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Supplemental Methods: Development of LAMP1-APEX iPSC lines 37 

 38 
For the endogenous KI-LAMP1-APEX line, iPSCs were engineered by CRISPR-mediated 39 

homologous recombination of the APEX2 transgene into the endogenous LAMP1 gene. APEX2 is the 40 

second generation of APEX with improved enzymatic activity.1 We refer APEX2 as APEX in the paper for 41 

simplicity. Briefly, 1.5 million cells were seeded onto a 6-well dish for reverse transfection with 42 

Lipofectamine Stem (ThermoFisher). A ribonucleoprotein particle containing a crRNA targeting the 3’ end 43 

of the LAMP1 ORF, tracrRNA, and recombinant Cas9 protein, was co-transfected with a custom DNA 44 

plasmid harboring 1-kb homology fragments flanking the APEX gene and a fluorescent selection cassette 45 

(Genewiz). The following day, the cells were dissociated onto a 10 cm dish, and maintained on Essential 8 46 

medium for one week. Genomic DNA was collected from the unpurified cells using a Quick-DNA 47 

Microprep Kit (Zymo) and endogenous integration of APEX2 at the 3’ end of a single LAMP1 ORF allele 48 

was confirmed by PCR. When the cultures reached an 80-90% confluency, a FACS Sony SH800S Cell 49 

Sorter was used to seed a 96-well plate with individual fluorescent cells, and scaled to 6-well dishes.  50 

Two overexpression lines, KuD-LAMP1-APEX and KuB-LAMP1-APEX were generated to 51 

compare with the endogenous KI-LAMP1-APEX line. The HA line was generated by TALEN-mediated 52 

integration of a tetracycline-inducible KuD-LAMP1-APEX transgene at the CLYBL gene (UNIPROT: 53 

Q8N0X4). Since the high expression level of the TET-On promoter may drive partial mislocalization of 54 

LAMP1 to the cell membrane, we used a detuning strategy of upstream open reading frames (uORFs) to 55 

decrease transcriptional efficiency and enable more physiologic expression levels of LAMP1-APEX. Our 56 

previously developed LAMP1-APEX employed the moderate Kozak/uORF detuning strategy “KuB” 57 

(CAAATGGGTTGAACC-start).2,3 Compared to the KuB line, KuD line employed the stringent 58 

Kozak/uORF “KuD” (GGGATGGGTTGATTT-start). KuB is predicted to reduce expression from the 59 

TET-ON promoter driving LAMP1-APEX to <15% of a consensus Kozak sequence (GCCACC-start), 60 

whereas KuD is predicted to reduce expression to <2% of the consensus sequence. The successful 61 

integration of APEX onto the LAMP1 locus was confirmed by PCR for each transgenic iPSC line. 62 
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Supplemental Figures: 63 

 64 

 65 

Figure S1. Fluorescence imaging of APEX activity in overexpression KuD-LAMP1-APEX neurons 66 

(left) and cytosolic NES-APEX neurons (right). Biotinylation is visualized by staining against 67 

streptavidin (SA) Fluor 680 (far red). Hoechst is a nuclear marker (blue). LAMP1 (green) is used as an 68 

endolysosome marker. Control neurons without H2O2 treatment exhibit no biotinylation signals.  The APEX 69 

activity of the KuB-LAMP1-APEX probe was shown in our previous publication.3 70 

  71 
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 73 
 74 

Figure S2. Distribution of peptide charges (A) and precursor masses (B) with different amount of 75 

proteases for on-beads protein digestion. Increased amount of protease (Trypsin/LysC mix) shifted the 76 

peptides towards lower charges and smaller precursor masses.  77 
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Figure S3: Scatter plots showing reproducibility between biological replicates in the same batch of 79 

APEX labeling experiment before and after normalization to PCCA.  80 
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 83 

Figure S4. Evaluation of false discoveries in KuB-LAMP1-APEX using different control dataset. 84 

(A) KuB-LAMP1-APEX Proteomics with no-APEX line as control; (B) KuB-LAMP1-APEX with NES-85 

APEX as control. Protein intensities were normalized to the most abundant endogenously biotinylated 86 

protein, PCCA.  87 
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Figure S5. Beads titration assay for overexpression APEX probes: KuB-LAMP1-APEX, KuD-90 

LAMP1-APEX, and cytosolic NES-APEX. Increasing amount of beads were incubated with 20 µg of 91 

input protein lysate in different tubes, followed by dot-blot assay against streptavidin staining.  92 

  93 
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 97 
 98 

Figure S6. Venn diagram of all identified proteins from all APEX probes and controls. Three 99 

LAMP1-APEX proteomics, cytosolic NES-APEX, and No-APEX control groups.  100 

  101 
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