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First round of review
Reviewer 1

Are you able to assess all statistics in the manuscript, including the appropriateness of statistical 
tests used? There are no statistics in the manuscript.

Comments to author:

Here the authors aim to uncover mechanisms of how microbes can cause disease through 
interactions between some of their proteins and those of the human host. They observe that the 
microbiome targets diverse human proteins involved in immune response, and other key 
functions. As the authors indeed note (and cite) earlier studies were carried out with a similar 
concept in mind. Here they explore proteins in the gut microbiome that have homology to 
interactors that bind human proteins. What sets this analysis apart from the earlier one is that 
because they exploit available datasets of already modeled protein-protein interactions, rather 
than predicting them based on structures as the earlier studies did, they were able to carry out a 
comprehensive analysis. Their analyses are broader and consequently enriched in interesting and 
new observations. As such, I support their publication. This type of analysis is important and can 
reveal one way through which the microbiome can cause disease. It provides specific interactions 
which experiments can then test. 

Specifically, the authors collected human-microbe PPIs from multiple databases, defining 
"HBNet" set. From patient data, proteins homologous to the bacterial proteins are collected as 
"Detected" set. Then, Random Forest classifier was trained on patient data. The high-importance 
(by average Gini impurity) genes are collected as "Disease-associated" set. Downstream analyses 
are performed based on these three sets of genes (proteins). HBNet homologs were mapped to 
821 species mainly in human gut microbiomes. The authors then tried to find enrichment in 
localization. Other than bone marrow, there was no significant localization enrichment found for 
the "Detected" and "Disease-associated" proteins. The authors suspect that the experimental 
design may be biased towards general expression patterns. 

Additional minor comments: 

The authors write that "Disease-associated human proteins contain significant proportion of 
secreted proteins, and many of them are exclusively intracelluar. Using various computational 
tools, 12.2% and 16.6% "Disease-associated" microbial proteins are predicted to be secreted and 
transmembrane, respectively." 
Initially, this sentence was confusing, whether it means 16.6% of "Disease-associated" microbial 
proteins or human proteins. As human proteins were discussed in the previous paragraph, I guess 
it is for microbial proteins. But then microbial transmembrane proteins are allowing for direct 
contact with live or intact bacteria? Does this mean bacteria-bacteria contact? I assume they 
meant bacteria-host cell contact here, but the sentence is written unclearly. First, the subject of 
the sentence is bacterial proteins, then they are "potentially allowing for direct contact with live 
or intact bacteria, ...," which suggests bacteria-bacteria contact. 



At few other spots the sentences were confusing as well. For example, Lines 187-190: "Based on 
the bacterial cluster representatives from in the microbiomes from these nine cohorts, we 188 
find evidence that at least 79.0% and 58.9% of disease-associated clusters predicted to be 
secreted by 189 T3SS and T4SS, respectively, have representative proteins found in organisms 
with the corresponding 190 secretion systems (T6SS were excluded due to the limited 
availability of prediction tools)." Although it is not the major contribution of this work, this 
sentence was confusing. At first sight, 79% and 58.9% seem very large proportions. Then, they 
are actually 79% of "associated" proteins that are predicted to contain signal peptides (secreted) 
and so on. It will be good to provide the actual counts here (e.g. how many proteins/clusters) as 
they did in previous paragraphs. 

The authors note that "One of the major advantages of our work is that through this new 
interaction network, we vastly improve our ability to annotate host-relevant microbiome 
functions". I agree. It is one of the major contributions of this work: more functional annotations 
of microbial proteins. Notably, the predicted interactions are based only on sequence homology, 
and the gene prioritizations are based on a classical machine learning approach. Thus, the 
predicted microbe-disease associations are also based on predictions, that lack experimental 
evidence or structural details. This needs to be mentioned. 

In Line 218 the authors note that "Microbiome proteins may act on human targets as therapeutic 
drugs" and that many of the observed disease-associated human proteins that are known drug 
targets. I expect that there will be many more such examples found in the predicted interactions. 
Since the predicted interactions are based on homology to known interactions, at least some of 
these could be elaborated further based on literature search. If the authors can also find more 
direct evidence it will be an even stronger contribution. 

It will also be good to update the references. Please see doi: 10.1016/j.jmb.2020.01.025; doi: 
10.1007/978-1-4939-8736-8_18 

With a minor revision this will be a very nice paper that with the increasing community focus on 
the microbiome I hope will attract much attention. 

Reviewer 2

Are you able to assess all statistics in the manuscript, including the appropriateness of statistical 
tests used? Yes, and I have assessed the statistics in my report.

Comments to author:

In this manuscript by Zhou et al, putative protein-protein interactions between humans and the 
gut microbiome are characterized in health and disease. Specifically, a database of inter-domain 
protein interactions was generated, microbial proteins from metagenomic sequencing data was 
mapped to that database, and the interacting human proteins were then used in a random forest 
model between healthy and affected individuals for several different diseases. The function, 



location, and health effects of these human genes are explored and then mapped back to the 
bacterial partners. This paper uses a clever bioinformatic approach to an important open problem 
in microbiome studies, which is identifying molecular mechanisms that link microbiome 
perturbations to disease. It's a unique approach, and in many ways opens many more questions to 
be explored than it answers (which is a good thing!). While I am largely enthusiastic about this 
manuscript, there are a handful of areas that should be clarified or expanded for maximum 
utility. 

Comments: 
1. There are several aspects of the random forest approach that should be further clarified for the 
reader: 
a. Page 19: What was the metric for "reasonable performance" of the RF classifiers? Some of the 
results from the supplementary figure look barely better than chance. These details should be 
outlined in the methods section. 
b. Were the effects of multicollinearity assessed when performing the identification of disease-
associated features in the Random Forest model? Correlated features in an RF are fine for 
classification purposes but can dilute each other's effects when trying to interpret the predictor 
variables. This is a potential issue that should be clarified in the methods, either by describing 
how collinearity isn't an issue or the steps taken to reduce any issues arising from it. 
c. The choice of Random Forests for this application isn't particularly well motivated in the 
manuscript over simpler and more comprehensive methods. One tricky aspect of interpreting 
variables from RF or similar classification methods is this issue of missing potentially relevant 
features by only examining the ones with the most discriminatory power. Other microbe-human 
proteins may be interacting in disease that are not picked up in that top 90th percentile threshold 
that was chosen. Why is Random Forest chosen for this over something more straightforward 
like a logistic model? Power issues? Are results drastically different if disease associations are 
identified through other methods? 
d. Given that RF was the chosen method, how much better at either discriminating or identifying 
putative human interaction proteins is the pipelines as described vs. if a RF of the bacterial 
proteins are used and then mapped to human proteins? Presumably there is be better power to 
identify these human genes using the method in the paper, but some quantification of how much 
better could be an effective way to demonstrate the utility of this approach. 
2. The fact that existing PPI databases are strongly biased towards pathogens raises questions 
about the PPIs that might be missed here from commensals. Using the percent identity match is a 
clever way to identify similar commensal proteins to those found in pathogens, but what about 
classes of proteins not found in pathogens? Could proteins families that appear in the 
metagenomic datasets that appear unrepresented in the PPI databases be identified such that they 
could be prioritized for future study? Is there a way to estimate/extrapolate how the results in the 
study compare to what is feasible given the diversity of genes in the microbiome? For example, 
could the estimated number of genes in the gut microbiome be calculated and combined with the 
number of human genes to create an upper limit on how many interactions are possible? In many 
ways this manuscript opens more questions than it answers, and analysis explorations like these 
could serve as a jumping off point to justify further PPI/bacterial protein characterization. 
3. Is the PPI database generated here publicly available? This could be a very useful public 
resource. 



Minor comments: 
1. p19: Line 650 - 651: This sentence is unclear as written, please reword. 
2. p24: The caption for Figure S1 in the paper doesn't line up with Figure S1 (looks like a figure 
is missing?) 
3. p26: The caption for Figure S10 doesn't line up with the submitted figure. 



Response to Reviewer’s Comments 
 

Host-microbiome protein-protein interactions capture disease-relevant pathways 
 

Hao Zhou, Juan Felipe Beltrán, Ilana Lauren Brito 

 
Editorial comments:  
Thank you very much for submitting your manuscript to Genome Biology, and please accept my 
apologies for the delay in replying to you about it. It has now been seen by two referees and their 
comments are accessible below. 
 
As you will see, the reports are broadly favorable, so we are interested in publishing the manuscript, but 
we feel that the issues raised must be addressed in full, in the form of a revised manuscript, before we 
make a firm commitment to publication. When revising your manuscript, please ensure that all the points 
raised by both referees are addressed. 
 
When revising the manuscript, please also ensure that the manuscript is formatted according to our 
instructions and that editable figures are provided with the revised manuscript. Please see 
https://genomebiology.biomedcentral.com/submission-guidelines/preparing-your-manuscript/research for 
further details. We also require all data to be deposited to a relevant repository prior to resubmission, 
although you may supply a reviewer access token if desired. Please note that if we decide to publish your 
manuscript we will require that all data be made publicly accessible and the 'live' accession numbers 
included in a separate Availability of Data and Materials section of the manuscript. 
 

We thank the editor for the opportunity to revise our manuscript. We have responded to both 
reviewers’ comments and revise the manuscript accordingly.  

 
Reviewer reports: 
 
Reviewer #1: 
Here the authors aim to uncover mechanisms of how microbes can cause disease through interactions 
between some of their proteins and those of the human host. They observe that the microbiome targets 
diverse human proteins involved in immune response, and other key functions. As the authors indeed 
note (and cite) earlier studies were carried out with a similar concept in mind. Here they explore proteins 
in the gut microbiome that have homology to interactors that bind human proteins. What sets this analysis 
apart from the earlier one is that because they exploit available datasets of already modeled protein-
protein interactions, rather than predicting them based on structures as the earlier studies did, they were 
able to carry out a comprehensive analysis. Their analyses are broader and consequently enriched in 
interesting and new observations. As such, I support their publication. This type of analysis is important 
and can reveal one way through which the microbiome can cause disease. It provides specific 
interactions which experiments can then test. 
 
Specifically, the authors collected human-microbe PPIs from multiple databases, defining "HBNet" set. 
From patient data, proteins homologous to the bacterial proteins are collected as "Detected" set. Then, 
Random Forest classifier was trained on patient data. The high-importance (by average Gini impurity) 
genes are collected as "Disease-associated" set. Downstream analyses are performed based on these 
three sets of genes (proteins). HBNet homologs were mapped to 821 species mainly in human gut 

https://genomebiology.biomedcentral.com/submission-guidelines/preparing-your-manuscript/research


microbiomes. The authors then tried to find enrichment in localization. Other than bone marrow, there 
was no significant localization enrichment found for the "Detected" and "Disease-associated" proteins. 
The authors suspect that the experimental design may be biased towards general expression patterns. 
 

Thank you so much for recognizing the importance of our work. We have revised the manuscript 
according to your comments.  

 
Additional minor comments: 
 
1. The authors write that "Disease-associated human proteins contain significant proportion of secreted 
proteins, and many of them are exclusively intracellular. Using various computational tools, 12.2% and 
16.6% "Disease-associated" microbial proteins are predicted to be secreted and transmembrane, 
respectively." 
Initially, this sentence was confusing, whether it means 16.6% of "Disease-associated" microbial proteins 
or human proteins. As human proteins were discussed in the previous paragraph, I guess it is for 
microbial proteins. But then microbial transmembrane proteins are allowing for direct contact with live or 
intact bacteria? Does this mean bacteria-bacteria contact? I assume they meant bacteria-host cell contact 
here, but the sentence is written unclearly. First, the subject of the sentence is bacterial proteins, then 
they are "potentially allowing for direct contact with live or intact bacteria, ...," which suggests bacteria-
bacteria contact. 
 

We apologize for the confusion and we have made the following clarification: The 16.6% refers to 
microbial proteins.  
 
Line 177-181: “... Another 16.6% of disease-associated microbiome proteins are predicted to be 
transmembrane, albeit with unknown orientation. Surface localization would potentially allow for 
direct contact between human proteins and either live or intact bacteria, or proteins on the 
surface of bacterially-produced membrane vesicles.” 

 
At few other spots the sentences were confusing as well. For example, Lines 187-190: "Based on the 
bacterial cluster representatives from in the microbiomes from these nine cohorts, we 188 find evidence 
that at least 79.0% and 58.9% of disease-associated clusters predicted to be secreted by 189 T3SS and 
T4SS, respectively, have representative proteins found in organisms with the corresponding 190 
secretion systems (T6SS were excluded due to the limited availability of prediction tools)." Although it is 
not the major contribution of this work, this sentence was confusing. At first sight, 79% and 58.9% seem 
very large proportions. Then, they are actually 79% of "associated" proteins that are predicted to contain 
signal peptides (secreted) and so on. It will be good to provide the actual counts here (e.g. how many 
proteins/clusters) as they did in previous paragraphs. 
 

We appreciate the reviewer's comments. We agree that actual counts will help readers digest the 
message here and we have modified the manuscript as below: 
 
Line 188-191: “Based on the bacterial cluster representatives from in the microbiomes from these 
nine cohorts, we find evidence that at least 79.0% (94/119) and 58.9% (20/34) of disease-
associated clusters predicted to be secreted by T3SS and T4SS, respectively, have 
representative proteins found in organisms with the corresponding secretion systems (T6SS were 
excluded due to the limited availability of prediction tools).” 

 



The authors note that "One of the major advantages of our work is that through this new interaction 
network, we vastly improve our ability to annotate host-relevant microbiome functions". I agree. It is one 
of the major contributions of this work: more functional annotations of microbial proteins. Notably, the 
predicted interactions are based only on sequence homology, and the gene prioritizations are based on a 
classical machine learning approach. Thus, the predicted microbe-disease associations are also based 
on predictions, that lack experimental evidence or structural details. This needs to be mentioned.  
 

We thank the reviewer for this comment. We agree that this should be made explicit in the 
manuscript and we have revised lines 217-219: “Although this method generates provocative 
hypotheses that directly link human-associated microbiota to disease, functional experiments and 
structural evidence are greatly needed to confirm these specific host-microbiome PPIs.”  

 
In Line 218 the authors note that "Microbiome proteins may act on human targets as therapeutic drugs" 
and that many of the observed disease-associated human proteins that are known drug targets. I expect 
that there will be many more such examples found in the predicted interactions. Since the predicted 
interactions are based on homology to known interactions, at least some of these could be elaborated 
further based on literature search. If the authors can also find more direct evidence it will be an even 
stronger contribution.  
 

We agree that this is an exciting feature of the work. In the text, we discuss a number of human 
proteins targeted by both drugs and microbial proteins (lines 222-243): C1R, LCK and other Src 
family tyrosine kinases, DDX5, SFPQ, ANXA2 and NPEPPS. We provide the examples of 
Amuc_1100 and MAM, which show ameliorative benefits for glucose tolerance and inflammation, 
respectively, in mouse models. We searched the literature for those in whose mechanisms of 
action reflected the diseases in which we observed the specific association, and highlighted those 
that could be clearly explained. In addition, we provide a table (Table S5) with additional human 
proteins that are both targeted by gut microbiome proteins and serve as therapeutic drug targets.  
 

It will also be good to update the references. Please see doi: 10.1016/j.jmb.2020.01.025; doi: 
10.1007/978-1-4939-8736-8_18 
 
 Thank you for alerting us. We have updated the references accordingly. 
 
With a minor revision this will be a very nice paper that with the increasing community focus on the 
microbiome I hope will attract much attention. 
 

Thank you again for your thoughtful comments and interest in our work. 
 
Reviewer #2: In this manuscript by Zhou et al, putative protein-protein interactions between humans and 
the gut microbiome are characterized in health and disease. Specifically, a database of inter-domain 
protein interactions was generated, microbial proteins from metagenomic sequencing data was mapped 
to that database, and the interacting human proteins were then used in a random forest model between 
healthy and affected individuals for several different diseases. The function, location, and health effects of 
these human genes are explored and then mapped back to the bacterial partners. This paper uses a 
clever bioinformatic approach to an important open problem in microbiome studies, which is identifying 
molecular mechanisms that link microbiome perturbations to disease. It's a unique approach, and in many 
ways opens many more questions to be explored than it answers (which is a good thing!). While I am 
largely enthusiastic about this manuscript, there are a handful of areas that should be clarified or 
expanded for maximum utility. 



 
Thank you for your enthusiasm and taking the time to review our manuscript! We have addressed 
all your comments and revised our manuscript accordingly.  

 
Comments: 
1.   There are several aspects of the random forest approach that should be further clarified for the 
reader: 
a.   Page 19: What was the metric for "reasonable performance" of the RF classifiers? Some of the 
results from the supplementary figure look barely better than chance. These details should be outlined in 
the methods section. 
  

We agree that this could be clearer. The model performances vary across studies and two of the 
studies (Feng et al. and Qin et al.) had F1 scores at 0.54 and 0.56, respectively). In all cases, 
model performances increase after we subset the features to include only those with Gini 
importances over the 90th percentile. Despite variable performances, we achieve disease cohort-
specific enrichment of proteins with associations concurrent with that disease (Figure S7), which 
we believe is strong evidence that our model is recouping disease-relevant signals. To 
acknowledge the variability in model performance across cohorts, we have added the text (lines 
307-309): “Although model performance, specifically F1 score, varied by cohort, in all cases, 
model performances increase after we subset features to include only those with Gini 
importances over the 90th percentile.” 
 

b.   Were the effects of multicollinearity assessed when performing the identification of disease-
associated features in the Random Forest model? Correlated features in an RF are fine for classification 
purposes but can dilute each other's effects when trying to interpret the predictor variables. This is a 
potential issue that should be clarified in the methods, either by describing how collinearity isn't an issue 
or the steps taken to reduce any issues arising from it. 
 

We thank the reviewer for these comments. To assess the effects of multicollinearity, we 
performed an experiment to compare the model performances and feature selection of our 
current models with those in which we pre-clustered highly correlated features (Pearson’s 
correlation coefficient > 0.8) in each metagenomic study, including a single cluster representative 
in training. We found that the effect of multicollinearity did not affect our original results 
significantly (new Figure S13). Using the same feature importance cutoff (90th percentile), 93.6% 
(412/440) of important features were recaptured in the original model. We examined this further 
and found that important features generally belonged to clusters with few multicollinear features. 
We found that interpreting these multicollinear clusters across studies was challenging, as 
proteins may cluster differently across cohorts. We therefore chose to continue using the 
unclustered protein abundances in the models. We include this explanation in our discussion of 
alternative models, including SVM and logistic regression in lines 313-324. 

 
c.   The choice of Random Forests for this application isn't particularly well motivated in the 
manuscript over simpler and more comprehensive methods. One tricky aspect of interpreting variables 
from RF or similar classification methods is this issue of missing potentially relevant features by only 
examining the ones with the most discriminatory power. Other microbe-human proteins may be 
interacting in disease that are not picked up in that top 90th percentile threshold that was chosen. Why is 
Random Forest chosen for this over something more straightforward like a logistic model? Power issues? 
Are results drastically different if disease associations are identified through other methods?  
 



Thank you for this comment. We chose the 90th percentile of Gini importances because it was a 
conservative estimate that conserved model performances in some cohorts. We have added the 
following text (lines 308-309): “This cut-off was chosen as it was a conservative metric, which 
conserved model performance across studies (Fig. S6C).” and we have added an image to 
Figure S6 (new Figure S6C) to illustrate model performance as a function of percentile cut-off.  
 
To answer your question about the choice of RF over other types of modeling approaches, we 
now include model performances for a logistic regression and SVM (new Figure S12) for 
comparison. RF outperformed these models, as it is able to uncover nonlinear signals and predict 
high-dimensional tasks with a higher degree of efficiency and interpretability. We have also added 
commentary in lines 315-322: “We compared the performance of RF with other machine learning 
models, namely logistic regression and support vector machines (SVM). These models can be 
sensitive to feature collinearity, so we reduced the multicollinearity by preclustering highly 
correlated features (Pearson’s correlation coefficient > 0.8) in each metagenomic study and only 
included cluster representatives for training each model. We compared model performances with 
preclustered human protein abundances by model_selection.cross_validate in scikit-learn (93). 
Hyperparameters of models were tuned using grid search to achieve their best performances. 
Random forest outperformed other machine learning models, including support vector machines 
(SVM) and logistic regression (Fig. S12).” 

 
d.   Given that RF was the chosen method, how much better at either discriminating or identifying 
putative human interaction proteins is the pipelines as described vs. if a RF of the bacterial proteins are 
used and then mapped to human proteins? Presumably there is be better power to identify these human 
genes using the method in the paper, but some quantification of how much better could be an effective 
way to demonstrate the utility of this approach. 
 

Thanks for your comment. We have added a supplemental figure for the analysis using RF of the 
bacterial proteins (new Figure S11), which showed slightly lower performance than models using 
human proteins. We revised our manuscript in line 313-314: “Models performed on the bacterial 
proteins abundances rather than the human protein abundances had marginally poorer 
performance (Fig. S11).” 

 
2.   The fact that existing PPI databases are strongly biased towards pathogens raises questions 
about the PPIs that might be missed here from commensals. Using the percent identity match is a clever 
way to identify similar commensal proteins to those found in pathogens, but what about classes of 
proteins not found in pathogens? Could proteins families that appear in the metagenomic datasets that 
appear unrepresented in the PPI databases be identified such that they could be prioritized for future 
study? Is there a way to estimate/extrapolate how the results in the study compare to what is feasible 
given the diversity of genes in the microbiome? For example, could the estimated number of genes in the 
gut microbiome be calculated and combined with the number of human genes to create an upper limit on 
how many interactions are possible? In many ways this manuscript opens more questions than it 
answers, and analysis explorations like these could serve as a jumping off point to justify further 
PPI/bacterial protein characterization. 
 

Thanks for posing these interesting questions. We acknowledge in the text that the network is far 
from complete. We agree that estimating the upper limit of PPIs between host and microbiome 
will help inform future work. Considering the roughly 4.5 million unique Uniref90 clusters found in 
the nine metagenomic studies we included and the 20,000-25,000 protein-coding genes within 
the human genome, the number of posible interactions is ~1011. Other researchers have 



suggested a ratio of positive:negative interactions is as high as 1:1000 or even 1:100 (Kshirsagar 
et al. 2013, 2015), one estimates that there could be as much as 108-109 non-redundant host-
microbiome PPIs. We have added this to the text (lines 250-252): “Estimates of a ratio of 
positive:negative host-pathogen PPIs are as high as 1:1000, or even 1:100. Whether commensal 
microbiota interact with host proteins to anywhere near this extent will require substantial 
investigation.” 
• Kshirsagar, Meghana, Jaime Carbonell, and Judith Klein-Seetharaman. "Multitask learning 

for host–pathogen protein interactions." Bioinformatics 29.13 (2013): i217-i226. 
• Kshirsagar, Meghana, et al. "Techniques for transferring host-pathogen protein interactions 

knowledge to new tasks." Frontiers in microbiology 6 (2015): 36. 
 
3.   Is the PPI database generated here publicly available? This could be a very useful public 
resource. 
 

We’re glad you think so! All of the datasets we used are publicly available, in addition to the 
papers we manually curated. To improve the utility of this resource, we now include a table of 
binary protein-protein interactions that we used for mapping to microbiomes (new Table S8). 

 
Minor comments: 
1.   p19: Line 650 - 651: This sentence is unclear as written, please reword. 
  

Thank you for helping us improve the readability of our methods. This now reads: “For each 
patient, we identified bacterial proteins and aggregated their abundances according to their 
corresponding human protein interactors.” (lines 296-297) 

 
2.   p24: The caption for Figure S1 in the paper doesn't line up with Figure S1 (looks like a figure is 
missing?) 
3.   p26: The caption for Figure S10 doesn't line up with the submitted figure. 
 

Thank you for calling this to our attention. We have addressed the misalignment of both figure 
captions. 



Second round of review

Reviewer 2

The additions to this manuscript fully address the concerns I raised in my initial review. Adding 
evidence that RF is the most effective choice, adding nuance to the discussion, and the analysis 
of collinearity all strengthen the manuscript. I remain very enthusiastic about this paper and I 
suspect it will be the inspiration of many follow-up studies. 

The one small comment I have would be to double check the AUROC values reported in Figure 
S12. They completely match between the SVM and the logistic regression. It could happen, but 
seems more likely it’s a figure generation issue 


