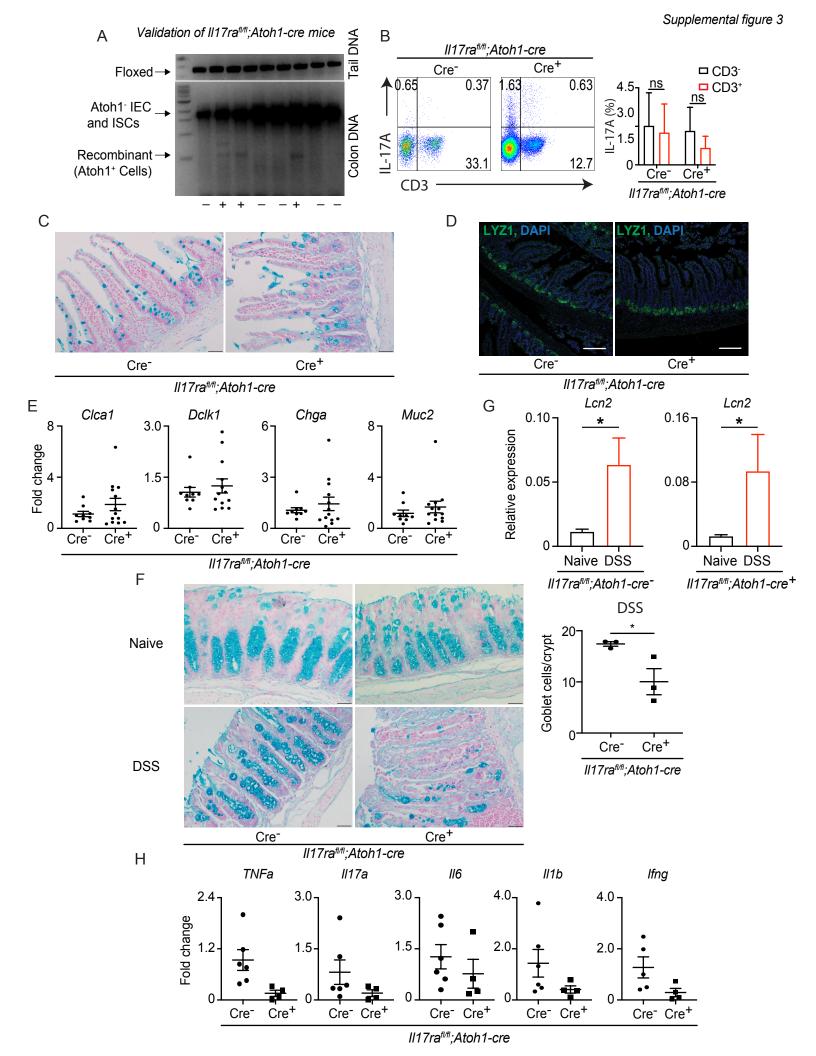

Supplemental figure 1

Supplemental Figure 1. Secretory cell defects in germ-line *II17ra^{-/-}* mice, related to Figure **1.** A) Crypts were isolated from *II17ra*^{fl/fl}; *Villin-cre* mice and seeded for organoid culture with or without CHIR99021 (CHIR). The size of organoids was monitored and the images were taken on day 6 (left panel: without CHIR; right panel: with CHIR). B) Crypts were isolated from II17ra^{fl/fl}:Villin-cre mice for organoid culture (without CHIR99021) under the treatment of recombinant IL-17A (50 ng/ml). RNA was extracted on day 6 and the expression of Chga, Muc2, Lyz1, Apob and Enpep expression was analyzed by RT-PCR. C) RNA was extracted from the terminal ileum of naïve C57BL/6J (WT) and *II17ra^{-/-}* mice. The expression of *Dclk1*, *Chga*, *Clca1* and Lyz1 was analyzed by RT-PCR. D) RNA was extracted from the terminal ileum of naïve II17ra^{fl/fl}; Villin-cre mice at 6 weeks old. The expression of Clca1, Apob, App8 and Enpep was analyzed by RT-PCR. E) RNA was extracted from the terminal ileum of naïve C57BL/6J (WT) and 1/17ra^{-/-} mice. The expression of 1/22 was analyzed by RT-PCR. F) RNA was extracted from the terminal ileum of naïve II17raf^{I/I}; Villin-cre mice at 10 weeks old. The expression of II22 was analyzed by RT-PCR. G) Leukocytes were isolated from the small intestine lamina propria of *II17ra*^{fl/fl}; *Villin-cre* mice. Flow cytometry was utilized to analyze IL-17A production in CD45⁺ cells. H) RNA was extracted from the terminal ileum of *ll17re^{-/-}* and *ll17c^{-/-}* mice. The expression of Dclk1, Chqa, Clca1 and Lyz1 was analyzed by RT-PCR. I) Crypts were isolated from the ileum of ATOH1-EGFP mice. Primary organoids were cultured in the presence of recombinant IL-17A or IL-25 and imaged on day 6. J) RNA was extracted from the terminal ileum of MyD88^{4/H}; Villincre mice. The expression of Dclk1, Chga, Clca1, Muc2, Lyz1, II17a and II22 was analyzed by RT-PCR.


Figure S1B, S1D and S1F were generated from 2-3 independent experiments. Figure S1H and S1J were generated from at least 3 mice in each group. Figure S1A, S1G and S1I are the representative images of at least 3 mice in each group. Data are presented as mean \pm SEM in all graphs. Scale bars in relevant figures equal 100 µm (1A, 1I). **P* ≤ 0.05; ***P* ≤ 0.01 (Two-Way ANOVA in B, Mann-Whitney test, two-tailed in C-F, H and J)

Lgr5-EGFP-cre^{ERT2+};ROSA-CAG-LSL-tdTomato mice

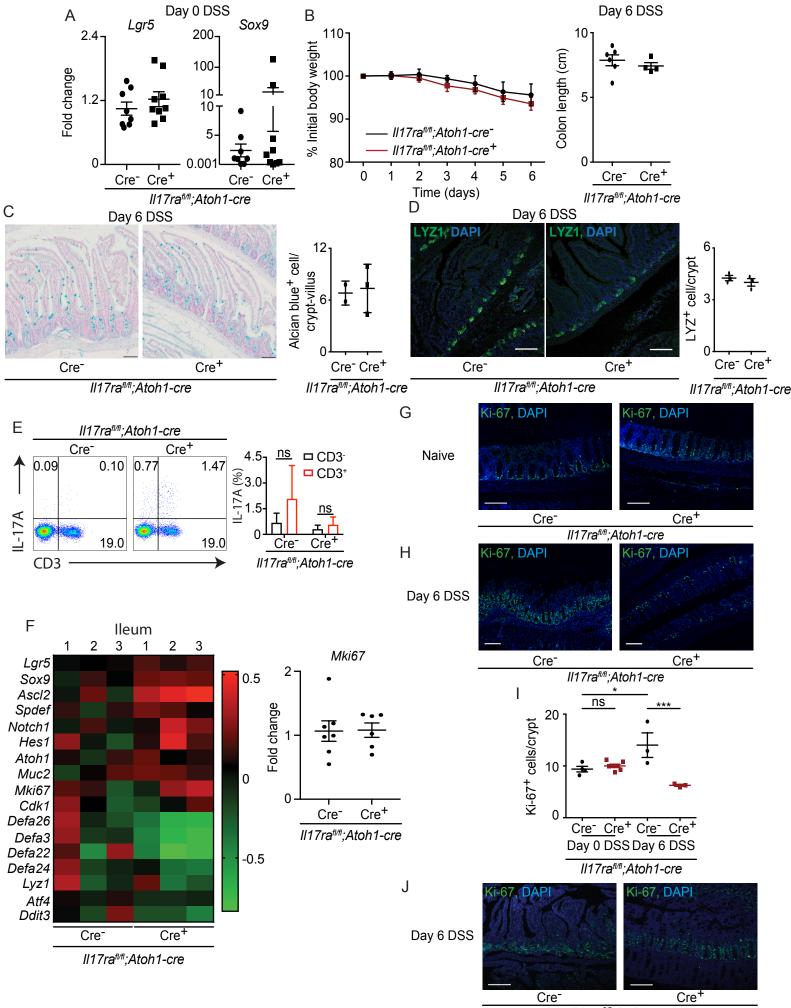
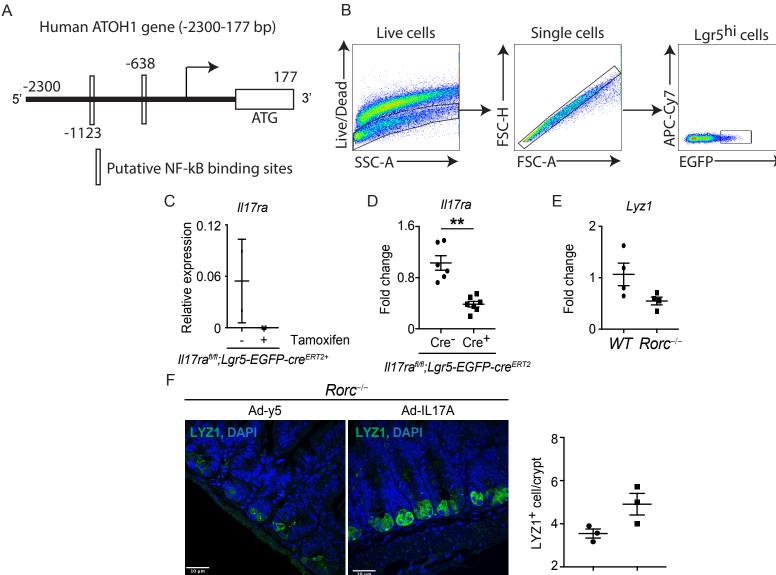

Supplemental Figure 2. Characterization of IL-17 receptor expression in different cell types, related to Figures 2 and 3. A-C) *II17ra*^{fl/fl}; *Villin-cre*^{ERT2} mice were injected with tamoxifen for 5 continuous days. RNA was extracted from the terminal ileum on day 11. The correlation of *II17ra* expression with secretory markers was analyzed by RT-PCR (A). The terminal ileum was stained with anti-ATOH1 (B) or anti-LYZ1 (C, left panel). LYZ1⁺ cell/crypt is counted (C, right panel). **D)** *Atoh1-cre*^{ER-T2/flox};*Rosa*^{tdtomato} mice were injected with tamoxifen for 3 continuous days. The terminal ileum was harvested at one week post the last tamoxifen injection and stained with alcian blue. **E)** Single cell RNA-seq data of C57BL/6J primary small intestinal organoids depict the expression of *II17rb* and *II17rd* in indicated cells of the intestinal epithelium. **F)** Cells were sorted from the small intestine of *Lgr5-EGFP-cre*^{ERT2+};*ROSA-CAG-LSL-tdTomato* mice after tamoxifen injection. The expression of IL-17 receptors in the sorted cells was analyzed by RT-PCR. **G)** EGFP⁺ cells were sorted from ATOH1-EGFP mice. RT-PCR data depict the expression of *II17ra*.

Figure S2A was generated from 2 independent experiments. Figure S2B, S2C and S2D were representative of at least 3 mice in each group. Data are presented as mean ± SEM in all graphs. Scale bars in relevant figures equal 20 μ m (2B), 50 μ m (2C, 2D). **P* ≤ 0.05; ****P* ≤ 0.001; *****P* ≤ 0.001 (Simple linear regression in A and Mann-Whitney test, two-tailed in C).

Supplemental Figure 3. Characterization of II17ra^{fUff};Atoh1-cre mice, related to Figure 3. A-E) Agarose gel PCR shows recombination of the IL-17RA allele in the colon of naïve *II17ra^{fUff};Atoh1-cre* mice (A). Lamina propria leukocytes were isolated from the small intestine of naïve *II17ra^{fUff};Atoh1-cre* mice. IL-17A production in CD45⁺ cells was analyzed by flow cytometry (B, left panel) and the percentage was plotted (right panel). The terminal ileum was harvested at 6 weeks old and stained with alcian blue (C) and anti-LYZ1 (D). RNA was extracted from the distal colon and the expression of *Clca1, Dclk1, Chga* and *Muc2* was analyzed by RT-PCR (E). **F)** Distal colon tissues were harvested from naïve (upper row, left panel) or 2.5% DSS-treated (lower row, left panel) *II17ra^{fUff};Atoh1-cre* mice and stained with alcian blue. The number of goblet cells (alcian blue⁺) in DSS-treated mice was counted (right panel). **G)** RT-PCR depicts the expression of *Lcn2* in the terminal ileum of *II17ra^{fUff};Atoh1-cre* mice was harvested on day 9 of 2.5% DSS followed by water treatment. The expression of *Tnfa, II17a, II6, II17b, II6, II17b, analytica* analyzed by RT-PCR.

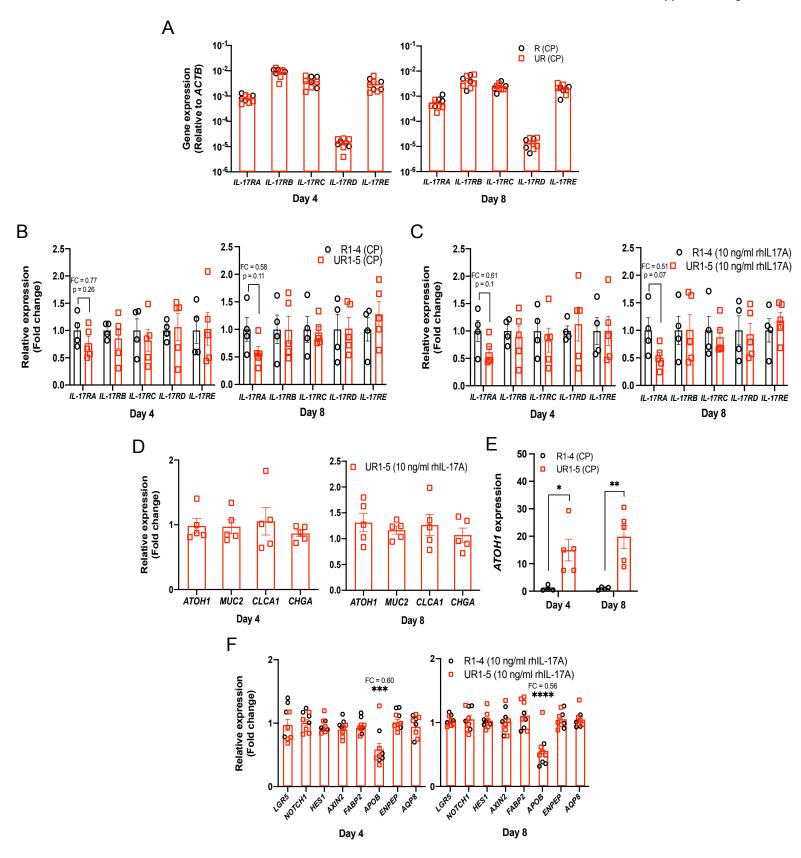
Figure S3E, S3G and S3H were generated from 2-3 independent experiments. Figure S3B, S3C, S3D and S3F are representative of at least 3 mice in each group. Data are presented as mean \pm SEM in all graphs. Scale bars in relevant figures equal 50 µm (3C, 3D), 20 µm (3F). **P* \leq 0.05 (Two-way ANOVA in B, Mann-Whitney test, two-tailed in E and H, Student's t-test in F and G).



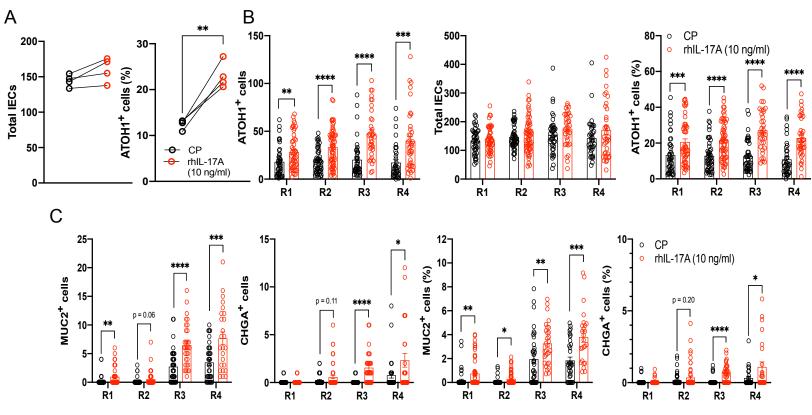
II17ra[™];Atoh1-cre

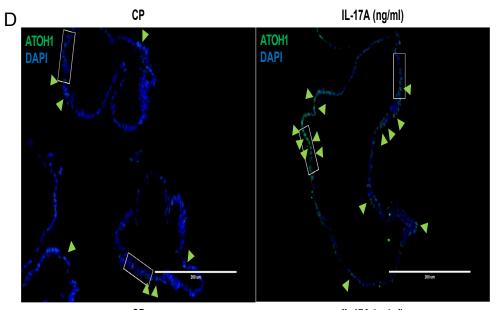
Supplemental Figure 4. *II17ra*^{1//1};*Atoh1-cre*⁺ mice did not display colonic and ileal defects after DSS treatment for 6 days, related to Figure 5. A) The terminal ileum was isolated from naïve *II17ra*^{11//1};*Atoh1-cre* mice and the expression of *Lgr5* and *Sox9* was analyzed by RT-PCR. **B-***II17ra*^{11//1};*Atoh1-cre* mice were treated with 2.5% DSS for 6 days. The weight loss was recorded daily (B, left panel). The colon was harvested on day 6 and the colon length was measured (B, right panel). Terminal ileum tissues were stained with alcian blue (C, left panel) and anti-LYZ1 (D, left panel). Alcian blue⁺ cells/crypt-villus (C, right panel) and LYZ1⁺/crypt (D, right panel) were counted. Lamina propria leukocytes were isolated from the ileum of *II17ra*^{11//1};*Atoh1-cre* mice on day 6 of DSS treatment. IL-17A production in CD45⁺ cells was analyzed by flow cytometry (E, left panel) and the percentage of IL-17A producing cells was graphed (E, right panel). RNA-seq depicts the gene expression in the terminal ileum on day 6 was further confirmed by RT-PCR (F, right panel). *Mki67* expression in the terminal ileum on day 0 (G) or day 6 (H) of 2.5% DSS treatment and stained with anti-Ki-67. Ki-67⁺ cells were counted (I). J) The terminal ileum was harvested on day 6 of 2.5% DSS treatment and stained with anti-Ki-67.

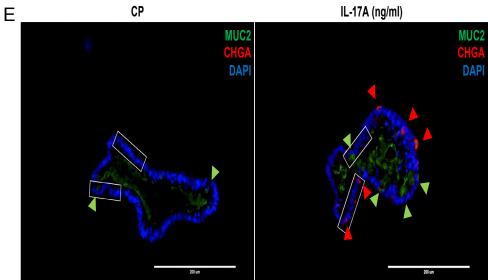
Figure S4A and S4B were generated from two independent experiments. Except for S4C (2-3 mice), figure S4D, S4E, S4G, S4H and S4J were the representative images of at least 3 mice in each group. Data are presented as mean \pm SD in S4C and mean \pm SEM in other graphs. Scale bars in relevant figures equal 50 µm (4C, 4D), 100 µm (4G, 4H, 4J). **P* ≤ 0.05; ****P* ≤ 0.001 (Mann-Whitney test, two-tailed in A, B (right panel), C (right panel), D (right panel) and F, Two-way ANOVA in B (left panel) and E (right panel), One-way ANOVA in I)


Supplemental figure 5

Ad-y5 Ad-IL17A


Supplemental Figure 5. IL-17A delivery leads to increased number of LYZ1⁺ cells, related to Figures 5 and 6. A) Putative NF-κB binding sites predicted in the human *ATOH1* promoter. **B)** Crypts were isolated from the ileum of *II17ra*^{1//1};*Lgr5-EGFP-cre*^{ERT2} mice and processed for flow cytometry. The figure shows the gating strategy for EGFP^{hi} cells (Lgr5⁺ ISCs). **C-D)** *II17ra*^{1//1};*Lgr5-EGFP-cre*^{ERT2} mice were injected with corn oil or tamoxifen for 5 continuous days. Crypts were isolated and EGFP^{hi} cells (Lgr5⁺ ISCs) were sorted by FACS. RT-PCR data confirmed the deletion of *II17ra* in sorted Lgr5⁺ ISCs (C). The knockout of *II17ra* in the terminal ileum was further demonstrated by RT-PCR (D). **E)** RT-PCR data depict *Lyz1* expression in the terminal ileum of C57BL/6J (WT) and *Rorc*^{-/-} mice. **F)** *Rorc*^{-/-} mice were injected with adenovirus-IL17A (Ad-IL-17A) or empty vector (Ad-Y5) and the tissues were harvested at 7 days post injection. The terminal ileum was stained with anti-LYZ1 (left panel) and the number of LYZ1+ cells/crypt was plotted (right panel).


Figure S5D was generated from two independent experiments. Figure 5E was generated from 4 mice in each group. Figure 5F is the representative image of 3 mice in each group. Data are presented as mean \pm SD in S5C and mean \pm SEM in other graphs. Scale bars in relevant figures equal 10 µm (5F). ** $P \leq 0.01$ (Mann-Whitney test, two-tailed in D-F).



Supplemental Figure 6. Transcript analysis of IL-17A-responsive (R) and -unresponsive (UR) lines stimulated with rhIL-17A, related to Figure 7. A) RT-PCR analysis of IL-17 receptor genes (*IL-17RA*, *IL-17RB*, *IL-17RC*, *IL-17RD*, and *IL-17RE*) among R and UR lines without rhIL-17A stimulation on days 4 (left) and 8 (right). B and C) Fold change of the IL-17 receptor gene expression between the R and UR lines treated with either CP (B) or rhIL-17A (C) on days 4 (left) and 8 (right). D) RT-PCR data depicting *ATOH1*, *MUC2*, *CLCA1*, and *CHGA* expression among the rhIL-17A-stimulated UR lines on days 4 (left) and 8 (right). E) RT-PCR analysis of *ATOH1* expression in the R or UR lines on days 4 and 8. F) Fold change of *LGR5*, *NOTCH1*, *HES1*, *AXIN2*, *FABP2*, *APOB*, *ENPEP*, and *AQP8* expression among the rhIL-17A-stimulated R and UR lines on days 4 (left).

Data points in A-F are mean of three technical replicates of individual lines. Bars represent mean \pm SEM, and at least three independent experiments were performed. CP, carrier protein; FC, fold change. **P* ≤ 0.05; ***P* ≤ 0.01; ****P* ≤ 0.001; *****P* ≤ 0.0001 (unpaired t test, two-tailed in A-F).

Supplemental figure 7

Supplemental Figure 7. Immunohistochemistry analysis of IL-17A-responsive (R) and unresponsive (UR) lines stimulated with rhIL-17A, related to Figure 7. A) Total number of IECs (left) and frequency of ATOH1⁺ cells normalized to total IECs (right) among the rhIL-17Astimulated R lines on day 8. B) Total number of ATOH1⁺ cells (left), total number of IECs (middle), and frequency of ATOH1⁺ cells per total IECs (right) in each visual field from R lines with or without rhIL-17A stimulation on day 8. C) Total number of MUC2⁺ or CHGA⁺ cells (left) and frequency of MUC2⁺ or CHGA⁺ cells normalized to total IECs (right) in each visual field from R lines with or without rhIL-17A stimulation on day 8. D and E) Enlarged ATOH1 staining images (D) and MUC2 and CHGA co-staining images (E) in the rhIL-17A-stimulated R lines on day 8. Bars: 200 µm. Data points in B and C represent visual field. Bars represent mean ± SEM, and at least three independent experiments were performed. CP, carrier protein. * $P \le 0.05$; ** $P \le 0.01$; *** $P \le 0.001$;

Name	Tissue	Sex	Age	Disease type	Inflammation	Organoid
R1	Duodenum	Μ	37	CD	Non-inflamed	Cystic
R2	Duodenum	F	67	CD	Non-inflamed	Cystic
R3	Terminal ileum	F	25	Non-IBD	Non-inflamed	Cystic
R4	Terminal ileum	Μ	34	Non-IBD	Non-inflamed	Cystic
UR1	Terminal ileum	Μ	37	CD	Non-inflamed	Budding
UR2	Terminal Ileum	Μ	47	CD	Non-inflamed	Budding
UR3	Terminal ileum	Μ	23	CD	Non-inflamed	Budding
UR4	Terminal ileum	F	47	Non-IBD	Non-inflamed	Budding
UR5	Terminal ileum	М	29	Non-IBD	Non-inflamed	Budding

Supplemental Table 1. Subject information for human endoscopic specimens. Related to Figure 7.

M; Male, F; Female, CD; Crohn's disease.

Target	Organism	Forward 5'-3'	Reverse 5'-3'
116	Mus musculus	TCCAATGCTCTCCTAACAGATAAG	CAAGATGAATTGGATGGTCTTG
Sox9	Mus musculus	AGTACCCGCATCTGCACAAC	ACGAAGGGTCTCTTCTCGCT
Pigr	Mus musculus	ATGAGGCTCTACTTGTTCACGC	CGCCTTCTATACTACTCACCTCC
Lgr5	Mus musculus	CTACTCGAAGACTTACCCAGT	GCATTGGGGTGAATGATAGCA
Hes1	Mus musculus	TGCCTTTCTCATCCCCAACG	AGGTGACACTGCGTTAGGAC
Lcn2	Mus musculus	GGGAAATATGCACAGGTATCCTC	CATGGCGAACTGGTTGTAGTC
Apob	Mus musculus	AAGCACCTCCGAAAGTACGTG	CTCCAGCTCTACCTTACAGTTGA
Enpep	Mus musculus	ATAGTGGGACTTTCTGTGGGT	GGTCGTAGTGAACTGGATTGATG
Aqp8	Mus musculus	TGTGTAGTATGGACCTACCTGAG	ACCGATAGACATCCGATGAAGAT
ll17rb	Mus musculus	GGCTGCCTAAACCACGTAATG	CCCGTTGAATGAGAATCGTGT
ll17rd	Mus musculus	AACAGCGGACTGCACAACAT	GCAAGCGTACTGGCTGATG
ll17re	Mus musculus	CAGTCCCAGTGACGCTAGAC	ACCCACTAGAGCGGTGAGAG
Lrig1	Mus musculus	TTGAGGACTTGACGAATCTGC	CTTGTTGTGCTGCAAAAAGAGAG
DII1	Mus musculus	GCAGGACCTTCTTTCGCGTAT	AAGGGGAATCGGATGGGGTT
lfng	Mus musculus	ATGAACGCTACACACTGCATC	CCATCCTTTTGCCAGTTCCTC
ll1b	Mus musculus	GCAACTGTTCCTGAACTCAACT	ATCTTTTGGGGTCCGTCAACT
IL17RA	Homo sapiens	TTCTGTCCAAACTGAGGCATCA	AGGGTCAACCACAAAGTGGC
IL17RB	Homo sapiens	GCCCTTCCATGTCTGTGAA	CAGGGGAGTGGTTGTGAAGT
IL17RC	Homo sapiens	GCCCCATGGACAAATACATC	ATCGGCTGAGTAGAGGAGCA
IL17RD	Homo sapiens	CTGTCTCTGCCACTGATGGA	CCAAGATCTGCTTTGCATGA
IL17RE	Homo sapiens	CTGCTGTCAGGTGGCTCA	GGAAGACTTTTTGGATTTCTGC
ATOH1	Homo sapiens	GTCCGAGCTGCTACAAACG	GTGGTGGTGGTCGCTTTT
MUC2	Homo sapiens	GCTGCTATGTCGAGGACACC	GGGAGGAGTTGGTACACACG
CLCA1	Homo sapiens	GCTGATGTTCTGGTTGCTGA	CGTCAAATACTCCCCATCGT
CHGA	Homo sapiens	TGTAGTGCTGAACCCCCACC	CTCTCGCCTTTCCGGATCT
LGR5	Homo sapiens	CAGCGTCCTCACCTCCTACC	TGGGAATGTATGTCAGAGCG
NOTCH1	Homo sapiens	CGCACAAGGTGTCTTCCAG	AGGATCAGTGGCGTCGTG
HES1	Homo sapiens	AGTGAAGCACCTCCGGAAC	CGTTCATGCACTCGCTGA
AXIN2	Homo sapiens	AGTGTGAGGTCCACGGAAAC	CTGGTGCAAAGACATAGCCA
FABP2	Homo sapiens	AACTGAACTCAGGGGGACCT	CCTTTTGGCTTCTACTCCTTCA
APOB	Homo sapiens	GGAGCTGCTGGACATTGCTA	ATGGCAGCTTTCTGGATCAT
ENPEP	Homo sapiens	TGACACCGTTCACGTTAAGCA	GGAAGAGGCAAGTAGGCTACCA
AQP8	Homo sapiens	GCGAGTGTCCTGGTACGAAC	CAGGCACCCGATGAAGATGAA
ACTB	Homo sapiens	CCCAGCCATGTACGTTGCTA	TCACCGGAGTCCATCACGAT

Supplemental Table 2. Primer sequences for qPCR. Related to STAR Methods.