFG--------TREEDRLLA-AVR-ALATKAENLQ--------TDEENRLLA-AVG-AIDHRQ--------ETEVKRIQK-NIE-QSKKALIELG--------VAEVARMEK-AIE-ICKKTLIDHG--------KTELPRMRD-RIE-RCKQELIAIG--------TQETKRLAE-VLQ-GWRSKLVEAG--------LAEANRFMS-VVQ-SWKAKLVEGG--------LTECDRIKS-VIQ-EWKGKLVDGG--------LPECSRFMS-VVQ-AWKTRLVEGG---------IPECRRFIE-CIN-GWRQKLVEAH--------EQQCQRFSN-CVG-GWRQKLIDAG--------DSECQNFLR-TLE-ACKDRMVGAG--------EQECQRFTK-CLQ-GWKQKLQDIG--------VEATQAMLR-MMH-PLRQMLLDAG--------OONOLRMKD-HME-TCKKKLLDAG--------LSERNRVVT-CIR-QWKAKLVGVG---------DGEFERIKQ-LVS-DSLLWVCKFG--------EKDSEKIID-WLKTKSWESVLAAG-----GG-AALRGRIQH-KIQ-QSKSELVAIG-----RA-GAHLERITD----LSROVVAD-----P--DFAVASSVS-ALA-ATRDSLDKAG--------LMQVRHELA-RIK-SMNALLDQTG--------KAQVDGERE-RLE-SLNEYIQHHG-----_____ _____ _____ _____ _____ _____

OTU2p_Chlamydomonas_reinhardtii OTU2m Chlamydomonas reinhardtii OTU2m Chlamydomonas incerta OTU2m Chlamydomonas schloesseri OTU2m Edaphochlamys debaryana OTU2 Volvox carteri OTU2 Gonium pectorale OTU2_Chromochloris_zofingiensis OTU2 Raphidocelis subcapitata OTU2 Ulva mutabilis OTUB1 Homo sapiens OTUB1 Mus musculus OTUB Drosophila melanogaster OTUB Caenorhapditis elegans OTUB_Nematostella_vectensis OTUB2 Homo sapiens OTUB2 Mus musculus OTUB Monosiga_brevicolis OTU1 Arabidopsis thaliana OTU1_Medicago_tranculata OTU1 Oryza sativa OTU1La_O.sativa_55840 OTU1Lb_O.sativa_30974 OTU1Lc_O.sativa_32190 OTU1_Marchantia_polymorpha OTU1_Physcomitrella_patens_181928 OTU1_Klebsormidium_flaccidum OTU1 Haematococcus pluvialis OTU1 Chlamydomonas reinhardtii OTU1_Gonium_pectorale OTU1 Volvox carteri OTU1_Chalmydomonas_eustigma OTU1 Chromochloris zofingiensis OTU1 Raphidocelis subcapitata OTU1 Scenedesmus obliguus OTU1 Ulva mutabilis OTU1_Caulerpa_lentillifera OTU1 Cocomyxa subellipsoidea OTU1_Thalassiosira_pseudonana OTU1 Phaeodactylum tricornutum OTU1 Phytophthora sojae OTU1_Trypanosoma_brucei OTU1 Laccaria bicolor OTU1 Aspergillus_nigra OTU1 Neurospora crassa YOD1 Homo sapiens OTU1 Saccharomyces cerevisiae OTUD6B_Homo_sapiens OTU2 Saccharomyces cerevisiae OTUD5_Homo_sapiens OTUD3_Homo_sapiens

b (3/8)

tii	GDPAFAPMHASPGQPAAAAAAAGAQVPPRDDPAAYRGGQRLLRLLRTAWFKCPDA
tii	GDPAVAPMPASPGQPAAAAAAAAAAQAQVPPRDDPAAYRGGQRLLRLLRTAWFKCPDA
rta	GDPAGTLAPASPGQPGEGAAAAHIPPRDDPAAYRGGQRLLRLLRTAWFKCPDA
eri	GDTVGS-TPASPSPRRESTAAAQVPPRDDPAAYRGGQRLLRLLRTAWFKCPDA
ana	TSPRAAGNGGTASADGPLPPSQDAAAYNGGRLLLRLLRRAWFKAPDA
eri	PERGGRSDSGGGGGGGGGGGRSVDQVALRGGKRLLRLLRTAWFKAPDA
ale	PSSSSSATRLRQRSEPDAAGARAAVPRGPDT
sis	QVDADTERGFNVLANFLSRTWYVPAAQHADSR
ata	NPEVERGAALLTRLLARVWYAPGAAGSVEAAAA
lis	GHASFKARSDKLLKDGYVKFRELKDQVERA
ens	FTEFTIEDFHNTFMDLIEOVE
lus	FTEFTIEDFHNTFMDLIEQVE
ter	FPSFTLEDFHETFMEVIQRVSPDNAG
ans	FPDWTCTDFCDFFIEFLEKIH
sis	FPAFTIEDFHEVFMEVLDMMG
ens	FEEHKFRNFFNAFYSVVELVE
lus	FEEHKFRNFFNAFYSVVELVE
lis	CPEFTTEDFYETVADMVTDLK
ana	YTDFTFEDFFALFLEOLDDILOGT
ata	
iva	YIEFTFEDFFSIFIDOLESVLOGH
840	SEGIPOEEFLKAFEOLINI.T
974	WASE-FSOKHKAFERLIEKIKGWKRMOEH
190	WASG-FSOSHKVFEKI.TONVMRWKRROKGVA-
pha	YOEFTFEDFLSIFVEOLDSVLPGB
928	
dum	
lis	FODLVFSDALDLLLEOLNSTS
+ i i	I CREATED IN CONCLUSION
210	EOM VEEDAMENILE OVAETSKP
ori	EOEIVEEDAMDVIIDOVKEITKP
ama	I QELVIEDAMEULI FOVSTION
gilla	
313	
ala	
lia	
115	
era	
dea	
ana	VORUMI DE LODILEFIESH
tum	YDEVMLEAFHDTIVELLERILA
јае	YSDVAIDAFWETFVDYLAAME
cei	YGNF-AEDFCHPAVEMAKKIES
lor	IDKIVYEDIYDEFVGLISTIVQPNSA
gra	QQEHLYEIFVDATEDVF1QIATAIQ
ssa	GFDPMVFVDFVEETDELLKRISDKLN
ens	
iae	
ens	
iae	
ens	
ens	

OTU2p Chlamydomonas reinhard OTU2m_Chlamydomonas_reinhard OTU2m Chlamydomonas ince OTU2m_Chlamydomonas_schloess OTU2m_Edaphochlamys_debary OTU2 Volvox cart OTU2_Gonium_pector OTU2 Chromochloris zofingien OTU2_Raphidocelis_subcapit OTU2 Ulva mutabi OTUB1_Homo_sapi OTUB1 Mus muscu OTUB Drosophila melanogas OTUB_Caenorhapditis_elega OTUB Nematostella vecten OTUB2_Homo_sapi OTUB2 Mus muscu OTUB_Monosiga_brevico. OTU1_Arabidopsis_thali OTU1 Medicago trancul OTU1 Oryza sat OTU1La O.sativa 55 OTU1Lb_0.sativa_30 OTU1Lc_0.sativa_32 OTU1 Marchantia polymor OTU1_Physcomitrella_patens_181 OTU1 Klebsormidium flacci OTU1_Haematococcus_pluvia OTU1_Chlamydomonas_reinhard OTU1_Gonium_pector OTU1_Volvox_cart OTU1 Chalmydomonas eusti OTU1_Chromochloris_zofingien OTU1_Raphidocelis_subcapit OTU1 Scenedesmus oblig OTU1 Ulva mutabi OTU1_Caulerpa_lentillif OTU1_Cocomyxa_subellipsoi OTU1 Thalassiosira pseudon OTU1 Phaeodactylum tricornu OTU1 Phytophthora so OTU1_Trypanosoma_bru OTU1 Laccaria bico OTU1_Aspergillus_ni OTU1_Neurospora_cra YOD1 Homo sapi OTU1_Saccharomyces_cerevis. OTUD6B Homo sapi OTU2_Saccharomyces_cerevis OTUD5 Homo_sapi OTUD3 Homo sapi

b (4/8)

-----PRPSDVSSLERLFNSVEQSGEVIRFARSLTARELMAAEEFYTPFIPGCG -----PRPSDVTSLERLFNSAEQSGEVIRFARSLTARELMAAEEFYTPFIPGCG -----PRPSDVSSLERLFNSAEQSGEVIRFARSLTARELMAAEDFYTPFIPGCG -----PRPSDVSSLERLLNSAEQSGEVIRFARSLTARELMAAEEFYTPFIPGCG -----PAPTDLASLEALLNAPGDSGDVIRFARSLTVRELLRAEDFYAPFIPGCG -----PEPSDVPSRKRLFNSSAASSEVIRFARSLTVYELVSDEAFYAPFIPGCG -----DSPSDLSSLERLLNSGSASAEVIRFARSLTVAELMAGEEFYAPYIPGCG LPAAAOOEEG-NGPLYLPELEAALSSRDIFDPLVKFARSATSWELKSNEOMYAPFIAGCC ARAGAGASTG-AGPLFLPELEAALACRDAFDPLVAFARAATSLELRANEAAYAPFLAGCG -----GENVDPMPLVLEFFQGVMGNSVMHLIRQLAAYEMLAHEDQYATFLPAIE -----RQTSVADLLASFNDQSTSDYLVVYLRLLTSGYLQRESKFFEHFIEGG------KQTSVADLLASFNDQSTSDYLVVYLRLLTSGYLQRESKFFEHFIEGG------GHSTVQDELHKIFNEQGYSDYVVVYLRLITSGKLQEEADFYQNFIEGD------SGVHTEEAVYTILNDDGSANYILMFFRLITSAFLKQNSEEYAPFIDEG------NNATEDQLIQKFQDEGISNYLVVYLRLLTSAQLQRNAVFFENFIEGE------KDGSVSSLLKVFNDQSASDHIVQFLRLLTSAFIRNRADFFRHFIDEE------KDSSVSSLLKVFNDQSSSDRIVQFLRLLTSAFIRNRADFFRHFIDEE------ADEASLTTLLAAVNDEGLSNYLVAYMRIITSAYMQLNADYFOPFIEGG------EESISYDELVNRSRDQSVSDYIVMFFRFVTAGDIRTRADFFEPFITGLS -----ETSISHEELVLRSRDQSVSDYVVMFFRFVTSAEIQKRSEFFEPFIMGLT -----ESSIGAEELLERTRDQMVSDYVVMFFRFVTSGEIQRRAEFFEPFISGLT -----EKGVAVEQLYQ-IDETDITKNSLRFLRFLTEIEICTHEDHYKGFLLTAD -----PISIIRGKILEFFSSYDTTDDIFAFLRLVAATWMCTRIWNYEWCATNCG -----SADSRRQKLLEFFSSYSKSDGILAFLKYAAANWICSHREEYEPNIAGLG -----ESSVDIDOLVEKCRDRYISDYVVMFFRFVTSAEIRKRAEFFEPFILGLS -----EVSVSLETLVERCRDQYISNSVVMFFRFVTSGEIGRRTEFFEPFIQGMS -----GQPISLSELEVRCRDPNVSNWAVMFFRFVTSAEVQRRAEFFEPFILGLT -----QGFLSSEALQEAYQDDTASNLVIMLLRFIVSAEIKRRDDFFLPFILGMY -----SDQFAQEKLLVNMRDDMVSNMIVMFLRLVTSCEVQRREDFFFPFILGMY -----YTNFAHDKLLVDMRDDTISNLIVMLLRLITSCEVQRREDHFFPFILGMY -----YTNYMHERLLVNMRDDTVSNLVVMLLRLITSCEVQRREDFFFPFIMGMY -----DNPMTKETLTINMRDDMVSNMMVMFLRMVTSAEIQRRSDFFAPFIMGMY -----PDHMTQEQLENNFRDDMLSNTVVMFLRMVTSAELQRRQDFFLPFIWGMT -----GOGADASTLLANFRDDTVSNMVVMLLRFITSAEIOARODHFAPFVLGVA -----EGGIDEQQLLANFRDDTWSNTCVMLLRFITSAEIKRRVDHFEPFVVGQY -----EDRMEPGELLVRLNDEDVCNMLVMLVRFVASAHVSRRAEHFLPFILGMV -----ELTLEEWELVMN--DDNMSNYIVMFLRLLTSAEIQLRREFFEPFIMGIS -----AEPLSVPQLEDNFCDAMLSPMIIMLLRMLTSAEIQRRSDFFAPFIMGMC -----ASSQLHSKLNE---ENATSDYCTWFMRVMTAAQMKSNPDRYLPFLFGGM -----GTLDEAAFHEEMNQETATSDYCTWYLRVVTATHLKQDPGRFLPFIAEPG -----TRTHAELVQDFQTEGGESEYLVWYMRLLTAGYMKQHAETFQPFIDGLY -----GECSTVEQLYELS-TNGEAEYALYFYRYAVSHHIRTHEDDFLPFVVGMG -----GKKLDSAGLLLAFQSPEMSNAVVVYMRFLTSAEIRVHRENYEAFLIHPE -----SGIRDETFLVDAFNEEYNSNAIITHFRLLTSAWMKLHPAQYEAFLSM-------VPEEAMSEVMHAFTDAEKSNAIIYHLRLLASSWLKENRGSHEAFITTD------ACAPEMRRLIAQIVASDPDFYSEAILG-------DSVRDLREMVSKEVLNNPVKFNDAILD-------LTVVALRSQTAEYMQSHVEDFLPFLTNPN -----KKLDQDMDVMKLRWLSCNYVQEHRDDFIPYLFDEE -----DMHEVVRKHCMDYLMKNADYFSNYVTE-------RNHLKHRQETVDYMIKQREDFEPFVEDD-

OTU2p_Chlamydomonas_reinhardtii OTU2m Chlamydomonas reinhardtii OTU2m_Chlamydomonas_incerta OTU2m Chlamydomonas schloesseri OTU2m Edaphochlamys debaryana OTU2_Volvox_carteri OTU2 Gonium pectorale OTU2 Chromochloris_zofingiensis OTU2 Raphidocelis subcapitata OTU2_Ulva_mutabilis OTUB1 Homo sapiens OTUB1 Mus musculus OTUB Drosophila melanogaster OTUB Caenorhapditis elegans OTUB_Nematostella_vectensis OTUB2 Homo sapiens OTUB2 Mus musculus OTUB Monosiga brevicolis OTU1 Arabidopsis thaliana OTU1_Medicago_tranculata OTU1 Oryza sativa OTU1La O.sativa 55840 OTU1Lb O.sativa 30974 OTU1Lc O.sativa 32190 OTU1 Marchantia_polymorpha OTU1 Physcomitrella patens 181928 OTU1 Klebsormidium flaccidum OTU1 Haematococcus pluvialis OTU1_Chlamydomonas_reinhardtii OTU1 Gonium pectorale OTU1 Volvox carteri OTU1 Chalmydomonas eustigma OTU1 Chromochloris zofingiensis OTU1_Raphidocelis_subcapitata OTU1 Scenedesmus obliquus OTU1 Ulva mutabilis OTU1 Caulerpa lentillifera OTU1_Cocomyxa_subellipsoidea OTU1 Thalassiosira pseudonana OTU1 Phaeodactylum tricornutum OTU1_Phytophthora_sojae OTU1 Trypanosoma brucei OTU1 Laccaria bicolor OTU1 Aspergillus nigra OTU1_Neurospora_crassa YOD1_Homo_sapiens OTU1 Saccharomyces cerevisiae OTUD6B_Homo_sapiens OTU2_Saccharomyces_cerevisiae OTUD5 Homo sapiens OTUD3 Homo sapiens

b (5/8)

OTU2p Chlamydomonas reinhardtii OTU2m Chlamydomonas reinhardtii OTU2m_Chlamydomonas incerta OTU2m Chlamydomonas schloesseri OTU2m Edaphochlamys debaryana OTU2 Volvox carteri OTU2_Gonium_pectorale OTU2 Chromochloris zofingiensis OTU2_Raphidocelis_subcapitata OTU2 Ulva mutabilis OTUB1 Homo sapiens OTUB1_Mus_musculus OTUB Drosophila melanogaster OTUB Caenorhapditis elegans OTUB Nematostella vectensis OTUB2_Homo_sapiens OTUB2 Mus musculus OTUB Monosiga_brevicolis OTU1_Arabidopsis_thaliana OTU1 Medicago tranculata OTU1 Oryza sativa OTU1La O.sativa 55840 OTU1Lb O.sativa 30974 OTU1Lc_0.sativa_32190 OTU1 Marchantia polymorpha OTU1_Physcomitrella_patens_181928 OTU1 Klebsormidium flaccidum OTU1 Haematococcus pluvialis OTU1_Chlamydomonas_reinhardtii OTU1 Gonium pectorale OTU1_Volvox_carteri OTU1 Chalmydomonas eustigma OTU1 Chromochloris zofingiensis OTU1_Raphidocelis_subcapitata OTU1 Scenedesmus obliquus OTU1_Ulva_mutabilis OTU1 Caulerpa lentillifera OTU1 Cocomyxa subellipsoidea OTU1 Thalassiosira pseudonana OTU1 Phaeodactylum tricornutum OTU1_Phytophthora_sojae OTU1 Trypanosoma brucei OTU1 Laccaria bicolor OTU1 Aspergillus nigra OTU1_Neurospora_crassa YOD1 Homo sapiens OTU1 Saccharomyces cerevisiae OTUD6B_Homo_sapiens OTU2_Saccharomyces_cerevisiae OTUD5 Homo sapiens OTUD3 Homo sapiens

GDYTGLTLRQICERHVLPMGVEVEQLQIIAACTALGVTLAVLDVAGSAV------GDYTGLTLRQICERHVLPMGVEVEQLQIIAACTALGVTLAVLDVAGSAV------GDYAGLSLRQICERHVLPMGVEVEQLQIIAACTALGVTLAVLDVAGSAV------GDYTGLSLRQICERHVLPMGVEVEQLQIIAACTALGVTLAVLDVAGSAV-------RDYTGLSLRQICAQHVLPLGVEVEQLQMIALCTALGAVVAVLDVAGSQV------MDYSGMSLQWICSHHVLPMGVEVEQLQIIALCRALGITLGVLDVAGSQV------GDYSGLSLRQVCVRHVLPMGVEVEQLQINALCSALGAPVAVLDVAGSQV------QEYTALNIQQICERYVERMGQEVEQLQMVALAHAMKVAVGILDVAGSEI-----PGYGAASMAELCSRRVERMGEEVEQVQMAALASAVAVSVGVLDVAGSEV------GPYEQLTVPLVVGRLVVADGVEAEHVMIQAIATLLGLCLAVVYADGQA----------RTVKEFCQQEVEPMCKESDHIHIIALAQALSVSIQVEYMDRGEGG----------RTVKEFCQQEVEPMCKESDHIHIIALAQALSVSIQVEYMDRGEGG----------LTIEAFRHLEVEPMYKESDHIHIIALCTALGAGVRVEYLDRGEGG----------MTVAQYCEQEIEPMWKDADHLAINSLIKAAGTRVRIEYMDRTAAP---------RTVKEFCNOEVEPMGKESDHIHIIGLTEALGVCIRVEYVDRTGD----------MDIKDFCTHEVEPMATECDHIQITALSQALSIALQVEYVDEMDT----------MDIKDFCTHEVEPMAMECDHVQITALSQALNIALQVEYVDEMDT---------LTVKEYCSISVDPFGVESEHLQAQALISALRLGCRITYIDRSPGA------N----ATVDQFCKSSVEPMGEESDHIHITALSDALGVAIRVVYLDRSSCDSGGV-----N----TTVEQFCKSAVEPMGEESDHVHITALSDALGIPIRVVYLDRSSCDTGGV-----N----STVVQFCKASVEPMGEESDHVHIIALSDALGVPIRVMYLDRSSCDAGNI-----Y----SSVFEFCQVEVRPENAEASNEQMKALVEALGIPVLVENLDTTSETDTP-----EN---QNLEDWCSKHVIAPRVYATSAAVKACAEALRVTVQVENVHDGT------GG---YTLEAWCEIYLLQPREQTDHIQMTAVAAALGVPLRVENLHNGP------N----MNVQQFCKTSVEPMGEESDHVHITALSDALGVPVRVVYLDRSVGADGKNT----N----MSVVQFRRSSVEPMGEESDHVHITALSDALGVPVRVVYLDQSGDVNDKPV----N----LDVKKFCOTSVEPMGEESDHVHITALTDALGIPVRIVYLDRSGGASDDAL-----DDPP-ACVDTFCQRYVEPMAEESDNIHIVALTDALQVPVTVVYLDRSGVESRASHLATRT DEPP-ATVELFCQRHVEPMGEESDHLHIVAVTEALQIPVRVVYLDSSGLPAGGGGGGAGA DEPP-ATVELFCQRHVEPMGEESDHLHIVAITDALQIPVRVVYLDSSGLPTGGGSGL---DEPP-ATVELFCQRHVEPMGEESDHLHIVAITEALQIPVRVVYLDSSGMPTGGNGSGL--DDV--SCVEVFCQRSVEVMGEESDHVHIVALSDALQVPIAVVYLDRSNVNRVNEGSSEV-EDES-MTADVFCRKFVEPMGEESEHIHAQVLTDAFQVAVRVMYLDSRDHGTDN------D----TDVQTFCRRFVEPMAEESDHVHAQALCDALRVPITVVYLDSHERSGVGGGAGGST D----MDVATFCERSVDVMGEESDHIHAQALTDAVQVPVRIIQIDSSGGQ------DGC--DGVDDFRRRHVEAMGEESDHIQVVAVTEAFQVPVLVVYLDNSSVTADGNGNGNGN DV---LDVELFCQRMVEVMDEESDEIHIRALTDALEIPTRVYSLDSQPPI-----DDE--VSVEQFCRRYVEPMGEESDHVHIVALTNALLVPIRVVYLDRSMGAAMAGVGYDSA ----IDIPTFCTREVEPMNKECGMVQVAALAECFGVRVAIEYMDGRR----------LGINDFCQREVEPMGKECEQVQVLALAEAFGVQVTIAYLDGHELLYG------PG---QTVAQFCAAEVEPMGKECDQPQIAALTEALQVGVKIEYLDGSAGPGQ------H----ETVSEFCSVEVDAVASEADNVQVVAFAQCFDVRVIVEYVDGREGD------THEP-MGVDAFCANIVEPLGKEADHVEIQALCAALQLNVDVAYLNGGSEE-----------PVEQYCATRIDVVRTEIDEIGLQALVDGVGFAVEIMYLDRSEGE-----------ESVEKFCQRVIEVPNIEIDQLGLQALVSILGFVLRVAYLDRSPGS-----------KTNQEYCDW-IKRDDTWGGAIEISILSKFYQCEICVVDTQTVR----------KPNKDYAQW-ILKMESWGGAIEIGIISDALAVAIYVVDIDAVK------TGYTPEEFQKYCED-IVNTAAWGGQLELRALSHILQTPIEIIQADSPP------TMKM-KDIDEYTKE-MEHTAQWGGEIEILALSHVFDCPISILMSGRP-----------DFTTYINR-KRKNNCHGNHIEMQAMAEMYNRPVEVYQYSTEP----------IPFEKHVAS-LAKPGTFAGNDAIVAFARNHQLNVVIHQLNAPLW------

b (6/8)

OTU2p_Chlamydomonas_reinhardtii	GAIKHGPAA
OTU2m_Chlamydomonas_reinhardtii	GAIKHGPAA
OTU2m_Chlamydomonas_incerta	GAIKHGPAA
OTU2m Chlamydomonas schloesseri	GAIKHGPAA
OTU2m Edaphochlamys debaryana	GAIKHGPPG
OTU2 Volvox carteri	GAIKHGPTG
OTU2 Gonium pectorale	GAIKHGPPG
OTU2 Chromochloris zofingiensis	GYIQHPAG
OTU2 Raphidocelis subcapitata	GMVRHPAG
OTU2 Ulva mutabilis	DPKVHIISSQR
OTUB1 Homo sapiens	TTNPHIF-PEG
OTUB1 Mus musculus	TTNPHVF-PEG
OTUB Drosophila melanogaster	TVKAHDF-PEG
OTUB Caenorhapditis elegans	NGGWHYDIPSD
OTUB Nematostella vectensis	DVNHHDF-PED
OTUB2 Homo sapiens	ALNHHVF-PEA
OTUB2 Mus musculus	ALNHHVF-PEA
OTUB Monosiga brevicolis	EPPCHVLEGPD
OTU1 Arabidopsis thaliana	TVNHHDFVPVG
OTU1 Medicago tranculata	SVNHHDFTPVA
OTU1 Oryza sativa	SVNHHDFSPEA
OTU1La O.sativa 55840	ILNOHFIYPRPESEEGTMLGPLNSHEIVSPESSGYHAARGELONOPSTSGSSTNSSTEAL
OTU1Lb O.sativa 30974	CESTHYIVRGA
OTU1Lc O.sativa 32190	AQDIYTADGVN
OTU1 Marchantia polymorpha	DVNHHDFLPPD
OTU1 Physcomitrella patens 181928	IVNNHDFIPEG
OTU1 Klebsormidium flaccidum	EINHHDFVPES
OTU1 Haematococcus pluvialis	EVNEHTIVPDA
OTU1 Chlamydomonas reinhardtii	EASCHDFVPDS
OTU1 Gonium pectorale	DATVHDFVPDS
OTU1 Volvox carteri	DATMHDFVPDS
OTU1 Chalmydomonas eustigma	EVETYHFNPEP
OTU1 Chromochloris zofingiensis	SVSKVDFIPEG
OTU1 Raphidocelis subcapitata	ECEVHRFEPSD
OTU1 Scenedesmus obliquus	EASVVDMKPEG
OTU1 Ulva mutabilis	QCNTHVFEPRE
OTU1 Caulerpa lentillifera	EIQPTDYVPEE
OTU1 Cocomyxa subellipsoidea	AVNHHDFVPDS
OTU1 Thalassiosira pseudonana	-VATHVFGESE
OTU1 Phaeodactylum tricornutum	RLAQHTFGPDS
OTU1 Phytophthora sojae	DLQSYVCSPTV
OTU1 Trypanosoma brucei	CTTRHTFQQKD
OTU1 Laccaria bicolor	GVVDFIPFRYA
OTU1 Aspergillus nigra	AVTPHLL-TPP
OTU1 Neurospora crassa	EVNTYSF-PEE
YOD1 Homo sapiens	-IDRFGE-DAG
OTU1 Saccharomyces cerevisiae	-IEKFNE-DKF
OTUD6B Homo sapiens	-IIVGEE-YSK
OTU2 Saccharomyces cerevisiae	-IQVYNE-CGK
OTUD5 Homo sapiens	-INTFHG-IHN
OTUD3_Homo_sapiens	-QIRGTE-KSS

b (7/8)

ii	QQHGPPVAWVAHL	PGHYDVIYPARPLDV
ii	QQHGPPVAWVAHL	PGHYDVIYPARPLDV
ta	QQHGPPVAWVAHL	PGHYDVIYPARALDV
ri	QQHSPPVAWVAHL	PGHYDVIYPARPLDV
na	PAAAQPPAAWVAHL	PGHYDVIYPARRMDV
ri	HLGPPVAWVAHL	PGHYDVVYPAKQLDV
le	ARGPPAAWVAHL	PGHYDVIYPARPLDV
is	DATLAFWMIHL	PGHYEIVYARPGLDV
ta	GGEPLFYLVHL	PGHYEICYRS
is	EHVEEGEPSMFLLFR	DGHYDLIYPINNSWR
ns	SEPKVYLLYR	PGHYDILYK
us	SEPKVYLLYR	PGHYDILYK
er	SEPRIYLIYR	PGHYDILYPN
ns	DQQIAPEITLLYR	PGHYDVIYKKDSTEA
is	GSTPIVHLLYR	PGHYDVLYLANQ
ns	ATPSVYLLYK	TSHYNILYAADKH
us	AIPSVYLLYK	TSHYNILYAAEKH
is	GSGQPVCHLMFR	PGHYDVLYLPTAAP-
na	ITNEKDEEASAPFITLLYR	PGHYDILYPKPSCKV
ta	GDLPSASGSSEKKNPFITLLYR	PGHYDILYPK
va	NSSDGAAAAEKPYITLLYR	PGHYDILYPK
40	GLQSIGTSSTPNERDGKGDRTINDLSPAERRRLAILLYR	PGHYDILCPK
74	PCVTLLRI	ESHYDIIYPLPPSSI
90	IPRVTLLYT	GVHYDILYPRHPSGG
ha	CPTVEMPPVVLLYR	PGHYDILYTREVQNL
28	MDAAVEPNVILLYR	PGHYDILYRKENSED
um	APESFKPDTSGLLTLLYR	PGHYDILYSL
is	CAAAGAPIRVHVLYR	PGHYDILYKRPE
ii	CPPGTAPRVHLLYR	PGHYDILYAKSG
le	CVPGTHPRVHLLYR	PGHYDILYAKGG
ri	CVPGTQPRVHLLYR	PGHYDILYPKGG
ma	GASVLRSCVSLLYR	PGHYDILYQQ
is	CTGADAVPHVHVLYR	PGHYDILYPL
ta	EGAGSIAAAAAGDGGGGAGTGRGRPSVHLLYR	PGHYDISYPKLIA
us	LSAEEQAALGPPKVHMLYR	PGHYDILYPC
is	PVAGATIPQVAVLYR	PGHYDILYK
ra	ASIKSEIIVHLLYR	PGHYDIIYPKTTSTL
ea	LAESAAPVNPRVHVLYR	PGHYDILYP
na	EEGSDEASTLTLLYR	PGHYDILYQSECRYI
um	ASIEISLLYR	PGHYDILYRCR
ae	PATEQQEPVPITLLYR	PGHYDILYPREAGAE
ei	SHDANEYTTIEVTLLYR	PGHYDLLYK
or	SGSESLPLVLLYR	PGHYDLLIKGKQGEQ
ra	RPTGGTICLLYR	PGHYDLLYPAEPTVN
sa	AISQPTSPLDPVICLLYR	PDHYDILYPVDPTPP
ns	YTKRVLLIYD	GIHYDPLQRNFPDPD
ae	DNYILILFN	GIHYDSLTMNEFK
ns	KPLILVYMRH	AYGLGEHYNSVTRLVNIVT
ae	NPELKLVYYKH	ISYALGEHYNSLHDS
ns	EDEPIRVSYHR-	NIHYNSVVNPNKATI
ns	VRELHIAYRY-	GEHYDSVRRINDNSE

OTU2p_Chlamydomonas_reinhardt. OTU2m_Chlamydomonas_reinhardt: OTU2m_Chlamydomonas_incer OTU2m Chlamydomonas schloesse: OTU2m Edaphochlamys debaryar OTU2 Volvox carte: OTU2 Gonium pectoral OTU2 Chromochloris zofingiens. OTU2_Raphidocelis_subcapita OTU2 Ulva mutabil: OTUB1_Homo_sapier OTUB1 Mus musculu OTUB_Drosophila_melanogaste OTUB Caenorhapditis elegar OTUB Nematostella vectens: OTUB2_Homo_sapier OTUB2 Mus musculu OTUB Monosiga brevicol: OTU1_Arabidopsis_thalian OTU1_Medicago_trancula OTU1 Oryza sativ OTU1La_O.sativa_558 OTU1Lb_0.sativa_309 OTU1Lc_0.sativa_321 OTU1_Marchantia_polymorph OTU1 Physcomitrella patens 1819 OTU1_Klebsormidium_flaccid OTU1_Haematococcus_pluvial. OTU1_Chlamydomonas_reinhardt: OTU1_Gonium_pectoral OTU1 Volvox carte: OTU1_Chalmydomonas_eustigr OTU1 Chromochloris zofingiens. OTU1_Raphidocelis_subcapita OTU1 Scenedesmus obliqui OTU1_Ulva_mutabil OTU1 Caulerpa lentillife: OTU1_Cocomyxa_subellipsoide OTU1 Thalassiosira pseudonar OTU1_Phaeodactylum_tricornut OTU1_Phytophthora_soja OTU1 Trypanosoma bruce OTU1_Laccaria_bicolo OTU1 Aspergillus nig OTU1 Neurospora crass YOD1 Homo sapier OTU1_Saccharomyces_cerevisia OTUD6B Homo sapier OTU2 Saccharomyces cerevisia OTUD5_Homo_sapier OTUD3_Homo_sapier

b (8/8)

OTU2p_Chlamydomonas_reinhardtii	APGGQLVAAII
OTU2m_Chlamydomonas_reinhardtii	APGGQLVAAII
OTU2m_Chlamydomonas_incerta	APGGQLVAVDM
OTU2m_Chlamydomonas_schloesseri	APGGQLVPAAKKGIVAT
OTU2m Edaphochlamys debaryana	APGGMLVPA
OTU2 Volvox carteri	APGGALVPVLLPEGF
OTU2 Gonium pectorale	APGGALIPV
OTU2 Chromochloris zofingiensis	STLTTLVKKAG
OTU2 Raphidocelis subcapitata	
OTU2 Ulva mutabilis	CLVAOTGTVSDY
OTURI Homo saniens	
OTUB1 Mus musculus	
OTUR Drosophila melanogaster	
OTUB_DIOSOPHITA_metanogaster	CEIEN
OTUB_Caenornapoltis_elegans	SEIEN
UTUB_NEMATOSTELLA_VECTENSIS	
OTUB2_Homo_sapiens	
OTUB2_Mus_musculus	
OTUB_Monosiga_brevicolis	
OTU1_Arabidopsis_thaliana	SDNVGK
OTU1_Medicago_tranculata	
OTU1_Oryza_sativa	
OTU1La_O.sativa_55840	
OTU1Lb_O.sativa_30974	NSSNPHEEKLLPIPSSI
OTU1Lc O.sativa 32190	SGSKSSTQR
OTU1 Marchantia polymorpha	APVPRVEEPQDL
OTU1 Physcomitrella patens 181928	ALLSNLEQTG
OTU1 Klebsormidium flaccidum	
OTU1 Haematococcus pluvialis	
OTU1 Chlamydomonas reinhardtii	
OTU1 Gonjum pectorale	
OTUL Volvox carteri	
OTUI Chalmydomonas eustigma	
OTUI Chromochloria zofinzionzia	
OTUL Darbidecolic subscritting	
OTUL Kaphidocelis_subcapitata	
OTUL_Scenedesmus_obliquus	
OTUI_UIva_mutabilis	
OTU1_Caulerpa_lentillifera	
OTU1_Cocomyxa_subellipsoidea	
OTU1_Thalassiosira_pseudonana	R
OTU1_Phaeodactylum_tricornutum	
OTU1_Phytophthora_sojae	QEKAS
OTU1_Trypanosoma_brucei	
OTU1_Laccaria_bicolor	ELRH
OTU1 Aspergillus nigra	MEPVVNYQYAMTSDYS-
OTUl Neurospora crassa	PAPMNIQVFRATIPOY-
YOD1 Homo sapiens	TPPLTIFSSNDD
OTU1 Saccharomyces cerevisiae	TVFNKNOP
OTUD6B Homo sapiens	ENCS
OTU2 Saccharomyces cerevisiae	
OTUD5 Homo sapiens	GVGLGLPSFKPG
OTUD3_Homo_sapiens	ADAULOTDEOMI
UIUUS HOMO SADIENS	AFAUTOIDLOUT

а

b

<i>plus</i> parent (eryR)	<i>minus</i> parent (specR)	Total (zygotes)	eryR	Both	specR	Exceptional	P-value
CC-333	Control-A	86	81	5	0	6%	n.a.
	Control-B	50	44	6	0	12%	n.a.
	cOTU2p-A	100	75	18	7	25%	7.77E-10
	cOTU2p-B*	76	26	50	0	66%	4.79E-49
	cOTU2p-C*	88	11	76	1	88%	9.66E-111
	cOTU2m-A	106	90	10	6	15%	5.12E-04
	cOTU2m-B	88	74	13	1	16%	3.31E-06
	cOTU2m-C	130	108	18	4	17%	2.64E-04
	cOTU2p ^{C904S} -A	36	35	0	1	3%	8.26E-18
	cOTU2p ^{C904S} -B	50	48	0	4	8%	5.88E-13
	cOTU2p ^{C904S} -C	66	63	2	1	5%	1.47E-09

Supplementary Figure 10. DUB activity of Otu2p is required for promoting chloroplast DNA inheritance. Individual zygote progeny from the mating of the erythromycin-resistant (eryR) WT *plus* strain with three independent transgenic *minus* strains that harbor *cOTU2p* or *cOTU2p*^{C904S} (the non-catalytic Cys904Ser mutation) in a spectinomycin-resistant parental strain (specR) were examined for antibiotic resistance. (a) The C904S mutation abolished the increase in biparental inheritance caused by *cOTU2p*. (*n*) indicates the number of germinating zygotes examined. (b) Antibiotic resistance data depicted in Supplementary Fig. 10a. Asterisks indicate significant differences from the control mating in the exceptional zygote rate, as estimated with the chi-square test (*p*-value < 1.0E-25).

Supplementary Figure 11. CreCHIP is not required for selective degradation of cpDNA during zygote development. (a) CHIP E3 ligase contains two TPR repeats (blue bars) and a C-terminal U-box domain (red bar). Homologs were found in Viridiplantae, Cryptophytes, and Alveolates. (b) Two *chip* mutant strains were obtained from the CLiP collection (44), with *aphVIII*-cassette insertions confirmed by CreCHIP-specific PCR using the P1-P2 primer pair and aphVIII-specific PCR using the F2 and R1 primers. The insertion-specific PCR was performed twice. (c) The percentage of uniparental zygotes in homozygous *CreCHIP* mutant zygotes was indistinguishable from that of wild-type (WT) zygotes. cpDNA in one chloroplast has degraded. Three *plus* and *minus CreCHIP* mutant progeny from a single backcross were examined by mating with WT *minus* and *plus* strains. Zygotes with cpDNA nucleoids in one and both chloroplasts were considered uniparental (UP) and biparental (BP), respectively. Counts stopped when the number of UP zygotes reached 100.

Supplementary Figure 12. Bortezomib treatment of *otu2*-ko mutant gametes phenocopied Otu2p expression for cpDNA degradation in zygotes. Differential interference contrast and overlaid fluorescent images of Hoechst 33342 (cyan)-stained zygotes with chlorophyll autofluorescence (magenta) at the indicated times after mating. Experiments were repeated three times. Quantitative results of three biological experiments are provided in Section "Figure 5d" of Supplementary Table 3. Only the *minus* gametes were stained with MitoTracker Green (green), staining *minus* chloroplasts in the zygotes. Bar = 5 μ m.

Supplementary Figure 13. The complete blots of Fig. 4a. (a) anti-TOC159. (b) anti-TOC75. (c) anti-TOC34. (d) anti-PsbD.

Supplementary Table 1. Genetic analysis of cpDNA inheritance for testing the "protector" function of OTU2/EZY2 cluster in MT+

plus parent (specR)	minus parent (eryR)	Total (zygotes)	specR	Both	eryR	Exceptional	P-value
CJU10-J1	CC-2663	93	89	2	2	4%	n.a.
same as above	D13-03*	43	36	4	3	9%	2.06E-07
	D13-06	53	52	2	0	4%	1.22E-04
	D13-08*	73	43	30	0	28%	4.71E-39
	D13-10	84	84	0	0	0%	3.85E-02
	D13-13*	54	45	7	2	17%	1.21E-07
	D13-14*	66	49	11	6	26%	8.45E-15
	D13-19	94	87	4	3	7%	1.30E-01
	D13-20*	123	96	27	0	22%	1.00E-30
	D13-26	99	95	3	1	4%	5.25E-01
	D13-53	73	71	1	0	1%	1.90E-02
	D13-56	64	64	0	0	0%	9.00E-04
	D13-64	60	56	3	1	7%	4.69E-04
	D13-81	76	76	0	0	0%	1.52E-02
	P21-49	68	65	3	0	4%	9.52E-03
	O16-52	74	68	6	0	8%	1.47E-02

*Asterisks next to the strain name indicate significant difference from wild-type zygotes (CJU10-J1 x CC-2663) based on *chi*-square test (*p*-value <1.0E-6).

Strain ID	# zygote	UPp (eryR)	BP	UPm (specR)	(UPm + BP)	<i>P</i> -value
Control #1	40	32	2	6	20%	n.a.
AR::cOTU2p_#1	24	9	3	12	63%	1.94E-06
AR::cOTU2p_#7*	34	1	3	30	97%	2.48E-25
AR::cOTU2p_#8*	27	6	3	18	78%	8.03E-11
AR::cOTU2p_#9*	24	4	4	16	83%	7.07E-11
AR::cOTU2p_#10*	39	3	3	33	92%	7.31E-29
AR::cOTU2p_#11*	26	3	2	21	88%	1.63E-13
AR::cOTU2p_#15	98	79	7	12	19%	4.57E-20
AR::cOTU2p_#16	78	76	0	2	3%	7.49E-16
AR::cOTU2p_#17	31	22	1	8	29%	7.14E-02
AR::cOTU2p_#19	49	48	0	1	2%	1.71E-04
AR::cOTU2p_#20	61	51	3	7	16%	5.98E-04
AR::cOTU2p_#21	27	13	6	8	52%	7.11E-05
AR::cOTU2p_#22	29	13	11	5	55%	1.13E-05
AR::cOTU2p_#23*	39	13	13	13	67%	6.20E-13
AR::cOTU2p_#24	22	18	4	0	18%	4.37E-03
Strain ID	# zygote	UPp (eryR)	BP	UPm (specR)	(UPm + BP)	P-value
Strain ID Control #1	# zygote 83	UPp (eryR) 72	BP 8	UPm (specR) 3	(UPm + BP) 13%	<i>P</i> -value n.a.
Strain ID Control #1 Control #2	# zygote 83 93	UPp (eryR) 72 86	BP 8 7	UPm (specR) 3 0	(UPm + BP) 13% 8%	P-value n.a. n.a.
Strain ID Control #1 Control #2 AR::cOTU2m_#2	# zygote 83 93 96	UPp (eryR) 72 86 92	BP 8 7 2	UPm (specR) 3 0 2	(UPm + BP) 13% 8% 4%	<i>P</i> -value n.a. n.a. 5.59E-10
Strain ID Control #1 Control #2 AR::cOTU2m_#2 AR::cOTU2m_#3	# zygote 83 93 96 76	UPp (eryR) 72 86 92 72	BP 8 7 2 3	UPm (specR) 3 0 2 1	(UPm + BP) 13% 8% 4% 5%	<i>P</i> -value n.a. n.a. 5.59E-10 3.05E-14
Strain ID Control #1 Control #2 AR::cOTU2m_#2 AR::cOTU2m_#3 AR::cOTU2m_#4	# zygote 83 93 96 76 98	UPp (eryR) 72 86 92 72 85	BP 8 7 2 3 3	UPm (specR) 3 0 2 1 10	(UPm + BP) 13% 8% 4% 5% 13%	<i>P</i> -value n.a. 5.59E-10 3.05E-14 3.11E-09
Strain ID Control #1 Control #2 AR::cOTU2m_#2 AR::cOTU2m_#3 AR::cOTU2m_#4 AR::cOTU2m_#5	# zygote 83 93 96 76 98 89	UPp (eryR) 72 86 92 72 85 78	BP 8 7 2 3 3 6	UPm (specR) 3 0 2 1 10 5	(UPm + BP) 13% 8% 4% 5% 13% 12%	P-value n.a. 5.59E-10 3.05E-14 3.11E-09 4.87E-11
Strain ID Control #1 Control #2 AR::cOTU2m_#2 AR::cOTU2m_#3 AR::cOTU2m_#4 AR::cOTU2m_#5 AR::cOTU2m_#6	# zygote 83 93 96 76 98 89 96	UPp (eryR) 72 86 92 72 85 78 89	BP 8 7 2 3 3 6 1	UPm (specR) 3 0 2 1 10 5 6	(UPm + BP) 13% 8% 4% 5% 13% 12% 7%	P-value n.a. 5.59E-10 3.05E-14 3.11E-09 4.87E-11 1.27E-09
Strain ID Control #1 Control #2 AR::cOTU2m_#2 AR::cOTU2m_#3 AR::cOTU2m_#4 AR::cOTU2m_#5 AR::cOTU2m_#6 AR::cOTU2m_#7	# zygote 83 93 96 76 98 89 96 34	UPp (eryR) 72 86 92 72 85 78 89 30	BP 8 7 2 3 3 6 1 0	UPm (specR) 3 0 2 1 10 5 6 4	(UPm + BP) 13% 8% 4% 5% 13% 12% 7% 12%	P-value n.a. 5.59E-10 3.05E-14 3.11E-09 4.87E-11 1.27E-09 9.70E-27
Strain ID Control #1 Control #2 AR::cOTU2m_#2 AR::cOTU2m_#3 AR::cOTU2m_#4 AR::cOTU2m_#5 AR::cOTU2m_#6 AR::cOTU2m_#7 AR::cOTU2m_#8	# zygote 83 93 96 76 98 89 96 34 92	UPp (eryR) 72 86 92 72 85 78 89 30 86	BP 8 7 2 3 3 6 1 0 5	UPm (specR) 3 0 2 1 10 5 6 4 1	(UPm + BP) 13% 8% 4% 5% 13% 12% 7% 12% 7%	P-value n.a. 5.59E-10 3.05E-14 3.11E-09 4.87E-11 1.27E-09 9.70E-27 1.68E-10
Strain ID Control #1 Control #2 AR::cOTU2m_#2 AR::cOTU2m_#3 AR::cOTU2m_#4 AR::cOTU2m_#5 AR::cOTU2m_#6 AR::cOTU2m_#7 AR::cOTU2m_#8 AR::cOTU2m_#9	# zygote 83 93 96 76 98 89 96 34 92 96	UPp (eryR) 72 86 92 72 85 78 89 30 89 30 86 88	BP 8 7 2 3 3 6 1 0 5 6	UPm (specR) 3 0 2 1 10 5 6 4 1 2	(UPm + BP) 13% 8% 4% 5% 13% 12% 7% 12% 7% 8%	P-value n.a. 5.59E-10 3.05E-14 3.11E-09 4.87E-11 1.27E-09 9.70E-27 1.68E-10 1.47E-09
Strain ID Control #1 Control #2 AR::cOTU2m_#2 AR::cOTU2m_#3 AR::cOTU2m_#4 AR::cOTU2m_#5 AR::cOTU2m_#6 AR::cOTU2m_#7 AR::cOTU2m_#8 AR::cOTU2m_#9 AR::cOTU2m_#10	# zygote 83 93 96 76 98 89 96 34 92 96 41	UPp (eryR) 72 86 92 72 85 78 89 30 89 30 86 88 88 39	BP 8 7 2 3 3 6 1 0 5 6 2	UPm (specR) 3 0 2 1 10 5 6 4 1 2 0	(UPm + BP) 13% 8% 4% 5% 13% 12% 7% 12% 7% 8% 5%	P-value n.a. n.a. 5.59E-10 3.05E-14 3.11E-09 4.87E-11 1.27E-09 9.70E-27 1.68E-10 1.47E-09 2.18E-24
Strain ID Control #1 Control #2 AR::cOTU2m_#2 AR::cOTU2m_#3 AR::cOTU2m_#4 AR::cOTU2m_#5 AR::cOTU2m_#6 AR::cOTU2m_#7 AR::cOTU2m_#7 AR::cOTU2m_#8 AR::cOTU2m_#9 AR::cOTU2m_#10 AR::cOTU2m_#11	# zygote 83 93 96 76 98 89 96 34 92 96 41 54	UPp (eryR) 72 86 92 72 85 78 89 30 89 30 86 88 88 39 50	BP 8 7 2 3 3 6 1 0 5 6 2 4	UPm (specR) 3 0 2 1 10 5 6 4 1 2 0 0 0	(UPm + BP) 13% 8% 4% 5% 13% 12% 7% 12% 7% 8% 5% 7%	<i>P</i> -value n.a. 5.59E-10 3.05E-14 3.11E-09 4.87E-11 1.27E-09 9.70E-27 1.68E-10 1.47E-09 2.18E-24 3.45E-20
Strain ID Control #1 Control #2 AR::cOTU2m_#2 AR::cOTU2m_#3 AR::cOTU2m_#4 AR::cOTU2m_#5 AR::cOTU2m_#6 AR::cOTU2m_#7 AR::cOTU2m_#8 AR::cOTU2m_#9 AR::cOTU2m_#10 AR::cOTU2m_#12	# zygote 83 93 96 76 98 89 96 34 92 96 41 54 81	UPp (eryR) 72 86 92 72 85 78 89 30 86 88 30 86 88 39 50 72	BP 8 7 2 3 3 6 1 0 5 6 2 4 4	UPm (specR) 3 0 2 1 10 5 6 4 1 2 0 0 0 5	(UPm + BP) 13% 8% 4% 5% 13% 12% 7% 12% 7% 8% 5% 7% 11%	P-value n.a. n.a. 5.59E-10 3.05E-14 3.11E-09 4.87E-11 1.27E-09 9.70E-27 1.68E-10 1.47E-09 2.18E-24 3.45E-20 7.89E-13
Strain ID Control #1 Control #2 AR::cOTU2m_#2 AR::cOTU2m_#3 AR::cOTU2m_#4 AR::cOTU2m_#5 AR::cOTU2m_#6 AR::cOTU2m_#7 AR::cOTU2m_#8 AR::cOTU2m_#9 AR::cOTU2m_#10 AR::cOTU2m_#11 AR::cOTU2m_#12 AR::cOTU2m_#13	# zygote 83 93 96 76 98 89 96 34 92 96 41 54 81 98	UPp (eryR) 72 86 92 72 85 78 89 30 86 88 30 86 88 39 50 72 95	BP 8 7 2 3 3 6 1 0 5 6 2 4 4 4 3	UPm (specR) 3 0 2 1 10 5 6 4 1 2 0 0 5 0 5 0 0	(UPm + BP) 13% 8% 4% 5% 13% 12% 7% 12% 7% 8% 5% 7% 11% 3%	P-value n.a. 5.59E-10 3.05E-14 3.11E-09 4.87E-11 1.27E-09 9.70E-27 1.68E-10 1.47E-09 2.18E-24 3.45E-20 7.89E-13 8.59E-10
Strain ID Control #1 Control #2 AR::cOTU2m_#2 AR::cOTU2m_#3 AR::cOTU2m_#4 AR::cOTU2m_#5 AR::cOTU2m_#6 AR::cOTU2m_#7 AR::cOTU2m_#8 AR::cOTU2m_#10 AR::cOTU2m_#11 AR::cOTU2m_#12 AR::cOTU2m_#13 AR::cOTU2m_#14	# zygote 83 93 96 76 98 89 96 34 92 96 41 54 81 98 78	UPp (eryR) 72 86 92 72 85 78 89 30 86 88 30 86 88 39 50 72 95 70	BP 8 7 2 3 3 6 1 0 5 6 2 4 4 4 3 6	UPm (specR) 3 0 2 1 10 5 6 4 1 2 0 0 0 5 0 0 2	(UPm + BP) 13% 8% 4% 5% 13% 12% 7% 12% 7% 8% 5% 7% 11% 3% 10%	P-value n.a. n.a. 5.59E-10 3.05E-14 3.11E-09 4.87E-11 1.27E-09 9.70E-27 1.68E-10 1.47E-09 2.18E-24 3.45E-20 7.89E-13 8.59E-10 1.50E-13
Strain ID Control #1 Control #2 AR::cOTU2m_#2 AR::cOTU2m_#3 AR::cOTU2m_#4 AR::cOTU2m_#5 AR::cOTU2m_#6 AR::cOTU2m_#7 AR::cOTU2m_#8 AR::cOTU2m_#10 AR::cOTU2m_#11 AR::cOTU2m_#12 AR::cOTU2m_#13 AR::cOTU2m_#14 AR::cOTU2m_#15	# zygote 83 93 96 76 98 89 96 34 92 96 41 54 81 98 78 86	UPp (eryR) 72 86 92 72 85 78 89 30 86 88 30 86 88 39 50 72 95 70 80	BP 8 7 2 3 3 6 1 0 5 6 2 4 4 4 3 6 6 6	UPm (specR) 3 0 2 1 10 5 6 4 1 2 0 0 5 0 5 0 2 0 2 0 2 0 2 0 0 5 0 0 2 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0	(UPm + BP) 13% 8% 4% 5% 13% 12% 7% 12% 7% 8% 5% 7% 11% 3% 10% 7%	P-value n.a. n.a. 5.59E-10 3.05E-14 3.11E-09 4.87E-11 1.27E-09 9.70E-27 1.68E-10 1.47E-09 2.18E-24 3.45E-20 7.89E-13 8.59E-10 1.50E-13 9.13E-12

Supplementary Table 2. Genetic analysis of cpDNA inheritance for testing the "protector" function of the *OTU2p* and *OTU2m* coding segments

(a) Asterisks indicate significant increase in exceptional zygote (UPm + BP) rates by chi-square test (*p*-value <1.0E-6). *AR::cOTU2p* #8, 10, and 23 and *AR::cOTU2m* #2, 6, and 12, showing comparable transgene expression with endogenous *OTU2*, were designated as A, B, and C, used in other experiments.

Cr	OSS	Mating efficiency			Total QFC counted		
plus	minus	% ^a	UP+ %	UP- %	BP %	No%	
Figure 1							
Haploid MT+	Haploid MT-	91.2 ± 1.3	85.0 ± 1.3	0.00	15.0 ± 1.3	0.0	608
Haploid MT+	MT+/MT-	88.5 ± 0.8	10.4 ± 4.1	1.3 ± 0.8	88.3 ± 4.8	0.0	1015
Haploid MT+	MT-/MT-	89.0 ± 1.6	78.5 ± 1.3	2.5 ± 0.5	19.0 ± 0.9	0.0	438
Figure 2b							
WT	cOTU2p	90.9 ± 1.1	12.2 ± 1.4	1.5 ± 0.8	86.3 ± 1.2	0.0	666
WT	cOTU2m	89.3 ± 0.8	81.1 ± 3.2	0.0	18.9 ± 3.2	0.0	416
Figure 2c							
WT	WT	92.5 ± 0.2	81.9 ± 1.8	0.2 ± 0.4	17.9 ± 2.2	0.0	543
otu2p	WT	89.2 ± 1.6	13.5 ± 2.8	1.1 ± 0.9	85.3 ± 2.1	0.0	770
otu2p	otu2m	87.2 ± 1.3	10.2 ± 1.2	3.6 ± 0.9	84.6 ± 0.6	1.6 ± 0.6	866
Figure 2d							
otu2p;							
cOTU2p	otu2m	89.4 ± 1.2	88.0 ± 0.2	1.2 ± 0.4	10.8 ± 0.4	0.0	866
a tu On	otu2m;	07 0 1 0 4	26100	000.00	14 0 1 2 2	0.0	700
otu2p	corozp	87.3 ± 0.4	2.0 ± 0.8	82.9 ± 3.3	14.0 ± 3.3	0.0	738
cOTU2m	otu2m	87.6 + 0.6	11.2 + 0.3	0.8 + 0.1	87.1 + 0.4	0.9 + 0.3	879
	otu2m;	0.10 2 0.0		0.0 - 0		0.0 2 0.0	0.0
otu2p	cOTU2m	88.5 ± 0.4	13.4 ± 0.7	1.3 ± 0.9	83.9 ± 1.6	1.3 ± 0.5	743
Figure 5c							
WT (mock)	WT (mock)	89.6 ± 2.2	82.4 ± 1.0	0.0	17.6 ± 1.0	0.0	1093
WT (MG132)	WT (mock)	88.8 ± 0.9	83.5 ± 1.3	0.0	16.5 ± 1.3	0.0	423
WT							
(bortezomib)	WT (mock)	88.1 ± 1.8	85.9 ± 1.8	0.0	83.9 ± 1.8	0.0	706
WT (mock)	WT (MG132)	88.6 ± 0.9	19.1 ± 1.7	0.0	80.9 ± 1.7	0.0	371
	WT (hartanarih)	070 40	120107	0.0	070107	0.0	700
VVI (MOCK)	(bortezomb)	87.2 ± 1.2	13.0 ± 0.7	0.0	87.0±0.7	0.0	700
Figure 5d							
(mock)	otu2m	89.6 ± 0.9	15.5 ± 4.6	0.8 ± 0.4	83.7 ± 4.4	0.0	617
otu2p	otu 2m	00 2 ± 1 0	01 2 + 0 4	10+00	170+04	0.0	111
(1013132)	otu2m	00.2 ± 1.0	01.2 ± 0.4	1.0 ± 0.2	17.0 ± 0.4	0.0	441
otu2p	(mock)	89.6 ± 0.9	17.3 ± 1.7	4.1 ± 0.8	78.7 ± 1.7	0.0	435
	otu2m						
otu2p	(MG132)	88.0 ± 0.5	1.0 ± 0.6	82.0 ± 1.8	17.1 ± 1.3	0.0	424
otu2p	otu?m	861+07	852+09	12+05	137+05	0.00	680
	otu2m	00.1 ± 0.7	00.2 ± 0.0	1.2 ± 0.3	10.7 ± 0.0	0.00	009
otu2p	(bortezomib)	85.6 ± 1.5	0.8± 0.3	84.7 ± 1.0	14.6 ± 1.1	0.00	653

Supplementary Table 3. Summary of the detailed mating data described in this study

(a) % values show the average \pm s.d. from three biological replicates.

	FPKM		Predicted				
Gene ID	(V-G-Z)ª	Gene Name	locale ^b	(c)	(d)	Annotation	
a. Putative DNA-binding proteins							
Cre06.g255750	0-0-1334	EZY1c	С	С	cTP	Localized to nucleoids	
Cre06.g255650	0-1-411	EZY1b	С	С	cTP	Localized to nucleoids	
Cre06.g255600	0-1-254	EZY1a	С	С	cTP	Localized to nucleoids	
Cre02.g091550	46-33-868	EZY18/Whirly	CM	Μ	cTP	Localized to nucleoids	
Cre07.g314650	41-36-408	EZY19/RECA	С	С	cTP	Localized to nucleoids	
Cre12.g483720	0-0-127	OSB2/PTAC9	CM	С	mTP	Divergent	
b. Topoisomeras	es						
Cre10.g442850	2-5-17	TOP-HMGbox, topo IA1	CM	С	mTP		
Cre04.g221650	1-1-13	Topo IV (GYRA)	С	С	cTP		
Cre10.g440750	4-1-45	Topo IV (GYRB)	0	0	mTP		
c. Candidate helicases							
Cre06.g296150	3-3-23	PIF1-type helicase	СМ	С	mTP	PIF1 domain only	
Cre06.g256700	1-1-38	AAA_helicase	С	С	cTP	Divergent	
Cre06.g256650	0-0-13	AAA_helicase	М	М	mTP	Divergent	
d. DNA replication enzymes							
Cre17.g736150	1-0-14	DNA polymerase	М	М	mTP	Divergent	

Supplementary Table 4. Zygote-specific genes encoding chloroplast-localized proteins

(a) Annotation and RNA-seq-based expression measures (FPKM) are taken from Joo et al. (4).

(b) Predicted organellar localization is indicated as C (Chloroplast), M (Mitochondria), or O (others).

(c) Prediction by TargetP (https://services.healthtech.dtu.dk/service.php?TargetP-2.0).

(d) Prediction by PredAlgo (http://lobosphaera.ibpc.fr/cgi-bin/predalgodb2.perl?page=main).

Genome	OTU2	MT-linkage	mating-type (location)	MTD1	SAD1
C. reinhardtiiª	MT+/MT-	Yes	<i>MT</i> + (Ch6)	MT-	MT+/MT-
C. incerta ^b	C0033	Yes	<i>MT-</i> (C0033)	C0033	C0033
C. schloesseri ^b	C0045	Yes	<i>MT-</i> (C0045)	C0045	C0045
Edaphochlamys debaryana ^b	C0043	Yes	<i>MT-</i> (C0043)	C0043	C0043
Gonium pectorale ^c	C000113	<u>No</u>	<i>MT-</i> (C000001)	C000001	C000143
Volvox carteri ^d	Sc35	<u>No</u>	<i>MT</i> + (Sc2, Sc38, Sc80)	Pseudogene	Sc27
Dunaliella salina ^e	C0044	Unknown	<i>MT-</i> (n.d.)	C0036	C0945

Supplementary Table 5. Genetic linkage of OTU2 homologs to the mating-type loci in Volvocine algae

a) De Hoff et al. (2013) (5); b) Craig et al. (2021) (6); c) Hamaji et al. (2016) (7); d) Ferris et al. (2010) (8); e) Polle et al. (2017) (9).

	0	Restriction
		enzyme tag
psbD_qF1	GCTAACAGTATGGCTCACTCTC	
psbD_qR1	AAGCAACGAATGCCCATAAAC	
Cblp_qF1	ACATTTCCTGACCTCCACATC	
Cblp_qR1	TGCTGGTGATGTTGAACTCG	
RCK1_qF1	GCCACACCGAGTGGGTGTCGTGCG	
RCK1_qR1	CCTTGCCGCCCGAGGCGCACAGCG	
OTU2_F1	ACGGCAACTGCTTCTACC	
OTU2_F2	CTTGGCAATCAGGAGGCAG	
OTU2_F3	CATGACCGGGTTGACGGAC	
OTU2_F4	GCACTCGAGATCTGAGCAG	
OTU2_F5	GGTAGTACGGTTCGGCTAC	
OTU2_F6	CATGCATGCTTCGCCGG	
OTU2_F7	CTACAGTACCCTTGCTGGCAG	
OTU2_F9	TACCCGTGGCAACGCGAGTAC	
OTU2 F11	GAGGCGCATCAACTGGAATCG	
OTU2 F12	CTGGACTGTGACAAGCTCATC	
OTU2 F13	CTAGGACGGACCGACTTGGTC	
OTU2 F14	GCAGTCATGGTAGTCACCTTG	
OTU2 F16	ATGGCGCGCAAGGTCCGCGAGA	
OTU2 F17	CAGCGGCTGCTACGCCTTTTG	
OTU2 F18	CATATGACCGGGTTGACGGAC	Ndel
OTU2 F21	AGCAACGGCGCCGAGCCG	
OTU2p R1	CCGGCGAAGCATGCATG	
OTU2m R1	CTCTGCTCGGCGCTGTTG	
OTU2 R2	GGTAGAAGCAGTTGCCGTC	
OTU2 R3	CAGCTGCTCAACCTCCAC	
OTU2 R4	GCTGCTCAGATCTCGAGTG	
OTU2 R5	CGTAGCCGAACCGTACTAC	
OTU2 R12ston	gaattcTTATATAATTGCCGCCACTAG	EcoBI
OTU2 R12noston	gaattcTATAATTGCCGCCACTAGTTGC	EcoRI
OTU2 R14	CAGCACACTGGCTTGCACAG	2001.1
OTU2_R16	AGGATCCCTGCAGGCGCTGCATCTC	BamHI
OTU2_R10		Dannin
OTU2 R21	GTGCGAAGCGGATCACCTC	
OTU2 C9049 F	GGGGCGACGGCAACAGCTTCTACCGCCGC	
OTU2 C0045 P		
$\frac{0.102}{0.0040}$		
		Ndel
		EcoPI
$\frac{1}{12} k_{0} E_{1}$		
UTUZ KO KIM	GCAGCUGTACTUGAUGUAGTG	

Supplementary Table 6. List of primers used in this study

Supplementary References 1–9

1. Kuroiwa, T., Kawano, S., Nishibayashi, S. & Sato, C. Epifluorescent microscopic evidence for maternal inheritance of chloroplast DNA. *Nature* **298**, 481-483 (1982).

2. Matagne, R. F. & Mathieu, D. Transmission of chloroplast genes in triploid and tetraploid zygospores of Chlamydomonas reinhardtii: roles of mating-type gene dosage and gametic chloroplast DNA content. *Proc. Natl. Acad. Sci. U. S. A.* **80**, 4780-4783 (1983).

3. Ferris, P. J., Armbrust, E. V. & Goodenough, U. W. Genetic structure of the mating-type locus of Chlamydomonas reinhardtii. *Genetics* **160**, 181-200 (2002).

4. Joo, S. et al. Gene regulatory networks for the haploid-to-diploid transition of Chlamydomonas reinhardtii. *Plant Physiol.* **175**, 314-332 (2017).

5. De Hoff, P. L. et al. Species and population level molecular profiling reveals cryptic recombination and emergent asymmetry in the dimorphic mating locus of C. reinhardtii. *PLoS Genet.* 9, e1003724. <u>https://doi.org/10.1371/journal.pgen.1003724</u> (2013).

6. Craig, R. J., Hasan, A. R., Ness, R. W. & Keightley, P. D. Comparative genomics of Chlamydomonas. *Plant Cell* **33**, 1016-1041 (2021).

7. Hamaji, T. et al. Sequence of the Gonium pectorale Mating Locus reveals a complex and dynamic history of changes in Volvocine algal mating haplotypes. *G3 Genes Genomes Genet.* **6**, 1179–1189 (2016).

8. Ferris, P. et al. Evolution of an Expanded Sex-Determining Locus in Volvox. *Science* **328**, 351–354 (2010).

9. Polle, J. E. W. *et al.* Draft nuclear genome sequence of the halophilic and beta-caroteneaccumulating green alga Dunaliella salina Strain CCAP19/18. *Genome Announc*. 5:e01105-17. https://doi.org/<u>10.1128/genomeA.01105-17</u> (2017).