IoT type	Example	Description	References
Smartphone	DetectaChem (USA)	Low cost COVID-19 testing	Nasaipour et al 2020
applications		using a kit connected to a	1 asapton of an, 2020
uppheutions		smartphone application	
	Star Carrie (Caratia)		
	Stop Corona (Croatia)	Provides predictive neatmaps	United against coronavirus!
		based on the disease spots	Stopcorona App. (2020)
			https://stopcorona.app/
	eRouska (smart	Captures physical contacts	https://erouska.cz/en.
	quarantine) -Czech	between user and people	
	Republic		
	StayHomeSafe	Monitoring of arrivals at the	Kondylakis, 2020
	(Hong Kong)	airport with use of smartphone	Nasajpour et al., 2020
		application and a wristband	
	COVID-19 Intelligent	an automated diagnosis system	Bai et al. (2020)
	Diagnosis and Treatment	– it can automatically generate	
	Assistant Program	a diagnosis report based on	
	(nCapp)-China	requested data and	
		questionnaires submitted by	
		patients	
	Hamagen (Israel)	Contact tracing	Nasajpour et al., 2020
	Coalition (USA)		
	BeAware Bahrain		
	IoT-O-Band		Singh et al. 2020
Wearables		Tracker wristband-Tracking of	6,
		guarantined cases in case of	
		absconding	
	Proximity Trace	Hardhat TraceTag -	https://bit.lv/2B60rF2
		monitoring workers for social	Nasaipour et al., 2020
		distancing	51
	EasyBand	Pact wristband -monitor for	Tripathy, 2020
		social distance	F
	Smart glasses	Temperature monitoring	Nasaipour et al. 2020
	Smart glasses		Rasajpour et al., 2020
	Smart helmet	Temperature monitoring	Nasaipour et al., 2020
	Smart thermometers	Temperature monitoring	Nasaipour et al 2020
	Sinari diennometers	Temperature monitoring	Tusujpour et un, 2020
	Thermal imaging drone	Temperature monitoring in a	Nasaipour et al., 2020
Drones	(Pandemic Drone)	crowd	
	· · · · · · · · · · · · · · · · · · ·		
	Announcement drone	Broadcasting information	Nasajpour et al., 2020
		about COVID-19	
	Disinfectant drone (DJI)	Sterilisation of contaminated	Nasajpour et al., 2020
		areas	
			N
	Surveillance drone	Monitoring of social	Nasajpour et al., 2020
	(MicroMultiCopter)	distancing	
	Multipurpose drone	Disinfection, monitoring od	Nasajpour et al., 2020
	(Corona Combat)	temperature, broadcasting of	51
	, , , , , , , , , , , , , , , , , , ,	information	
Dohota	Tolorohota DaVissi	Deduction of the infection of 1	Khan 2020
KODOLS	referodots- Davinci	for madical staff	N nan, 2020
	Surgical fodols	Disinfection will stime f	Nacainana at al. 2020
	Autonomous robots -Spot	Disinfection, collection of	Nasajpour et al., 2020
	rodot	swabs, checking and treatment	N nan, 2020
		or patients	
		Prevention of the risk of	
1	1	1 intection of the medical staff	1

Table 3: IoT approaches in COVID-19 management

Table 3: IoT approaches in COVID-19 management

	Collaborative robots – eXtreme Disinfection Robot, Asimov Robotics	Complementary to the healthcare staff- disinfection	Yang, 2020
IoT buttons small,	Wanda QuickTouch	Alerts the authorities or families	Nasajpour et al., 2020
programmable button connected to the cloud	Sefucy	Alerts healthcare providers in case of an emergency	Nasajpour et al., 2020

Swayamsiddha, S, Mohanty, C (2020). "Application of cognitive Internet of Medical Things for COVID-19 pandemic". Diabetes Metab Syndr. **14**(5):911-915. doi:10.1016/j.dsx.2020.06.014

Yang, G., Lv, H., Zhang, Z., Yang, L., Deng, J., You, S., Du, J., Yang, H (2020). "Keep healthcare workers safe: application of teleoperated robot in isolation ward for COVID-19 prevention and control". Chin J Mech Eng **33**(1):1–4

Bai, L., Yang, D., Wang, X., Tong, L., Zhu, X., Zhong, N., Bai, C., Powell, C.A., Chen, R., Zhou, J., et al. (2020) "Chinese experts' consensus on the internet of things-aided diagnosis and treatment of coronavirus disease 2019 (COVID-19) ". Clinical eHealth **3**:7–15

Nasajpour, M., Pouriyeh, S., Parizi, RM., Dorodchi, M., Valero, M., Arabnia, HR. (2020) "Internet of Things for Current COVID-19 and Future Pandemics: an Exploratory Study". J Healthc Inform Res. **12**:1-40. doi: 10.1007/s41666-020-00080-6.

Singh, V.K., Chandna, H., Kumar, A., Kumar, S., Upadhyay, N., Utkarsh, K (2020). "IoT-Q-Band: a low cost internet of things based wearable band to detect and track absconding COVID-19 quarantine subjects". EAI Endorsed Transactions on Internet of Things, **20**(21):163997, DOI:<u>10.4108/eai.13-7-2018.163997</u>

Tripathy, A.K., Mohapatra, A.G., Mohanty, S.P., Kougianos, E., Joshi, A.M., Das, G (2020) "Easyband: a wearable for safety-aware mobility during pandemic outbreak". IEEE Consumer Electronics Magazine

Ye, Q., Zhou, J., Wu, H (2020). "Using Information Technology to Manage the COVID-19 Pandemic: Development of a Technical Framework Based on Practical Experience in China". JMIR Med Inform. **8**(6):e19515. doi: 10.2196/19515. PMID: 32479411;

Khan, Z.H., Siddique, A., Lee, C.W. "Robotics Utilization for Healthcare Digitization in Global COVID-19 Management" (2020). Int J Environ Res Public Health. **17**(11):3819. doi:10.3390/ijerph17113819