

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Prospective Validation for Severe Acute Kidney Injury Predicting Model based on transcontinental databases

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054092
Article Type:	Original research
Date Submitted by the Author:	16-Jun-2021
Complete List of Authors:	Liang, Qiqiang; Zhejiang University School of Medicine Second Affiliated Hospital Xu, Yongfeng; HealSci Technology Co Zhou, Yu; Zhejiang University School of Medicine Second Affiliated Hospital Chen, Xinyi; Zhejiang University School of Medicine Second Affiliated Hospital Chen, Juan; Zhejiang University School of Medicine Second Affiliated Hospital Huang, Man; Zhejiang University School of Medicine Second Affiliated Hospital
Keywords:	Acute renal failure < NEPHROLOGY, INTENSIVE & CRITICAL CARE, Information technology < BIOTECHNOLOGY & BIOINFORMATICS, Adult intensive & critical care < INTENSIVE & CRITICAL CARE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	1	Prospective Validation for Severe Acute Kidney Injury Predicting Model based
5 6 7	2	on transcontinental databases
8 9 10	3	Qiqiang Liang ¹ ; Yongfeng Xu ² ; Yu Zhou ¹ ; Xinyi Chen ¹ , MM; Juan Chen ¹ ; Man Huang ^{1*}
11 12 13	4	¹ General Intensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou,
14 15	5	China.
16 17 18	6	² BSc, HealSci Technology Co., Ltd, Beijing China.
19 20 21	7	*Corresponding author: Man Huang, MD PhD.
22 23	8	Department: General Intensive Care Unit
24 25 26	9	Hospital: Second Affiliated Hospital of Zhejiang University School of Medicine
27 28 29	10	Address: No. 1511, Jianghong Road, Bingjiang District, Hangzhou City, Zhejiang Province
30 31	11	Tel: + 86 571 89713427
32 33 34	12	Fax: + 86 571 89713427
35 36 27	13	E-mail: <u>huangman@zju.edu.cn</u> .
37 38 39	14	ORCID: 0000-0002-0842-2254
40 41 42	15	
43 44	16	
45 46 47	17	
48 49 50	18	
50 51 52	19	
53 54 55	20	
56 57	21	
58 59 60	22	

23	Abstract:
24	Objectives: There are many studies of acute kidney injury (AKI) diagnosis models lack of external
25	validation and prospective validation. We constructed the models using three databases to predict severe
26	AKI within 48 hours in intensive care unit (ICU) patients.
27	Design: A retrospective and prospective cohort study.
28	Setting: We studied critically ill patients in our database (SHZJU-ICU) and two other public databases,
29	the Medical Information Mart for Intensive Care (MIMIC) and AmsterdamUMC databases, including
30	basic demographics, vital signs, and laboratory results. We predicted the diagnosis of severe AKI in
31	patients in the next 48 hours using machine-learning algorithms with the three databases. Then, we
32	carried out real-time severe AKI prediction in the prospective validation study at our centre for one year.
33	Participants: All patients included in three databases with uniform exclusion criteria.
34	Primary and secondary outcome measures: Effect evaluation index of prediction models.
35	Results: We included 58492 patients, and a total of 5257 (9.0%) patients met the definition of severe
36	AKI. In the internal validation of the SHZJU-ICU and MIMIC databases, the best area under the receiver
37	operating characteristic curve (AUROC) of the model was 0.86. The external validation results by
38	AmsterdamUMC database were also satisfactory, with the best AUROC of 0.86. A total of 2532 patients
39	were admitted to the center for prospective validation; 358 positive results were predicted, and 344
40	patients were diagnosed with severe AKI, with an accuracy of 83.5% and an AUROC of 0.84.
41	Conclusion: The prediction model of severe AKI exhibits promises as a clinical application based on
42	dynamic vital signs and laboratory results of multi-center databases with prospective and external
43	validation.
44	Keywords: Machine learning; Acute kidney injury; Real-time prospective validation; External

- 45 validation.
- 46 Strengths and limitations of this study:
- 47 An important verification step from artificial intelligence research to clinical use;
- 48 Three large database containing different national populations and regions;
- 49 The prediction model with excellent performance in complete data validation;
- 50 Differences in the samples proportion of three databases;
- 51 The dimensions of variables are not rich enough.

53 Introduction:

Acute kidney injury (AKI), as a common clinical complication in the intensive care unit (ICU), significantly increases the duration of hospitalization and mortality[1]. AKI is divided into three types according to the various aetiologies: prerenal (renal hypoperfusion), intrarenal (vascular, glomerular, or tubulointerstitial lesions), and postrenal (urinary tract obstruction)[2]. Although nearly all diseases associated with ICU admission may cause AKI, acute tubular necrosis (ATN) and prerenal azotaemia are the most common causes[3].

All AKI diagnostic criteria including the latest Kidney Disease: Improving Global Outcomes (KDIGO) standard are currently based on the creatinine level and urine volume[4]. However, the increase in the creatinine level or decrease in the urine volume lags the onset of AKI[2]. Many studies have suggested that early diagnosis and treatment of reversible AKI can reduce mortality[5]. Therefore, the creatinine level and urine volume are not satisfactory to meet clinical diagnostic demands. Consequently, many researchers have tried to develop an early warning model by analysing the risk factors for AKI[6].

66 Patient complications, such as diabetes, hypertension, cardiovascular disease, chronic liver disease,

BMJ Open

67	sepsis, and trauma, are identified as important risk factors for AKI[7]. The AKI prediction model and
68	scoring system developed based on high-risk factors has gradually become the focus of research
69	considering the lower clinical application threshold compared with that of new biomarkers[6]. Although
70	most previous prediction models use the multiple logistic regression model, a variety of AKI prediction
71	models based on machine learning have resulted in satisfactory outcomes[6]. Since the first AKI
72	prediction model study based on artificial intelligence was published in 2016, researchers have built more
73	than 20 published AKI prediction models successively by using local or multi-centre databases[6,8-14].
74	The results indicate that these models can predict the occurrence of AKI and the need for renal
75	replacement therapy (RRT) within 24 or 48 hours, with accuracies ranging from 81% to 97%[6,15]. In
76	addition, many studies have focused on subspecialized conditions, including cardiac surgery, trauma,
77	and burns[14-16]. However, the common defect in these studies is the lack of external validation and
78	prospective validation, which causes the prediction model to deviate from the clinical scenarios and limits
79	extrapolation beyond the scope of the data.
80	In this study, we built models to predict AKI within 48 hours in critically ill patients by using
81	transcontinental three databases. Then, we evaluated the clinical effect of the model through a one-year
82	prospective validation at our centre.
83	
84	Materials and Methods:
85	Study Population
86	We collected patients using three ICU databases and prospectively validated the models in our centre.
87	The first database was our centre general ICU database (SHZJU-ICU) of the Second Affiliated Hospital
88	of Zhejiang University School of Medicine, an academic teaching hospital. Since its establishment in

2
כ ⊿
4 5
5
0
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
32
37
25
26
30 27
2/
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1

89 2017, it has included 12000 ICU patients' data and is updated daily. The Medical Information Mart for 90 Intensive Care (MIMIC) III database, the second one, is an open ICU database provided by the 91 Massachusetts Institute of Technology and includes nearly 60000 ICU patients from North America[17]. 92 Lastly, the AmsterdamUMC database is an available European ICU database with health data related to 93 23000 patients admitted to ICUs in parts of Europe[18]. The research flow chart is shown in Figure 1. 94 The study was evaluated and approved by the Ethics Committee of the Second Affiliated Hospital of 95 Zhejiang University School of Medicine as study number 2019-078. 96 **Study definition** 97 In this study, the diagnosis of AKI was confirmed based on three stages according to the KDIGO 98 criteria[4]. We defined the patients who met the KDIGO AKI II and III criteria as severe AKI groups 99 and the others as negative groups. We excluded patients with lack of creatinine measurements during 100 admission, patients with creatinine baseline more than 3.0 mg/dL at admission, patients who met severe 101 AKI diagnosis within 24 hours, and patients who used RRT within 48 hours after admission[19]. In 102 addition, we excluded pregnant women, patients younger than 14 years old, and patients hospitalized in 103 the ICU for fewer than 3 days. After the patient was admitted to ICU, we performed a prediction every

104 24 hours and recorded a prediction time. If the patient was diagnosed with severe AKI within 48 hours,105 the predictive time was defined as a positive predictive point, and the others were defined as a negative

106 point.

107 Data Collection

108 The variables included demographic data, vital signs, basic and primary diseases, laboratory results,
109 important operation records, and drug records. Comorbidity included hypertension, diabetes, cardiopathy,
110 liver disease, and malignant tumors. The primary disease was the main cause of admission to the ICU

BMJ Open

following the ICD-10 codes. The vital signs and clinical laboratory results were transformed into different variables according to the average, variance, maximum, minimum, and final value before diagnosis. We used the Pearson correlation coefficient to analyze the characteristics of the variables, selected the variables with high correlation. We transformed the MIMIC and AmsterdamUMC databases according to our centre database structure, unifying the unit and diagnostic codes. We deleted more than 50% of the missing values and replaced the remaining missing values with multiple interpolations. All Missing data between three databases and values included in the model shown in supplementation file Table S1.

119 Model construction and external validation

The ratio of the training and internal validation sets was 4:1. The two database training sets were mixed into a new training set. There were more negative data than positive data, so we randomly sampled the negative datasets and constructed a new data subset with a sampling ratio of positive and negative data of 1:5. We used multiple logistic regression, random forest, XGBoost, AdaBoost, LightGBoost, gradient boosting decision tree (GBDT), and debug to assess the variables and model-related parameters by the fivefold cross-validation method. After the models were built, we used the SHZJU-ICU and MIMIC test sets for internal validation of the model and the AmsterdamUMC database for external validation. The most appropriate cut-off value was determined according to the K-S curve. The prediction model represents the results of each prediction with a probability between 0 to 1.0. We define results more than 0.6 as high-risk, that is, positive results, and the rest as negative results. Through internal validation and external validation, we calibrated the model by adjusting the super-parameters and using the Platt calibration algorithm and compared the calibration effect by drawing a reliability diagram. The model was visualized and analyzed by a visual programming scheme. All model building and validation

processes were performed in Python 3.6.

Prospective validation

The prospective research period was 2020.01.01 to 2020.12.31. We collected real-time data when patients were admitted to the ICU, transformed the data according to the requirements, and formed a complete sample for the prediction model after passing the integrity test. We had established a visualization scheme and allowed researchers to review the predictions daily. The daily prediction results were not publicly accessible during the study to avoid affecting clinicians' decisions, but the diagnosis results were available to the researchers as visual graphics. We sampled the 20% predicted data every month and deleted samples with more than 50% missing values to ensure data correctness. The criteria to terminate prediction were A. a positive diagnosis; B. Transfer out of ICU or death with negative diagnosis. All diagnosis of severe AKI needs to be reviewed by two ICU attending physicians independently, and if the they have different opinion, the third one will be appealed. Statistical analysis: The population characteristics were reported as the medians and inter-quartile ranges (IQRs) for

skewed data and the means and standard deviations for normally distributed data. The independent sample T-test was used for normally distributed data, and the rank-sum test was used for the rest. Dichotomous variables were assessed by the chi-square test, and a P value less than 0.05 was considered statistically significant. The non-normally distributed data were analyzed by exponential transformation and logarithmic transformation, and the variables that did not reach a normal distribution were deleted. The effect of the model was evaluated by parameters such as the AUROC, accuracy, specificity, and F1-score.

BMJ Open

•	155	Results									
5	100	itesuits.									
6 7	156	According	to the inclusi	ion crit	eria and exclus	ion criteria, v	ve selecte	ed 58492 patients	from three		
8											
9 10	157	databases who	o met the requi	irement	s of the study, ir	cluding 6461	patients fr	om the SHZJU-IC	U database,		
11	158	36600 nation	ts from the M	IMIC d	latabase and 14	3/1 nationts	from the	AmsterdamUMC	latabace A		
12 13	100	50070 patien	to nom the w	invite u	iatabase, and T.	541 patients 1			latabase. A		
14 15	159	total of 5257	(9.0%) patient	ts met tl	he definition of	severe AKI (1	1.8% in S	SHZJU-ICU, 7.6%	in MIMIC,		
16											
17 18	160	and 10.9% in	AmsterdamU	MC). 1	'he distributions	of age and se	in the t	hree centers were	similar, but		
19	161	the difference		1	A sign motions			han 000/ in the S			
20	101	the difference	es in race wei	re large	e. Asian patient	s accounted to	or more t	nan 99% in the S	HZJU-ICU		
21 22	162	database and	only approvi	mately (2.5% in the MI	MC database	White ne	onle accounted for	more than		
23	102	uatabase, and	i only approxi	matery 2		ine uatabase.	white pe	topic accounted for	more than		
24 25	163	70% of the N	IIMIC databas	se. In ac	dition, patients	from the MIN	AIC datab	ase had a higher i	ncidence of		
26		, . ,			, F						
27	164	the tumor, liv	ver cirrhosis, d	iabetes,	and hypertensi	on. Patients in	the Amst	terdamUMC and S	HZJU-ICU		
28 29		,	,	,	51						
30	165	databases had	d a higher pro	oportio	n of mechanica	l ventilation a	and overa	all survival rate. S	evere AKI		
31											
32 33	166	patients had l	onger ICU hos	patients had longer ICU hospital stays and higher mortality. More details are presented in Table 1.							
					<i>y v</i>	norunty. Wo	e detalls e	are presented in ra	Die 1.		
34	167	Table 1 [.] Cl	inical Demo	oranhi	cs and Outco	mes in patie	e details t	or without sev	ere acute		
34 35 36	167 168	Table 1: Cl kidney injur	inical Demo	graphi	cs and Outco	mes in patie	ents with	n or without sev	ere acute		
34 35 36 3 <mark>7</mark>	167 168	Table 1: Cl kidney injur sHzJU-ICU	inical Demo y. shzju-icu	graphi	cs and Outco	mes in patie	ents with	n or without sev	ere acute	P-	
34 35 36 37 38	167 168	Table 1: Cl kidney injur sHzJU-ICU Negative	inical Demo y. sHzJU-ICU Severe AKI	graphi P- valu	cs and Outco MIMIC Negative	MIMIC Severe AKI	P- value	n or without sev AmsterdamUMC Negative	AmsterdamUMC severe AKI	P- value	
34 35 36 37 38 39 40	167 168	Table 1: Cl kidney injur sHzJU-ICU Negative (N=5695)	inical Demo y. SHZJU-ICU Severe AKI (N=766)	graphi P- valu e	CS and Outco MIMIC Negative (N=33879)	MIMIC Severe AKI (N=2811)	P- value	AmsterdamUMC Negative (N=13661)	AmsterdamUMC severe AKI (N=1680)	P- value	
34 35 36 37 38 39 40 41 Ag	167 168 ge, median [IQR]	Table 1: Cl kidney injur sHzJU-ICU Negative (N=5695) 60.5	inical Demo y. SHZJU-ICU Severe AKI (N=766) 62.1	graphic P- valu e 0.00	CS and Outco MIMIC Negative (N=33879) 62.0	MIMIC Severe AKI (N=2811) 64.0	P- value	AmsterdamUMC Negative (N=13661) 64.5	AmsterdamUMC severe AKI (N=1680) 64.3	P- value 0.04	
34 35 36 37 38 39 40 41 Ag 42 42	167 168 ge, median [IQR]	Table 1: Cl kidney injur sHZJU-ICU Negative (N=5695) 60.5 [48.8-70.1]	inical Demo y. sHzJU-ICU Severe AKI (N=766) 62.1 [50.1-72.5]	graphi P- valu e 0.00 4	Cs and Outco MIMIC Negative (N=33879) 62.0 [45.0-76.0]	MIMIC Severe AKI (N=2811) 64.0 [52.0-76.0]	P- value	AmsterdamUMC Negative (N=13661) 64.5 [54.5,74.5]	AmsterdamUMC severe AKI (N=1680) 64.3 [52.5,78.5]	P- value	
34 35 36 37 38 39 40 41 Ag 42 43 43 44 Ge	167 168 ge, median [IQR] ender, male (%)	Table 1: Cl kidney injur SHZJU-ICU Negative (N=5695) 60.5 [48.8-70.1] 3561 (64.9)	inical Demo y. SHZJU-ICU Severe AKI (N=766) 62.1 [50.1-72.5] 438 (59.8)	graphic P- valu e 0.00 4 0.00	Cs and Outco MIMIC Negative (N=33879) 62.0 [45.0-76.0] 18976 (56.0)	MIMIC Severe AKI (N=2811) 64.0 [52.0-76.0] 1524 (54.2)	P- value <0.001	AmsterdamUMC Negative (N=13661) 64.5 [54.5,74.5] 8920 (65.3)	AmsterdamUMC severe AKI (N=1680) 64.3 [52.5,78.5] 1054 (63.9)	P- value 0.04	
34 35 36 37 38 39 40 41 42 43 44 43 44 5	167 168 ge, median [IQR] ender, male (%)	Table 1: Cl kidney injur SHZJU-ICU Negative (N=5695) 60.5 [48.8-70.1] 3561 (64.9)	inical Demo y. SHZJU-ICU Severe AKI (N=766) 62.1 [50.1-72.5] 438 (59.8)	graphi P- valu e 0.00 4 0.00 7	Cs and Outco MIMIC Negative (N=33879) 62.0 [45.0-76.0] 18976 (56.0)	MIMIC Severe AKI (N=2811) 64.0 [52.0-76.0] 1524 (54.2)	P- value <0.001	AmsterdamUMC Negative (N=13661) 64.5 [54.5,74.5] 8920 (65.3)	ere acute AmsterdamUMC severe AKI (N=1680) 64.3 [52.5,78.5] 1054 (63.9)	P- value 0.04 0.03	
34 35 36 37 38 39 40 41 42 43 44 43 44 45 46 87 47	167 168 ge, median [IQR] ender, male (%)	Table 1: Cl kidney injur SHZJU-ICU Negative (N=5695) 60.5 [48.8-70.1] 3561 (64.9)	inical Demo y. SHZJU-ICU Severe AKI (N=766) 62.1 [50.1-72.5] 438 (59.8)	graphi P- valu e 0.00 4 0.00 7	Cs and Outco MIMIC Negative (N=33879) 62.0 [45.0-76.0] 18976 (56.0)	MIMIC Severe AKI (N=2811) 64.0 [52.0-76.0] 1524 (54.2)	P- value <0.001	AmsterdamUMC Negative (N=13661) 64.5 [54.5,74.5] 8920 (65.3)	one 1. ere acute AmsterdamUMC severe AKI (N=1680) 64.3 [52.5,78.5] 1054 (63.9)	P- value 0.04 0.03	
34 35 36 37 38 39 40 41 42 43 44 45 46 Ra 447 48	167 168 ge, median [IQR] ender, male (%) ace White	Table 1: Cl kidney injur SHZJU-ICU Negative (N=5695) 60.5 [48.8-70.1] 3561 (64.9) 3 (0.05)	inical Demo y. SHZJU-ICU Severe AKI (N=766) 62.1 [50.1-72.5] 438 (59.8) 1 (0.1)	graphie P- valu e 0.00 4 0.00 7 1	Cs and Outco MIMIC Negative (N=33879) 62.0 [45.0-76.0] 18976 (56.0) 23796 (70.2)	MIMIC Severe AKI (N=2811) 64.0 [52.0-76.0] 1524 (54.2) 2005 (71.3)	P- value <0.001 0.06 0.23	AmsterdamUMC Negative (N=13661) 64.5 [54.5,74.5] 8920 (65.3)	ere acute AmsterdamUMC severe AKI (N=1680) 64.3 [52.5,78.5] 1054 (63.9) / /	P- value 0.04 0.03 /	
34 35 36 37 38 39 40 41 Ag 42 43 44 45 46 Ra 45 46 Ra 49 49	167 168 ge, median [IQR] ender, male (%) ace White Black	Table 1: Cl kidney injur SHZJU-ICU Negative (N=5695) 60.5 [48.8-70.1] 3561 (64.9) 3 (0.05) 1 (0.02)	inical Demo y. SHZJU-ICU Severe AKI (N=766) 62.1 [50.1-72.5] 438 (59.8) 1 (0.1) 0	graphi P- valu e 0.00 4 0.00 7 1 1	Cs and Outco MIMIC Negative (N=33879) 62.0 [45.0-76.0] 18976 (56.0) 23796 (70.2) 2455 (7.2)	mes in patie MIMIC Severe AKI (N=2811) 64.0 [52.0-76.0] 1524 (54.2) 2005 (71.3) 199 (7.1)	P- value <0.001 0.06 0.23 0.45	AmsterdamUMC Negative (N=13661) 64.5 [54.5,74.5] 8920 (65.3) / /	ere acute AmsterdamUMC severe AKI (N=1680) 64.3 [52.5,78.5] 1054 (63.9) / / / /	P- value 0.04 0.03 / / /	
34 35 36 37 38 39 40 41 Ag 42 43 44 45 46 Ra 45 46 Ra 49 50 51	167 168 ge, median [IQR] ender, male (%) ace White Black Asian	Table 1: Cl kidney injur SHZJU-ICU Negative (N=5695) 60.5 [48.8-70.1] 3561 (64.9) 3 (0.05) 1 (0.02) 5691(99.9)	inical Demo y. SHZJU-ICU Severe AKI (N=766) 62.1 [50.1-72.5] 438 (59.8) 1 (0.1) 0 764 (99.7)	graphic P- valu e 0.00 4 0.00 7 1 1 1 1	Cs and Outco MIMIC Negative (N=33879) 62.0 [45.0-76.0] 18976 (56.0) 23796 (70.2) 2455 (7.2) 918 (2.7)	MIMIC Severe AKI (N=2811) 64.0 [52.0-76.0] 1524 (54.2) 2005 (71.3) 199 (7.1) 70 (2.5)	P- value <0.001 0.06 0.23 0.45 0.54	AmsterdamUMC Negative (N=13661) 64.5 [54.5,74.5] 8920 (65.3) / / /	ere acute AmsterdamUMC severe AKI (N=1680) 64.3 [52.5,78.5] 1054 (63.9) / / / / / / /	P- value 0.04 0.03 / / / / /	
34 35 36 37 38 39 40 41 Ag 43 44 45 45 46 Ra 45 47 48 49 50 51	167 168 ge, median [IQR] ender, male (%) ace White Black Asian Other	Table 1: Cl kidney injur SHZJU-ICU Negative (N=5695) 60.5 [48.8-70.1] 3561 (64.9) 3 (0.05) 1 (0.02) 5691(99.9) 0	inical Demo y. SHZJU-ICU Severe AKI (N=766) 62.1 [50.1-72.5] 438 (59.8) 1 (0.1) 0 764 (99.7) 1 (0.1)	graphi P- valu e 0.00 4 0.00 7 1 1 1 1 1 1	Cs and Outco MIMIC Negative (N=33879) 62.0 [45.0-76.0] 18976 (56.0) 23796 (70.2) 2455 (7.2) 918 (2.7) 6710 (19.8)	mes in patie MIMIC Severe AKI (N=2811) 64.0 [52.0-76.0] 1524 (54.2) 2005 (71.3) 199 (7.1) 70 (2.5) 537 (19.1)	P- value <0.001 0.06 0.23 0.45 0.54 0.34	AmsterdamUMC Negative (N=13661) 64.5 [54.5,74.5] 8920 (65.3) / / / /	Image: Content in the second secon	P- value 0.04 0.03 / / / / / /	
34 35 36 37 40 41 Ag 43 44 45 46 45 46 7 46 7 47 8 49 50 51 51 51 52 53 Ag	167 168 ge, median [IQR] ender, male (%) ace White Black Asian Other	Table 1: Cl kidney injur SHZJU-ICU Negative (N=5695) 60.5 [48.8-70.1] 3561 (64.9) 3 (0.05) 1 (0.02) 5691(99.9) 0 0.9 (0.34)	inical Demo y. SHZJU-ICU Severe AKI (N=766) 62.1 [50.1-72.5] 438 (59.8) 1 (0.1) 0 764 (99.7) 1 (0.1) 1 (0.1) 1.0 (0.40)	graphi P- valu e 0.00 4 0.00 7 1 1 1 1 1 (0.0	Cs and Outco MIMIC Negative (N=33879) 62.0 [45.0-76.0] 18976 (56.0) 23796 (70.2) 2455 (7.2) 918 (2.7) 6710 (19.8) 1.1 (0.41)	MIMIC Severe AKI (N=2811) 64.0 [52.0-76.0] 1524 (54.2) 2005 (71.3) 199 (7.1) 70 (2.5) 537 (19.1) 1.1 (0.50)	P- value <0.001 0.06 0.23 0.45 0.54 0.34 0.04	AmsterdamUMC Negative (N=13661) 64.5 [54.5,74.5] 8920 (65.3) / / / / / / / 1.2 (0.35)	Image: Content of the second secon	P- value 0.04 0.03 / / / / / / / / / / / / / /	
34 35 36 37 38 39 40 41 42 43 44 45 46 45 46 8 44 45 50 51 51 53 46 51 55 46 51 55 55 6 (m)	167 168 ge, median [IQR] ender, male (%) ace White Black Asian Other dmission Scr ig/dL), mean	Table 1: Cl kidney injur SHZJU-ICU Negative (N=5695) 60.5 [48.8-70.1] 3561 (64.9) 3 (0.05) 1 (0.02) 5691(99.9) 0 0.9 (0.34)	inical Demo y. SHZJU-ICU Severe AKI (N=766) 62.1 [50.1-72.5] 438 (59.8) 1 (0.1) 0 764 (99.7) 1 (0.1) 1.0 (0.40)	graphie P- valu e 0.00 4 0.00 7 1 1 1 1 1 (0.0 01	Cs and Outco MIMIC Negative (N=33879) 62.0 [45.0-76.0] 18976 (56.0) 23796 (70.2) 2455 (7.2) 918 (2.7) 6710 (19.8) 1.1 (0.41)	MIMIC Severe AKI (N=2811) 64.0 [52.0-76.0] 1524 (54.2) 2005 (71.3) 199 (7.1) 70 (2.5) 537 (19.1) 1.1 (0.50)	P- value <0.001 0.06 0.23 0.45 0.54 0.34 0.04	AmsterdamUMC Negative (N=13661) 64.5 [54.5,74.5] 8920 (65.3) / / / / 1.2 (0.35)	Image: Dife 1. ere acute AmsterdamUMC severe AKI (N=1680) 64.3 [52.5,78.5] 1054 (63.9) / / / / / / / / 1.1 (0.38)	P- value 0.04 0.03 / / / / / / / / / / / / / / / / / / /	
34 35 36 37 40 41 Ag 44 45 45 46 Ra 45 46 Ra 47 48 49 50 51 55 50 51 55 56 (s)	167 168 ge, median [IQR] ender, male (%) ace White Black Asian Other dmission Scr ag/dL), mean d)	Table 1: Cl kidney injur SHZJU-ICU Negative (N=5695) 60.5 [48.8-70.1] 3561 (64.9) 3 (0.05) 1 (0.02) 5691(99.9) 0 0.9 (0.34)	inical Demo y. SHZJU-ICU Severe AKI (N=766) 62.1 [50.1-72.5] 438 (59.8) 1 (0.1) 0 764 (99.7) 1 (0.1) 1.0 (0.40)	graphi P- valu e 0.00 4 0.00 7 1 1 1 1 (0.0 01	Cs and Outco MIMIC Negative (N=33879) 62.0 [45.0-76.0] 18976 (56.0) 23796 (70.2) 2455 (7.2) 918 (2.7) 6710 (19.8) 1.1 (0.41)	mes in patie MIMIC Severe AKI (N=2811) 64.0 [52.0-76.0] 1524 (54.2) 2005 (71.3) 199 (7.1) 70 (2.5) 537 (19.1) 1.1 (0.50)	P- value <0.001 0.06 0.23 0.45 0.54 0.34 0.04	AmsterdamUMC Negative (N=13661) 64.5 [54.5,74.5] 8920 (65.3) / / / / / 1.2 (0.35)	Image: Severe acute AmsterdamUMC severe AKI (N=1680) 64.3 [52.5,78.5] 1054 (63.9) / / / / / / / / /1054 (0.38)	P- value 0.04 0.03 / / / / / / / / / / / / / / / / / / /	
34 35 36 37 40 41 Ag 42 43 44 45 45 46 Ra 44 45 46 Ra 49 50 51 51 52 53 Ag 55 54 (m	167 168 ge, median [IQR] ender, male (%) ace White Black Asian Other Imission Scr Ig/dL), mean d)	Table 1: Cl kidney injur SHZJU-ICU Negative (N=5695) 60.5 [48.8-70.1] 3561 (64.9) 3 (0.05) 1 (0.02) 5691(99.9) 0 0.9 (0.34)	inical Demo y. SHZJU-ICU Severe AKI (N=766) 62.1 [50.1-72.5] 438 (59.8) 1 (0.1) 0 764 (99.7) 1 (0.1) 1.0 (0.40)	graphie P- valu e 0.00 4 0.00 7 1 1 1 1 1 (0.0 01	Cs and Outco MIMIC Negative (N=33879) 62.0 [45.0-76.0] 18976 (56.0) 23796 (70.2) 2455 (7.2) 918 (2.7) 6710 (19.8) 1.1 (0.41)	MIMIC Severe AKI (N=2811) 64.0 [52.0-76.0] 1524 (54.2) 2005 (71.3) 199 (7.1) 70 (2.5) 537 (19.1) 1.1 (0.50)	P- value <0.001 0.06 0.23 0.45 0.54 0.34 0.04	AmsterdamUMC Negative (N=13661) 64.5 [54.5,74.5] 8920 (65.3) / / / / 1.2 (0.35)	Image: Severe AKI (N=1680) 64.3 [52.5,78.5] 1054 (63.9) / / / / 1.1 (0.38)	P- value 0.04 0.03 / / / / / / / / / / / / / / / / / / /	
34 35 36 37 40 41 Ac 43 44 Ge 45 45 46 Ra 45 47 48 49 50 51 52 53 Ac 55 53 55 55 57 58 59	167 168 ge, median [IQR] ender, male (%) ace White Black Asian Other Imission Scr Ig/dL), mean d)	Table 1: Cl kidney injur SHZJU-ICU Negative (N=5695) 60.5 [48.8-70.1] 3561 (64.9) 3 (0.05) 1 (0.02) 5691(99.9) 0 0.9 (0.34)	inical Demo y. SHZJU-ICU Severe AKI (N=766) 62.1 [50.1-72.5] 438 (59.8) 1 (0.1) 0 764 (99.7) 1 (0.1) 1.0 (0.40)	graphie P- valu e 0.00 4 0.00 7 1 1 1 1 (0.0 01	Cs and Outco MIMIC Negative (N=33879) 62.0 [45.0-76.0] 18976 (56.0) 23796 (70.2) 2455 (7.2) 918 (2.7) 6710 (19.8) 1.1 (0.41)	Minic Severe AKI (N=2811) 64.0 [52.0-76.0] 1524 (54.2) 2005 (71.3) 199 (7.1) 70 (2.5) 537 (19.1) 1.1 (0.50)	P- value <0.001 0.06 0.23 0.45 0.54 0.34 0.04	AmsterdamUMC Negative (N=13661) 64.5 [54.5,74.5] 8920 (65.3) / / / / 1.2 (0.35)	Image: bite 1. ere acute AmsterdamUMC severe AKI (N=1680) 64.3 [52.5,78.5] 1054 (63.9) / / / / / / / / / 1.1 (0.38)	P- value 0.04 0.03 / / / / / / / / / / / / / / / / / / /	

1 2											
² 3 A	dmission	BUN	18 (11)	21 (9)	<0.0	17 (12)	23 (12)	<0.001	18 (13)	23 (10)	<0.00
4 5 (I	mg/dL),	mean	. ,	. ,	01						1
6 (sd)										
7 8	ancer, n (%	6)	644 (11.3)	48 (6.3)	<0.0	6652 (19.6)	752 (26.8)	<0.001	1	1	1
9					01						
100	irrhosis, n	(%)	43 (0.8)	6 (0.8)	0.89	1180 (3.5)	426 (15.2)	<0.001	1	/	1
11 c 12	ardiopathy	/, n	231 (4.1)	42 (5.5)	0.08	4840 (14.3)	336 (12.0)	0.001	1	1	/
13 ^{(°}	%)										
14 D	liabetes, n	(%)	305 (5.4)	63 (8.2)	0.00	7250 (21.4)	789 (28.1)	<0.001	1	1	1
16			000 (45 0)		2	40000 (40.0)	4540 (50.0)	10.001		,	
17 ^H	iypertensio	on, n	889 (15.6)	115 (15.0)	0.70	16328 (48.2)	1513 (53.8)	<0.001	1	1	1
19 _V	/•)	n (%)	2569 (45.1)	592 (77.3)	<0.0	13009 (38.4)	1503(53 5)	<0.001	7718(56.5)	1248(74.3)	<0.00
20		(///			01			0.001			1
21 22 C	peration, r	ו (%)	3361 (59.1)	373 (48.7)	<0.0	12455 (36.7)	1430 (50.8)	<0.001	1	1	1
23					01						
24 25	CU	Hours,	50.8	164.4	<0.0	51.0	103.4	<0.001	24.0	142.0	<0.00
26 m	nedian [IQF	2]	[23.0-139.5]	[70.3-328.6]	01	[28.5-110.3]	[50.1-261.3]		[19.8,63.5]	[45.4,394.2]	1
27 s	urvived, n	(%)	4997 (87.7)	380 (49.6)	<0.0	25648 (75.7)	1356 (48.2)	<0.001	10942(80.1)	1033 (61.5)	<0.00
20 29					01						1
30	1	69	SHZJU-ICU:	The general	ICU d	atabase of the	second affili	ated hos	pital of Zhejiang u	university	
31 32	1	70	school of me	edicine; <i>MIMI</i>	C: Me	edical Informat	ion Mart for	Intensive	e Care; <i>IQR</i> : Inter	r-Quartile	
33	1	/1 70	Range; ICU:	Intensive Ca	re Uni	it; AKI: Acute k	lidney injury.	Scr: ser	um creatinine; BC	JIN: DIOOD	
34 35	I	12	urea miliogei								
36	1	73	There were	e significant di	ferenc	es in the import	tant parameter	s of the v	variables among the	e different	
37							4				
30 39	1	74	models (see F	igure S1). How	ever, t	he trend of the c	reatinine level	in the pa	st week was still an	important	
40	1.	75	variable falls	und her uning a		blood wron nitr	a con loval tor	nn oroturi	and longth of ICU	ator. The	
41 42	I	75	variable, iono	owed by unne v	olume	, blobd ulea lilu	ogen ievei, tei	nperature	e, and length of ICO	stay. The	
43	1.	76	cut-off value	used to disting	iish be	tween a negativ	e and positive	predictio	n was determined h	ov the K-S	
44 45							F				
46	1	77	curve, with va	alue of 0.423 (s	see Fig	gure S2). The G	BDT model ha	ad the be	st prediction effect	in the test	
47 48											
49	1	78	set, followed	by XGBoost a	nd Lig	ghtGBoost. In th	ne two central	internal	validation sets, the	two best-	
50											
52	1	79	performing m	achine learning	g algor	rithms with grea	t AUROC are	LightGB	Boost (SHZJU-ICU	of 83.2%,	
53	1	00	MINIC .f.96	(0) and VCD	a a a t (S			5 (0/)	detailed in Figure (Quere 11	
54 55	10	80	WIIWIIC OI 80	.0%) and AGB	00st (2	SHZJU-ICU 85.3	970, MIIMIC 8.	5.0%), as	detailed in Figure 2	2. Overall,	
56	1:	81	the sensitivity	(SHZIU-ICU	0.84	MIMIC 0.83) a	nd the negativ	e predict	ive value (SHZIU-	ICU 0.90	
57 58			sensitivity		ı,		e negutiv	- Predict			
59	18	82	MIMIC 0.90)	of the predict	ive m	odel were high,	but the speci	ficity wa	s general (SHZJU-	ICU 0.79,	
60							-			9	

BMJ Open

MIMIC 0.75), as shown in Table 2. In the external validation based on AmsterdamUMC database, the
overall model validation effect results were satisfactory, and XGBoost had the best performance, with
an AUROC of 0.84, as shown in Figure 2 and Table 2. We built a visual prediction interface based on

186 the prediction model (supplementation file Figure S3).

188 Table 2: Model validation results by three databases with machine learning algorithm

Model	AUROC	Accuracy	Sensitivity	Sepcificity	PPV	NPV	F1
Internal validation with SHZJU-ICU database							
Logistic regression	0.748	0.662	0.834	0.576	0.496	0.874	0.622
LightGBoost	0.832	0.741	0.839	0.692	0.576	0.896	0.683
GBDT	0.845	0.765	0.843	0.725	0.606	0.902	0.705
AdaBoost	0.806	0.721	0.824	0.67	0.555	0.884	0.663
Random Forest	0.821	0.763	0.71	0.789	0.627	0.845	0.666
XGBoost	0.859	0.779	0.81	0.763	0.631	0.889	0.709
Internal validation with	n MIMIC datab	base					
Logistic regression	0.733	0.695	0.643	0.72	0.535	0.801	0.584
LightGBoost	0.86	0.768	0.822	0.741	0.613	0.893	0.702
GBDT	0.846	0.765	0.786	0.755	0.616	0.876	0.691
AdaBoost	0.837	0.732	0.831	0.683	0.567	0.89	0.674
Random Forest	0.832	0.738	0.791	0.712	0.578	0.872	0.668
XGBoost	0.856	0.758	0.833	0.721	0.598	0.895	0.695
External validation wit	h Amsterdan	nUMC databa	se				
Logistic regression	0.704	0.767	0.516	0.893	0.706	0.787	0.596
LightGBoost	0.859	0.763	0.827	0.731	0.606	0.894	0.7
GBDT	0.861	0.764	0.84	0.727	0.606	0.901	0.704
AdaBoost	0.85	0.755	0.813	0.726	0.597	0.886	0.689
Random Forest	0.82	0.743	0.77	0.729	0.587	0.864	0.666
XGBoost	0.865	0.75	0.873	0.688	0.584	0.916	0.7
Prospective validation	with SHZJU-	ICU					
Logistic regression	0.758	0.772	0.648	0.834	0.662	0.826	0.655
LightGBoost	0.819	0.796	0.596	0.895	0.74	0.816	0.66
GBDT	0.827	0.781	0.706	0.818	0.66	0.848	0.683
AdaBoost	0.808	0.766	0.686	0.805	0.638	0.837	0.661
Random Forest	0.804	0.755	0.715	0.775	0.613	0.845	0.66
XGBoost	0.841	0.779	0.724	0.807	0.652	0.854	0.686

191 hospital of Zhejiang university school of medicine; *MIMIC*: Medical Information Mart for
192 Intensive Care; *GBDT*: Gradient Boosted Decision Tree.

According to the inclusion and exclusion criteria, we delete 267 patients among 94 patients with creatinine baseline more than 3.0 mg/dL at admission, 39 patients met severe AKI diagnosis within 24 hours, and 26 patients who used RRT within 48 hours after admission, 108 patients hospitalized in the ICU for fewer than 3 days. A total of 2532 patients were admitted to our centre for prospective validation, and the prediction model made 16858 times predictions. In the prospective cohort, there was no significant difference in age, gender, baseline creatinine and urea nitrogen, and complications. The proportion of mechanical ventilation and the ICU stay time in AKI patients were longer with higher mortality. Above all, there was no significant difference between the prospective and the retrospective cohort. More detail sees in supplementation file Table S2. In the end, 358 positive results were predicted, and the rest were negative results. There are 344 patients with severe AKI were diagnosed and the prediction accuracy was 83.5%. The model with the highest area under the curve was XGBoost, 0.84. The results of the prospective study are similar to those of the external validation of the model, and are relatively stable. More detail is presented in Figure 3 and Table 2. **Discussion:** In this study, we built predictive models by machine learning to predict the incidence of severe AKI with three databases in different regions and in the next 48 hours. After internal and external validation, prospective validation over one year was carried out to verify the model effects. The three databases come from three countries that are in Asia, Europe, and North America, which proves that the model is universal to some extent.

213 Despite the huge amount of data, many databases are still not suitable for prospective research

BMJ Open

because they are not updated promptly. Tomasev, N and colleagues have provided research on AKI prediction models with a large amount of data[10]. The study covered 703782 adult patients with 6 billion individual items, including 620000 elements. In this study, a depth neural network model was used for real-time prediction. A total of 55.8% of severe AKI patients were predicted within the first 48 hours, although each accurate prediction was accompanied by two mispredictions[10]. This study provided a new scheme for real-time prediction and indicated that we should prospectively evaluate and independently validate models to explore their effectiveness. In a prospective study, Marine, F compared an AKI prediction model with clinicians in 252 patients and found that the clinical effect of the random forest model for predicting AKI-II/III was equivalent to that of clinicians. Our prediction model graphical visualization of the model was installed in the centre's database for better usage. In addition, our database is updated daily to achieve daily predictions and present the results to researchers. In the prospective validation of our study, the stability of the prediction model confirmed its promise, which provides a basis for future research. There are many studies of artificial intelligence for predicting the occurrence of AKI, but most of them are single-centre studies, and the extrapolation effect has been controversial. In 2016, Koyner, J, and his colleague published the first study of an AKI prediction model based on multi-centre data. In all 202961 patients, 17541 (8.6%) had AKI, 4251 (3.5%) had AKI-II, and 1242 (0.6%) had AKI-III. A multivariate logistic regression model was used to predict AKI in this study with an AUROC of 0.74 (95% CI=0.74). With the classification of AKI, the AUROC of the prediction model gradually increased to 0.84[8]. Subsequently, the study team used a new machine learning algorithm, to build a more accurate model to predict the occurrence of AKI-II, with an AUROC of 0.9 within 24 hours and 0.87 within 48 hours[19]. Recently, the research team included data from two other centres, namely, LUMC (N=200613) and NUS

2	
3	
4	
5	
6	
7	
, 0	
ð	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
17	
4/	
48	
49	
50	
51	
52	
53	
57	
54	
55	
56	
57	
58	
59	
60	

1

236 (N=246895), to externally validate the AKI-II prediction model with AUROCs reaching 0.85 to 0.86, 237 suggesting that the artificial intelligence model has stable predictive ability[12]. This series of studies 238 included many data points, suggesting the feasibility of artificial intelligence in the diagnosis of AKI, 239 but the proportion of positive patients (3.5%) and ICU patients (30%) was too low to properly predict 240 AKI. Our research is similar to the above. The SAHZJU-ICU database is a single-centre database 241 representing south-eastern China, and the MIMIC database is a well-known open ICU database in the 242 United States. The AmsterdamUMC database is a public database located in Europe. The population 243 structure and diseases in the three databases are complete but different in the distribution of complications and race. Therefore, it provides a prediction model with unparalleled stability compared with other 244 245 studies. 246 Limitations: 247 This retrospective multi-centre study was unable to carry out more clinical feature mining and 248 comparison because of different data structures. The differences between the three databases partly 249 reflect some demographic differences between Europe, the United States and China, resulting in a decline 250 in the accuracy of the prediction model. There are some differences in the number of patients included 251 in the three databases, which may affect the choice of variables. Second, in the prospective data study in 252 2020, there may be deviations in the inclusion of patients in the centre, thus affecting the interpretation 253 of the follow-up forward-looking results. Finally, given the low incidence of severe AKI and the great 254 difference in the proportion of positive and negative samples, the data may be accidental. 255

256 Conclusion:

257 Based on databases of patients of different races from different countries, we constructed stable

BMJ Open

3 4 5	258	machine learning models to predict the occurrence of AKI in the next 48 hours. Prospective validation
6 7	259	through the implementation of an updated local database is an effective exploration of further research.
8 9 10	260	
11 12 13	261	Data Availability Statement:
14 15	262	The model code can be obtained by email if readers need it, but we cannot guarantee that all the
16 17 18	263	code will be provided. Two public databases can be applied from the official website of their respective
19 20 21	264	databases.
22 23	265	Ethics approval:
24 25 26	266	Our research was approved by the ethics committee of the Second Affiliated Hospital of Zhejiang
27 28 20	267	University School of Medicine.
30 31	268	
32 33 34	269	Reference:
35 36	270	1. Ronco, C.; Bellomo, R.; Kellum, J.A. Acute kidney injury. <i>The Lancet</i> 2019 , <i>394</i> , 1949-
37 38 39	271	1964, doi:10.1016/s0140-6736(19)32563-2.
40 41 42	272	2. Pakula, A.M.; Skinner, R.A. Acute Kidney Injury in the Critically III Patient: A Current
42 43 44	273	Review of the Literature. <i>J Intensive Care Med</i> 2016 , <i>31</i> , 319-324,
45 46 47	274	doi:10.1177/0885066615575699.
48 49	275	3. Bellomo, R.; Kellum, J.A.; Ronco, C. Acute kidney injury. <i>The Lancet</i> 2012 , <i>380</i> , 756-
50 51 52	276	766, doi:10.1016/s0140-6736(11)61454-2.
53 54	277	4. Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. <i>Nephron Clin</i>
55 56 57	278	<i>Pract</i> 2012 , <i>120</i> , c179-184, doi:10.1159/000339789.
58 59 60	279	5. Coelho, S.; Cabral, G.; Lopes, J.A.; Jacinto, A. Renal regeneration after acute kidney

1			
2			
3 4 5	280		injury. <i>Nephrology (Carlton)</i> 2018 , <i>23</i> , 805-814, doi:10.1111/nep.13256.
6 7 8	281	6.	Wilson, F.P.; Greenberg, J.H. Acute Kidney Injury in Real Time: Prediction, Alerts, and
8 9 10	282		Clinical Decision Support. Nephron 2018, 140, 116-119, doi:10.1159/000492064.
11 12 13	283	7.	Wu, Y.; Hao, W.; Chen, Y.; Chen, S.; Liu, W.; Yu, F.; Hu, W.; Liang, X. Clinical features,
14 15	284		risk factors, and clinical burden of acute kidney injury in older adults. Ren Fail 2020,
17 18	285		<i>42</i> , 1127-1134, doi:10.1080/0886022X.2020.1843491.
19 20 21	286	8.	Koyner, J.L.; Adhikari, R.; Edelson, D.P.; Churpek, M.M. Development of a Multicenter
22 23	287		Ward-Based AKI Prediction Model. Clin J Am Soc Nephrol 2016, 11, 1935-1943,
24 25 26	288		doi:10.2215/CJN.00280116.
27 28 20	289	9.	Low, S.; Vathsala, A.; Murali, T.M.; Pang, L.; MacLaren, G.; Ng, W.Y.; Haroon, S.;
29 30 31	290		Mukhopadhyay, A.; Lim, S.L.; Tan, B.H., et al. Electronic health records accurately
32 33 34	291		predict renal replacement therapy in acute kidney injury. BMC Nephrol 2019, 20, 32,
35 36	292		doi:10.1186/s12882-019-1206-4.
37 38 39	293	10.	Tomasev, N.; Glorot, X.; Rae, J.W.; Zielinski, M.; Askham, H.; Saraiva, A.; Mottram, A.;
40 41	294		Meyer, C.; Ravuri, S.; Protsyuk, I., et al. A clinically applicable approach to continuous
42 43 44	295		prediction of future acute kidney injury. <i>Nature</i> 2019 , <i>572</i> , 116-119,
45 46 47	296		doi:10.1038/s41586-019-1390-1.
48 49	297	11.	Flechet, M.; Falini, S.; Bonetti, C.; Güiza, F.; Schetz, M.; Van den Berghe, G.; Meyfroidt,
50 51 52	298		G. Machine learning versus physicians' prediction of acute kidney injury in critically ill
53 54 55	299		adults: a prospective evaluation of the AKIpredictor. Critical Care 2019, 23, 282,
55 56 57	300		doi:10.1186/s13054-019-2563-x.
58 59 60	301	12.	Churpek, M.M.; Carey, K.A.; Edelson, D.P.; Singh, T.; Astor, B.C.; Gilbert, E.R.;
			15

BMJ Open

3 4 5	302		Winslow, C.; Shah, N.; Afshar, M.; Koyner, J.L. Internal and External Validation of a
6 7	303		Machine Learning Risk Score for Acute Kidney Injury. JAMA Netw Open 2020, 3,
8 9 10	304		e2012892, doi:10.1001/jamanetworkopen.2020.12892.
11 12 13	305	13.	Yuan, Q.; Zhang, H.; Deng, T.; Tang, S.; Yuan, X.; Tang, W.; Xie, Y.; Ge, H.; Wang,
14 15	306		X.; Zhou, Q., et al. Role of Artificial Intelligence in Kidney Disease. Int J Med Sci 2020,
16 17 18	307		<i>17</i> , 970-984, doi:10.7150/ijms.42078.
19 20 21	308	14.	Li, Y.; Xu, J.; Wang, Y.; Zhang, Y.; Jiang, W.; Shen, B.; Ding, X. A novel machine
22 23	309		learning algorithm, Bayesian networks model, to predict the high-risk patients with
24 25 26	310		cardiac surgery-associated acute kidney injury. Clin Cardiol 2020, 43, 752-761,
27 28	311		doi:10.1002/clc.23377.
29 30 31	312	15.	De Vlieger, G.; Kashani, K.; Meyfroidt, G. Artificial intelligence to guide management
32 33 34	313		of acute kidney injury in the ICU: a narrative review. Curr Opin Crit Care 2020, 26, 563-
35 36	314		573, doi:10.1097/MCC.000000000000775.
37 38 39	315	16.	James, M.T.; Pannu, N.; Hemmelgarn, B.R.; Austin, P.C.; Tan, Z.; McArthur, E.; Manns,
40 41	316		B.J.; Tonelli, M.; Wald, R.; Quinn, R.R., et al. Derivation and External Validation of
42 43 44	317		Prediction Models for Advanced Chronic Kidney Disease Following Acute Kidney Injury.
45 46 47	318		<i>JAMA</i> 2017 , <i>318</i> , 1787-1797, doi:10.1001/jama.2017.16326.
47 48 49	319	17.	Johnson, A.E.; Pollard, T.J.; Shen, L.; Lehman, L.W.; Feng, M.; Ghassemi, M.; Moody,
50 51 52	320		B.; Szolovits, P.AO.; Celi, L.A.; Mark, R.AO. MIMIC-III, a freely accessible critical
53 54	321		care database.
55 56 57	322	18.	Thoral, P.J.; Peppink, J.M.; Driessen, R.H.; Sijbrands, E.J.G.; Kompanje, E.J.O.;
58 59	323		Kaplan, L.; Bailey, H.; Kesecioglu, J.; Cecconi, M.; Churpek, M., et al. Sharing ICU
60			16

4 5	324	Patient Data Responsibly Under the Society of Critical Care Medicine/European
6 7	325	Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam
8 9 10	326	University Medical Centers Database (AmsterdamUMCdb) Example. Crit Care Med
11 12 13	327	2021, 10.1097/CCM.0000000000004916, doi:10.1097/CCM.00000000004916.
14 15	328	19. Koyner, J.L.; Carey, K.A.; Edelson, D.P.; Churpek, M.M. The Development of a
16 17 18	329	Machine Learning Inpatient Acute Kidney Injury Prediction Model. Crit Care Med 2018,
19 20 21	330	46, 1070-1077, doi:10.1097/CCM.00000000003123.
21 22 23	331	
24 25 26	332	Footnotes
27 28	333	Contributions: Conceptualization, QL and MH; Methodology, YX; Software, YX; Validation, YZ, and
29 30 31	334	YX.; Formal Analysis, JC and XC; Resources, MH; Data Curation, QL; Writing - Original Draft
32 33	335	Preparation, QL; Writing – Review & Editing, MH; Visualization, YX; Supervision, YZ and QL; Project
34 35 36	336	Administration, QL;
37 38	337	Funding: This research received no specific grant from any funding agency in the public, commercial
39 40 41	338	or not-for-profit sectors.
42 43 44	339	Conflicts of Interest: Not Applicable.
45 46	340	Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or
47 48 49	341	reporting, or dissemination plans of this research.
50 51 52	342	Provenance and peer review Not commissioned; externally peer reviewed.
53 54	343	Acknowledgements: Thank my colleagues in general ICU for cooperating with us in our prospective
55 56 57	344	study. Thanks to two public databases namely MIMIC and AmsterdamUMC for providing important
58 59	345	data.

1		
2		
3	0.40	
4	346	
5		
0	347	Supplemental Figure:
/ 0		
0	0.40	
9	348	File name: Figure S1.tif
10		
10	349	Title and Description of data: The variable importance parameter histogram of early diagnosis prediction
12	0.0	
17		
15	350	models of severe AKI uses a multiple logistic regression algorithm and five machine learning algorithms.
16		
17	351	File name: Figure S2 tif
18	551	The hand. Figure 52.th
19		
20	352	Title and Description of data: The K-S curve used to determine the cut-off value of positive and negative
20		
22	252	diagnosis of early diagnosis prediction models of severe AVI
23	355	diagnosis of early diagnosis prediction models of severe AKI.
24		
25	354	File name: Figure S3. tif
26		
27	255	Tide of data. The simulation of the of the ATZI and a discover data
28	300	The of data. The visual interface for prospective studies of the AKT early diagnosis prediction models.
29		
30	356	Description of data: Different patients have independent card display information, in which the last line
31		
32	057	
33	357	of the card is the AKI diagnosis. The visual interface was not available to doctors during the prospective
34		
35	358	study and was used only by the researchers to verify the diagnosis and for sampling verification.
36		
37	050	
38	359	File name: Table SI.docx
39		
40	360	Title and of Description data: Missing data between three databases in the study and values included in
41		
42	004	
43	361	the model.
44		
45	362	File name: Table S2.docx
40		
47		
40 40	363	Title and of Description data: Clinical Demographics and Outcomes of SHZJU-ICU patients in model
49 50		
51	364	building set and prospective validation.
52		
53		
54	365	File name: Table S3.docx
55		
56	366	Title of data: TRIPOD Checklist of Prediction Model Development and Validation
57		
58	207	
59	307	Description of data: Writing norms of this type of research.
60		
		18

2		
3 4 5	368	
6 7	369	Figure Legend:
8 9 10	370	Figure 1: The research flow chart. The data collection time interval of the study was 7 days before
11 12 13	371	diagnosis and the prediction interval was 48 hours. The early prediction model of AKI diagnosis was
14 15	372	constructed and verified by our database and the MIMIC database and incorporated into the
16 17 18	373	AmsterdamUMC database for external validation. We carried out a one-year prospective validation
19 20 21	374	through the database of the centre.
21 22 23	375	Figure 2: The AUROC curve of the internal validation set of the SHZJU-ICU database and the MIMIC
24 25 26	376	database.
27 28	377	Figure 3: The AUROC curve of the external validation set of the AmsterdamUMC database for 3A and
29 30 31	378	the prospective validation in our center for 3B.
32 33 34		
35 36		
37 38 39		
40 41		
42 43 44		
45 46 47		
48 49		
50 51 52		
53 54		
55 56 57		
58 59 60		
~~		19

Figure 2: The AUROC curve of the internal validation set of the SHZJU-ICU database and the MIMIC database.

Figure 3: The AUROC curve of the external validation set of the AmsterdamUMC database for 3A and the prospective validation in our center for 3B.

Supplemental Figure:

File name: Figure S1.tif

Title and Description of data: The variable importance parameter histogram of early diagnosis prediction

models of severe AKI uses a multiple logistic regression algorithm and five machine learning algorithms.

feature improtance

File name: Figure S2.tif

Title and Description of data: The K-S curve used to determine the cut-off value of positive and negative diagnosis of early diagnosis prediction models of severe AKI.

File name: Figure S3. tif

Title of data: The visual interface for prospective studies of the AKI early diagnosis prediction models. Description of data: Different patients have independent card display information, in which the last line of the card is the AKI diagnosis. The visual interface was not available to doctors during the prospective study and was used only by the researchers to verify the diagnosis and for sampling verification.

2
3
1
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
17
18
19
20
21
22
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
26
20
37
38
39
40
41
42
<u>ہ</u>
43
44
45
46
47
48
49
50
50
51
52
53
54
55
55
50
5/
58

1

A002 床 1.烧伤2.低血: 术后4.高血压	容重性休克3.气管切开	A002 _床		A003 床 1.累及体表45 血症;3.低钠	%的烧伤;2.低蛋白 血症;4.慢性支气管炎
APACHE II SOFA Sepsis AKI	27 缺失参数,无法评估 已发生sepsis A 非AKI A	APACHE II SOFA Sepsis AKI	缺失参数,无法评估 缺失参数,无法评估 低风险 缺失参数,无法评估	APACHE II SOFA Sepsis AKI	3 缺失参数,无法评价 低风剧 高凯酐型AKI
^{疑似转床} A004 _床		疑似转床 A004 床		A005 _床 1烧伤体表> 竭	90%的烧伤 2.呼吸衰
APACHE II SOFA Sepsis AKI	缺失参数,无法评估 缺失参数,无法评估 低风险 缺失参数,无法评估	APACHE II SOFA Sepsis AKI	缺失参数,无法评估 缺失参数,无法评估 低风险 缺失参数,无法评估	APACHE II SOFA Sepsis AKI	3 缺失参数,无法评fi 已发生sepsis 非AKI
SEALAEC:	~	REAL PROPERTY			

File name: Table S1.docx

Title and of Description data: Missing data between three databases in the study and values included in

2.

the model.

	SHZJU-ICU	MIMIC	AmsterdamUMC	Including in Model
Age			\checkmark	
Gender		\checkmark	V	\checkmark
Race		\checkmark	×	×
Primary disease			×	×
Comorbidity		\checkmark	×	×
Ventilation		\checkmark		\checkmark
Operation		\checkmark	×	×
ICU hours		\checkmark		
Survived		\checkmark	\checkmark	\checkmark
Vital sign				
Temperature		\checkmark	\checkmark	\checkmark
Systolic pressure		\checkmark	\checkmark	\checkmark
Diastolic pressure		\checkmark	\checkmark	\checkmark
Respiratory rate		\checkmark	\checkmark	\checkmark
Heart rate		\checkmark	\checkmark	\checkmark
Oxygen saturation				
Urine				
GCS score		×	×	×
Laboratory results				

Scr				\checkmark
BUN	\checkmark		\checkmark	
RBC	\checkmark		\checkmark	
MCV	\checkmark		\checkmark	
Hb	\checkmark		\checkmark	
WBC	\checkmark		\checkmark	
NEUT	\checkmark		\checkmark	
PLT	\checkmark		\checkmark	
HCV	\checkmark		×	×
TBLB	\checkmark		\checkmark	
DBLB	\checkmark		\checkmark	
IBLB	V		\checkmark	
CRP	1		\checkmark	
РСТ		×	×	×
Serum kalium				
Serum natrium	V		\checkmark	
Serum chlorine	\checkmark	\checkmark		
PT	\checkmark	\checkmark	\checkmark	
APTT	\checkmark	\checkmark	\checkmark	
INR	\checkmark	\checkmark	\checkmark	
СК	\checkmark		\checkmark	
LDH	\checkmark		\checkmark	
Troponin	\checkmark		\checkmark	
Blood glucose	\checkmark			
PH	\checkmark	\checkmark	\checkmark	
Lactic acid	\checkmark	\checkmark	V	
Anion gap	\checkmark	\checkmark	V	
ABC	\checkmark	$\overline{\checkmark}$		
SBC				
PaCO ₂				ν
PaO ₂			V	

SHZJU-ICU: The general ICU database of the second affiliated hospital of Zhejiang university school of medicine; MIMIC: Medical Information Mart for Intensive Care; APTT: Activated partial thromboplastin time; INR: International normalized ratio; LDH: Lactate dehydrogenase; PaCO₂: Partial pressure of carbon dioxide; PaO₂ Partial pressure of oxygen; MCV: Mean corpuscular volume; PH: Potential of hydrogen; WBC: White blood cell count; NEUT: Proportion of neutrophils; CK: Creatine kinase; Scr: Serum Creatinine; BUN: Blood urea nitrogen; RBC: Red blood cell count; Hb: Hemoglobin; PT: Prothrombin time; TBLB: Total bilirubin; DBLB: Direct bilirubin; IBLB: Indirect bilirubin; CRP: C-reactive protein; HCV: Hematocrit value; PCT: Procalcitonin; ABC: Actual Bicarbonate Radical; SBC: Standard Bicarbonate Radical; PLT: Platelet count

File name: Table S2.docx

Title and of Description data: Clinical Demographics and Outcomes of SHZJU-ICU patients in model

building set and prospective validation.

	SHZJU-ICU	SHZJU-ICU	P-value	SHZJU-ICU	SHZJU-ICU	P-value
	Negative	Severe AKI		Prospective	Prospective	
	(N=5695)	(N=766)		Negative	Positive	
				(N=2188)	(N=344)	
Age, median [IQR]	60.5	62.1	0.004	61.3	62.1	0.03
	[48.8-70.1]	[50.1-72.5]		[47.5-73.4]	[51.2-70.5]	
Gender, male (%)	3561 (64.9)	438 (59.8)	0.007	1365 (62.4)	207 (60.2)	0.438
Race						
White	3 (0.05)	1 (0.1)	1	2 (0.001)	0	1
Black	1 (0.02)	0	1	0	0	1
Asian	5691(99.9)	764 (99.7)	1	2185 (99.9)	344(100)	1
Other	0	1 (0.1)	1	1 (0.001)	0	1
Admission Scr	0.9 (0.34)	1.0 (0.40)	<0.001	0.8 (0.32)	0.9 (0.35)	<0.001
(mg/dL), mean						
(sd)						
Admission BUN	18 (11)	21 (9)	<0.001	17 (11)	20 (10)	0.007
(mg/dL), mean						
(sd)						
Cancer, n (%)	644 (11.3)	48 (6.3)	<0.001	230 (10.5)	26 (7.6)	0.102
Cirrhosis, n (%)	43 (0.8)	6 (0.8)	0.89	15 (0.7)	3 (0.8)	0.726
Cardiopathy, n	231 (4.1)	42 (5.5)	0.08	98 (4.5)	19 (5.7)	0.403
(%)						
Diabetes, n (%)	305 (5.4)	63 (8.2)	0.002	142 (6.5)	29 (8.6)	0.203
Hypertension, n	889 (15.6)	115 (15.0)	0.70	324(14.8)	56 (16.4)	0.466
(%)						
Ventilation, n (%)	2569 (45.1)	592 (77.3)	<0.001	1102 (50.4)	239 (69.5)	<0.001
Operation, n (%)	3361 (59.1)	373 (48.7)	<0.001	1234(56.4)	160 (46.7)	0.001
ICU Hours,	50.8	164.4	<0.001	58.7	145.6	<0.001
median [IQR]	[23.0-139.5]	[70.3-328.6]		[34.2-160.4]	[68.5-314.8]	
Survived, n (%)	4997 (87.7)	380 (49.6)	<0.001	1868 (85.4)	178 (51.9)	<0.001

SHZJU-ICU: The general ICU database of the second affiliated hospital of Zhejiang university school of medicine; *MIMIC*: Medical Information Mart for Intensive Care; *IQR*: Inter-Quartile Range; *ICU*: Intensive Care Unit; *AKI*: Acute Kidney Injury. *Scr*: serum creatinine; *BUN*: blood urea nitrogen.

File name: Table S3.docx

BMJ Open

Title of data: TRIPOD Checklist of Prediction Model Development and Validation

Description of data: Writing norms of this type of research.

1Section/Topic	1		Checklist Item	Page			
Title and abstract							
Titlo	4)·\/	Identify the study as developing and/or validating a multivariable prediction model, the				
The	ľ	, v	target population, and the outcome to be predicted.				
Abstract	2		Provide a summary of objectives, study design, setting, participants, sample siz				
ADSITACI	2	<i>,</i> , v	predictors, outcome, statistical analysis, results, and conclusions.				
Introduction							
			Explain the medical context (including whether diagnostic or prognostic) and rationale				
	За);V	for developing or validating the multivariable prediction model, including references to	Yes; P3			
Background			existing models.				
and objectives			Specify the objectives, including whether the study describes the development or				
	Зb);V	validation of the model or both.	Yes; P4, L76			
Methods							
			Describe the study design or source of data (e.g., randomized trial, cohort, or registry				
	4a);V	data), separately for the development and validation data sets, if applicable.	Yes; P4, I			
Source of data			Specify the key study dates, including start of accrual: end of accrual: and, if applicable,				
	4b);V	end of follow-up.	Yes; P4, L84			
	Ба);V	Specify key elements of the study setting (e.g. primary care, secondary care, general				
			population) including number and location of centres	Yes			
Participants	5b)·V	Describe eligibility criteria for participants	Yes: P5. L1			
	50 50)·V	Give details of treatments received, if relevant	NA			
		, v	Clearly define the outcome that is predicted by the prediction model, including how and				
Outcome	6a	6a);V	when assessed	Yes; P6, L1		
Outoonic	Sh)·\/	Report any actions to blind assessment of the outcome to be predicted	NA			
	00	, v	Clearly define all predictors used in developing or validating the multivariable prediction	IIA			
	7a);∨	model including how and when they were maccured	Yes; P6, L11			
Predictors			Papert any actions to blind approximate of predictors for the systems and other				
	7b	7b);V	predictors	NA		
Comple size	0		predictors.	NT A			
Sample size	8); V	Explain now the study size was arrived at.	NA			
Missing data	9);∨	Describe now missing data were nandled (e.g., complete-case analysis, single	Yes; P6, L12			
			Imputation, multiple imputation) with details of any imputation method.				
	0a	D	Describe how predictors were handled in the analyses.	Yes; P6, L1			
	0b	D	Specify type of model, all model-building procedures (including any predictor selection),	Yes; P6, L11			
Statistical			and method for internal validation.				
analysis	0c	V	For validation, describe how the predictions were calculated.	Yes; P6, L2			
methods	0d);V	Specify all measures used to assess model performance and, if relevant, to compare	Yes; P6, L1			
			multiple models.	100,10,110			
	0e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	NA			
Risk groups	11);V	Provide details on how risk groups were created, if done.	Yes; P6, L1			

	1	1			
Development	12 V		For validation, identify any differences from the development data in setting, eligibility	Yes: P6, L132	
vs. validation			criteria, outcome, and predictors.	103,10,2102	
Results					
			Describe the flow of participants through the study, including the number of participants		
	3a	;V	with and without the outcome and, if applicable, a summary of the follow-up time. A	Yes; Figure 1	
			diagram may be helpful.		
Dertisinente			Describe the characteristics of the participants (basic demographics, clinical features,	V D0 L160	
Participants	3b	;V	available predictors), including the number of participants with missing data for	Yes, P8, L168-	
			predictors and outcome.	180	
	0.		For validation, show a comparison with the development data of the distribution of		
	3C	v	important variables (demographics, predictors and outcome).	Yes, Table2	
Marial	4a	D	Specify the number of participants and outcome events in each analysis.	Yes, P8, L168	
		_	If done, report the unadjusted association between each candidate predictor and	Vac	
development	4D	D	outcome.	Yes	
	5a	D	Present the full prediction model to allow predictions for individuals (i.e., all regression	Yes.	
Model			coefficients, and model intercept or baseline survival at a given time point).		
specification	5b	D	Explain how to the use the prediction model.	Yes, P9, L196	
Model	16			V D0 1 100	
performance);∨	Report performance measures (with CIs) for the prediction model.	Yes, P9, L190	
	17	V	If done, report the results from any model updating (i.e., model specification, model	NIA	
wodel-updating			performance).	NA	
Discussion					
	18		Discuss any limitations of the study (such as nonrepresentative sample, few events per		
Limitations);V	predictor, missing data).	Yes, P12, L236	
	0.		For validation, discuss the results with reference to performance in the development	V D11 1017	
late materia a	9a	V	data, and any other validation data.	Yes, P11, L217	
Interpretation	Oh		Give an overall interpretation of the results, considering objectives, limitations, results	V D10 L 109	
	90); V	from similar studies, and other relevant evidence.	Yes, P10 L198	
Implications	20);V	Discuss the potential clinical use of the model and implications for future research.	Yes, P9, L193	
Other information					
Supplementary			Provide information about the availability of supplementary resources, such as study	¥7	
information P;V protocol, Web calculator, and data sets.		Yes			
Funding	22	٠V	Give the source of funding and the role of the funders for the present study.	NA	

BMJ Open

Prospective Validation for Severe Acute Kidney Injury Predicting Model based on transcontinental databases

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054092.R1
Article Type:	Original research
Date Submitted by the Author:	23-Sep-2021
Complete List of Authors:	Liang, Qiqiang; Zhejiang University School of Medicine Second Affiliated Hospital Xu, Yongfeng; HealSci Technology Co Zhou, Yu; Zhejiang University School of Medicine Second Affiliated Hospital Chen, Xinyi; Zhejiang University School of Medicine Second Affiliated Hospital Chen, Juan; Zhejiang University School of Medicine Second Affiliated Hospital Huang, Man; Zhejiang University School of Medicine Second Affiliated Hospital
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Diagnostics
Keywords:	Acute renal failure < NEPHROLOGY, INTENSIVE & CRITICAL CARE, Information technology < BIOTECHNOLOGY & BIOINFORMATICS, Adult intensive & critical care < INTENSIVE & CRITICAL CARE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3		
4	1	Prospective Validation for Severe Acute Kidney Injury Predicting Model based
5		
7	2	on transcontinental databases
, 8		
9	3	Ojojang Ljang ^{1,} Vongfeng Xu ^{2,} Vu Zhou ^{1,} Xinyi Chen ¹ , MM: Juan Chen ^{1,} Man Huang ^{1*}
10	Ū	Qiquang Liang, Tongreng Xu, Tu Zhou, Xinyi enen, wiwi, Juan enen, wan ridang
11		
12	4	¹ General Intensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou,
13		
14	5	China.
15 16		
10 17	6	2BSc. HealSci Technology Co. Ltd. Rajijng China
17	0	Bise, meanser reenhology Co., Etd., Beijing China.
19	_	
20	7	*Corresponding author: Man Huang, MD PhD.
21		
22	8	Department: General Intensive Care Unit
23		
24	0	
25	9	Hospital: Second Affiliated Hospital of Zhejiang University School of Medicine
26		
27 20	10	Address: No. 1511, Jianghong Road, Bingjiang District, Hangzhou City, Zhejiang Province
20 20		
30	11	Tel: + 86 571 89713427
31		
32	40	
33	12	Fax: + 86 571 89713427
34		
35	13	E-mail: <u>huangman@zju.edu.cn</u> .
36 27		
32	14	ORCID: 0000-0002-0842-2254
39		
40	15	
41	15	
42		
43	16	
44		
45 46	17	
40 17		
48	10	
49	10	
50		
51	19	
52		
53	20	
54 55	-	
55 56	01	
50 57	21	
58		
59	22	
60		

BMJ Open

1 2		
2 3 4 5	23	Abstract:
6 7	24	Objectives: There are many studies of acute kidney injury (AKI) diagnosis models lack of external
8 9 10	25	validation and prospective validation. We constructed the models using three databases to predict severe
11 12 12	26	AKI within 48 hours in intensive care unit (ICU) patients.
14 15	27	Design: A retrospective and prospective cohort study.
16 17 18	28	Setting: We studied critically ill patients in our database (SHZJU-ICU) and two other public databases,
19 20	29	the Medical Information Mart for Intensive Care (MIMIC) and AmsterdamUMC databases, including
21 22 23	30	basic demographics, vital signs, and laboratory results. We predicted the diagnosis of severe AKI in
24 25 26	31	patients in the next 48 hours using machine-learning algorithms with the three databases. Then, we
27 28	32	carried out real-time severe AKI prediction in the prospective validation study at our centre for one year.
29 30 31	33	Participants: All patients included in three databases with uniform exclusion criteria.
32 33	34	Primary and secondary outcome measures: Effect evaluation index of prediction models.
34 35 36	35	Results: We included 58492 patients, and a total of 5257 (9.0%) patients met the definition of severe
37 38 39	36	AKI. In the internal validation of the SHZJU-ICU and MIMIC databases, the best area under the receiver
40 41	37	operating characteristic curve (AUROC) of the model was 0.86. The external validation results by
42 43 44	38	AmsterdamUMC database were also satisfactory, with the best AUROC of 0.86. A total of 2532 patients
45 46	39	were admitted to the center for prospective validation; 358 positive results were predicted, and 344
47 48 49	40	patients were diagnosed with severe AKI, with the best sensitivity of 0.72, the specificity of 0.80, and
50 51 52	41	the AUROC of 0.84.
53 54	42	Conclusion: The prediction model of severe AKI exhibits promises as a clinical application based on
55 56 57	43	dynamic vital signs and laboratory results of multi-center databases with prospective and external
58 59	44	validation.
3		

4		
5		
6		
7		
8		
0		
9		
10		
11		
12		
13		
14		
15		
16		
17		
10		
18		
19		
20		
21		
22		
23		
24		
25		
25		
26		
27		
28		
29		
30		
31		
32		
22		
22		
34		
35		
36		
37		
38		
39		
40		
-⊤∪ //1		
41		
42		
43		
44		
45		
46		
47		
48		
<u>4</u> 0		
50		
50		
51		
52		
53		
54		
55		
56		
57		
57		
20		
59		

1 2

45 Keywords: Machine learning; Acute kidney injury; Real-time prospective validation; External
46 validation.

47 Strengths and limitations of this study:

- 48 An important verification step from artificial intelligence research to clinical use;
- 49 Three large database containing different national populations and regions;
- 50 The prediction model with excellent performance in complete data validation;
- 51 Differences in the samples proportion of three databases;
- 52 The dimensions of variables are not rich enough.
- 53

54 Introduction:

Acute kidney injury (AKI), as a common clinical complication in the intensive care unit (ICU), significantly increases the duration of hospitalization and mortality[1]. AKI is divided into three types according to the various aetiologies: prerenal (renal hypoperfusion), intrarenal (vascular, glomerular, or tubulointerstitial lesions), and postrenal (urinary tract obstruction)[2]. Although nearly all diseases associated with ICU admission may cause AKI, acute tubular necrosis (ATN) and prerenal azotaemia are the most common causes[3].

All AKI diagnostic criteria including the latest Kidney Disease: Improving Global Outcomes (KDIGO) standard are currently based on the creatinine level and urine volume[4]. However, the increase in the creatinine level or decrease in the urine volume lags the onset of AKI[2]. Many studies have suggested that early diagnosis and treatment of reversible AKI can reduce mortality[5]. Therefore, the creatinine level and urine volume are not satisfactory to meet clinical diagnostic demands. Consequently, many researchers have tried to develop an early warning model by analysing the risk factors for AKI[6]. Page 5 of 30

BMJ Open

Patient complications, such as diabetes, hypertension, cardiovascular disease, chronic liver disease, sepsis, and trauma, are identified as important risk factors for AKI[7]. The AKI prediction model and scoring system developed based on high-risk factors has gradually become the focus of research considering the lower clinical application threshold compared with that of new biomarkers[6]. Although most previous prediction models use the multiple logistic regression model, a variety of AKI prediction models based on machine learning have resulted in satisfactory outcomes[6]. Since the first AKI prediction model study based on artificial intelligence was published in 2016, researchers have built more than 20 published AKI prediction models successively by using local or multi-centre databases[6,8-14]. The results indicate that these models can predict the occurrence of AKI and the need for renal replacement therapy (RRT) within 24 or 48 hours, with accuracies ranging from 81% to 97%[6,15]. In addition, many studies have focused on subspecialized conditions, including cardiac surgery, trauma, and burns[14-16]. However, the common defect in these studies is the lack of external validation and prospective validation, which causes the prediction model to deviate from the clinical scenarios and limits extrapolation beyond the scope of the data. In this study, we built models to predict AKI within 48 hours in critically ill patients by using transcontinental three databases. Then, we evaluated the clinical effect of the model through a one-year prospective validation at our centre. Methods : Study design and setting

We collected patients using three ICU databases and prospectively validated the models in our centre.

88 The first database was our centre general ICU database (SHZJU-ICU) of the Second Affiliated Hospital

of Zhejiang University School of Medicine, an academic teaching hospital. Since its establishment in 2017, it has included 12000 ICU patients' data and is updated daily. The Medical Information Mart for Intensive Care (MIMIC) III database, the second one, is an open ICU database provided by the Massachusetts Institute of Technology and includes nearly 60000 ICU patients from North America[17]. Lastly, the AmsterdamUMC database is an available European ICU database with health data related to 23000 patients admitted to ICUs in parts of Europe[18]. The research flow chart is shown in Figure 1. **Study definition** In this study, the diagnosis of AKI was confirmed based on three stages according to the KDIGO criteria[4]. We defined the patients who met the KDIGO AKI II and III criteria as severe AKI groups and the others as negative groups. We excluded patients with lack of creatinine measurements during admission, patients with creatinine baseline more than 3.0 mg/dL at admission, patients who met severe AKI diagnosis within 24 hours, and patients who used RRT within 48 hours after admission[19]. In addition, we excluded pregnant women, patients younger than 14 years old, and patients hospitalized in the ICU for fewer than 48 hours. After the patient was admitted to ICU, we performed a prediction every 24 hours and recorded a prediction time. If the patient was diagnosed with severe AKI within 48 hours, the predictive time was defined as a positive predictive point, and the others were defined as a negative point. **Data Collection** The variables included demographic data, vital signs, basic and primary diseases, laboratory results, important operation records, and drug records. Comorbidity included hypertension, diabetes, cardiopathy, liver disease, and malignant tumors. The primary disease was the main cause of admission to the ICU

BMJ Open

following the ICD-10 codes. The vital signs and clinical laboratory results were transformed into different variables according to the average, variance, maximum, minimum, and final value before diagnosis. We use a method similar to the forward incremental method in the multivariate logic regression model, that is, the combination of embedded feature selection and forward addition for feature selection. First of all, all variables are trained in the model, then list by variables importance. variables are added to the model one by one according to the variable importance. a variable is retained if it causes the AUC growth to be greater than 0.01, otherwise delete it. We transformed the MIMIC and AmsterdamUMC databases according to our centre database structure, unifying the unit and diagnostic codes. We deleted variables missing more than 50%. Variables missing more than 30% but less than 50% are listed to clinicians who determine the potential correlation between these variables and AKI. We carry out multiple interpolation for these variables which clinicians require to be retained, and the others deleted. Variables missing less than 30% are fill in multiple interpolation. All Missing data between three databases and values included in the model shown in supplementation file Table S1. Model construction and external validation

The ratio of the training and internal validation sets was 4:1. The SHZJU and MIMIC databases training sets were mixed into a new training set. There were more negative data than positive data, so we randomly sampled the negative datasets and constructed a new data subset with a sampling ratio of positive and negative data of 1:5. We used multiple logistic regression, random forest, XGBoost, AdaBoost, LightGBoost, gradient boosting decision tree (GBDT), and debug to assess the variables and model-related parameters by the fivefold cross-validation method. After the models were built, we used the SHZJU-ICU and MIMIC test sets for internal validation of the model and the AmsterdamUMC database for external validation. The most appropriate cut-off value was determined according to the K-S

curve. The prediction model represents the results of each prediction with a probability between 0 to 1.0. We define results more than 0.4 as high-risk, that is, positive results, and the rest as negative results. Through internal validation and external validation, we calibrated the model by adjusting the super-parameters and using the Platt calibration algorithm and compared the calibration effect by drawing a reliability diagram. The model was visualized and analyzed by a visual programming scheme. All model building and validation processes were performed in Python 3.6. **Prospective validation** The prospective research period was 2020.01.01 to 2020.12.31. We collected real-time data when patients were admitted to the ICU, transformed the data according to the requirements, and formed a complete sample for the prediction model after passing the integrity test. We had established a visualization scheme and allowed researchers to review the predictions daily. The daily prediction results were not publicly accessible during the study to avoid affecting clinicians' decisions, but the diagnosis results were available to the researchers as visual graphics. We sampled the 20% predicted data every month and deleted samples with more than 50% missing values to ensure data correctness. When a patient has the following conditions, AKI prediction system will end the patient's prospective prediction: A. a positive diagnosis; B. Transfer out of ICU or death with negative diagnosis. All diagnosis of severe AKI needs to be reviewed by two ICU attending physicians independently, and if the they have different opinion, the third one will be appealed.

151 Patient and Public Involvement:

152 The information of cases in three databases was in a state of complete desensitization in the process 153 of building the model. During the prospective study, all the patients signed an informed consent form at 154 the beginning of admission to ICU. The real-time data discussed and used by the study members only,

BMJ Open

and were not made public during the study period. The study was evaluated and approved by the Ethics Committee of the Second Affiliated Hospital of Zhejiang University School of Medicine as study number 2019-078. All data were anonymized before the authors accessed them for the purpose of this study. According to the inclusion criteria and exclusion criteria, we selected 58492 patients from three databases who met the requirements of the study, including 6461 patients from the SHZJU-ICU database, 36690 patients from the MIMIC database, and 15341 patients from the AmsterdamUMC database. **Statistical analysis:** The population characteristics were reported as the medians and inter-quartile ranges (IQRs) for skewed data and the means and standard deviations for normally distributed data. The independent sample T-test was used for normally distributed data, and the rank-sum test was used for the rest. Dichotomous variables were assessed by the chi-square test, and a P value less than 0.05 was considered statistically significant. The non-normally distributed data were analyzed by exponential transformation and logarithmic transformation. The effect of the model was evaluated by parameters such as the

168 AUROC, accuracy, specificity, and F1-score.

170 Results:

A total of 5257 (9.0%) patients met the definition of severe AKI (11.8% in SHZJU-ICU, 7.6% in MIMIC, and 10.9% in AmsterdamUMC). The distributions of age and sex in the three centers were similar, but the differences in race were large. Asian patients accounted for more than 99% in the SHZJU-ICU database, and only approximately 2.5% in the MIMIC database. White people accounted for more than 70% of the MIMIC database. In addition, patients from the MIMIC database had a higher incidence of the tumor, liver cirrhosis, diabetes, and hypertension. Patients in the AmsterdamUMC and SHZJU-

177 ICU databases had a higher proportion of mechanical ventilation and overall survival rate. Severe AKI

178 patients had longer ICU hospital stays and higher mortality. More details are presented in Table 1.

179 Table 1: Clinical Demographics and Outcomes in patients with or without sev	ere acute
---	-----------

10 180 kidney injury.

1	SHZJU-ICU	SHZJU-ICU	P-	MIMIC	MIMIC	P-	AmsterdamUMC	AmsterdamUMC	P-
12	Negative	Severe AKI	valu	Negative	Severe AKI	value	Negative	severe AKI	value
14	(N=5695)	(N=766)	е	(N=33879)	(N=2811)		(N=13661)	(N=1680)	
⁵ Age, median [IQR]	60.5	62.1	0.00	62.0	64.0	<0.001	64.5	64.3	0.04
16	[48.8-70.1]	[50.1-72.5]	4	[45.0-76.0]	[52.0-76.0]		[54.5,74.5]	[52.5,78.5]	
8 Gender, male (%)	3561 (64.9)	438 (59.8)	0.00	18976 (56.0)	1524 (54.2)	0.06	8920 (65.3)	1054 (63.9)	0.03
19			7						
Race		C					/	1	1
2 White	3 (0.05)	1 (0.1)	1	23796 (70.2)	2005 (71.3)	0.23	/	1	/
2 <mark>3 Black</mark>	1 (0.02)	0	1	2455 (7.2)	199 (7.1)	0.45	/	1	/
Asian	5691(99.9)	764 (99.7)	1	918 (2.7)	70 (2.5)	0.54	/	1	/
0 Other	0	1 (0.1)	1	6710 (19.8)	537 (19.1)	0.34	/	1	/
Admission Scr	0.9 (0.34)	1.0 (0.40)	<0.0	1.1 (0.41)	1.1 (0.50)	0.04	1.2 (0.35)	1.1 (0.38)	<0.00
28 (mg/dL), mean			01						1
30 (sd)									
Admission BUN	18 (11)	21 (9)	<0.0	17 (12)	23 (12)	<0.001	18 (13)	23 (10)	<0.00
³² (mg/dL), mean			01						1
34 (sd)									
35 Cancer, n (%)	644 (11.3)	48 (6.3)	<0.0	6652 (19.6)	752 (26.8)	<0.001	/	1	1
36			01						
8 Cirrhosis, n (%)	43 (0.8)	6 (0.8)	0.89	1180 (3.5)	426 (15.2)	<0.001	1	1	/
39 Cardiopathy, n	231 (4.1)	42 (5.5)	0.08	4840 (14.3)	336 (12.0)	0.001	1	1	1
¹⁰ (%)						\mathbf{O}			
12 Diabetes, n (%)	305 (5.4)	63 (8.2)	0.00	7250 (21.4)	789 (28.1)	<0.001	1	1	1
13			2						
¹⁴ Hypertension, n	889 (15.6)	115 (15.0)	0.70	16328 (48.2)	1513 (53.8)	<0.001	1	1	1
¹⁵ 16 ^(%)									
17 Ventilation, n (%)	2569 (45.1)	592 (77.3)	<0.0	13009 (38.4)	1503(53.5)	<0.001	7718(56.5)	1248(74.3)	<0.00
18			01						1
Operation, n (%)	3361 (59.1)	373 (48.7)	<0.0	12455 (36.7)	1430 (50.8)	<0.001	1	1	1
51			01						
2 ICU Hours,	50.8	164.4	<0.0	51.0	103.4	<0.001	24.0	142.0	<0.00
oB ⊿ median [IQR]	[23.0-139.5]	[70.3-328.6]	01	[28.5-110.3]	[50.1-261.3]		[19.8,63.5]	[45.4,394.2]	1
55 Survived, n (%)	4997 (87.7)	380 (49.6)	<0.0	25648 (75.7)	1356 (48.2)	<0.001	10942(80.1)	1033 (61.5)	<0.00
56			01						1
⁵⁷ 181	SHZJU-ICU	: The general	ICU d	latabase of the	second affili	ated hos	spital of Zhejiang	university	
59 182	school of m	edicine; MIM	IC: Me	edical Informat	ion Mart for	Intensiv	e Care; IQR: Inte	er-Quartile	

1

BMJ Open

models (see Figure S1). However, the trend of the creatinine level in the past week was still an important

2
2
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
10
יבי 20
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
26
30
37
38
39
40
41
42
43
11
 1 E
45
46
47
48
49
50
51
52
52
55
54
55
56
57
58
59

60

183 184	Range; <i>ICU</i> : Intensive Care Unit; <i>AKI</i> : Acute Kidney Injury. <i>Scr</i> : serum creatinine; <i>BUN</i> : blood urea nitrogen.
185	There were significant differences in the important parameters of the variables among the different

187 variable, followed by urine volume, blood urea nitrogen level, temperature, and length of ICU stay. The 188 cut-off value used to distinguish between a negative and positive prediction was determined by the K-S 189 curve, with value of 0.423 (see Figure S2). The GBDT model had the best prediction effect in the test 190 set, followed by XGBoost and LightGBoost. In the two central internal validation sets, the two best-191 performing machine learning algorithms with great AUROC are LightGBoost (SHZJU-ICU of 83.2%, 192 MIMIC of 86.0%) and XGBoost (SHZJU-ICU 85.9%, MIMIC 85.6%), as detailed in Figure 2. Overall, 193 the sensitivity (SHZJU-ICU 0.84, MIMIC 0.83) and the negative predictive value (SHZJU-ICU 0.90, 194 MIMIC 0.90) of the predictive model were high, but the specificity was general (SHZJU-ICU 0.79, 195 MIMIC 0.75), as shown in Table 2. In the external validation based on AmsterdamUMC database, the 196 overall model validation effect results were satisfactory, and XGBoost had the best performance, with 197 an AUROC of 0.84, as shown in Figure 2 and Table 2. We built a visual prediction interface based on 198 the prediction model (supplementation file Figure S3).

199

200 Table 2: Model validation results by three databases with machine learning algorithm

Model	AUROC	Accuracy	Sensitivity	Sepcificity <u>Specificity</u>	PPV	NPV	F1
Internal validation with	SHZJU-ICU	database					
Logistic regression	0.748	0.662	0.834	0.576	0.496	0.874	0.622
LightGBoost	0.832	0.741	0.839	0.692	0.576	0.896	0.683
GBDT	0.845	0.765	0.843	0.725	0.606	0.902	0.705
AdaBoost	0.806	0.721	0.824	0.67	0.555	0.884	0.663
Random Forest	0.821	0.763	0.71	0.789	0.627	0.845	0.666
XGBoost	0.859	0.779	0.81	0.763	0.631	0.889	0.709
Internal validation with	Internal validation with MIMIC database						

Logistic regression	0.733	0.695	0.643	0.72	0.535	0.801	0.584
LightGBoost	0.86	0.768	0.822	0.741	0.613	0.893	0.702
GBDT	0.846	0.765	0.786	0.755	0.616	0.876	0.691
AdaBoost	0.837	0.732	0.831	0.683	0.567	0.89	0.674
Random Forest	0.832	0.738	0.791	0.712	0.578	0.872	0.668
XGBoost	0.856	0.758	0.833	0.721	0.598	0.895	0.695
External validation wit	h Amsterda	mUMC data	base				
Logistic regression	0.704	0.767	0.516	0.893	0.706	0.787	0.596
LightGBoost	0.859	0.763	0.827	0.731	0.606	0.894	0.7
GBDT	0.861	0.764	0.84	0.727	0.606	0.901	0.704
AdaBoost	0.85	0.755	0.813	0.726	0.597	0.886	0.689
Random Forest	0.82	0.743	0.77	0.729	0.587	0.864	0.666
XGBoost	0.865	0.75	0.873	0.688	0.584	0.916	0.7
Prospective validation	with SHZJU	J-ICU					
Logistic regression	0.758	0.772	0.648	0.834	0.662	0.826	0.655
LightGBoost	0.819	0.796	0.596	0.895	0.74	0.816	0.66
GBDT	0.827	0.781	0.706	0.818	0.66	0.848	0.683
AdaBoost	0.808	0.766	0.686	0.805	0.638	0.837	0.661
Random Forest	0.804	0.755	0.715	0.775	0.613	0.845	0.66
XGBoost	0.841	0.779	0.724	0.807	0.652	0.854	0.686

Negative Predictive Value; SHZJU-ICU: The general ICU database of the second affiliated hospital of Zhejiang university school of medicine; MIMIC: Medical Information Mart for Intensive Care; GBDT: Gradient Boosted Decision Tree.

According to the inclusion and exclusion criteria, we delete 267 patients among 94 patients with	206
07 creatinine baseline more than 3.0 mg/dL at admission, 39 patients met severe AKI diagnosis within 24	207
hours, and 26 patients who used RRT within 48 hours after admission, 108 patients hospitalized in the	208
ICU for fewer than 48 hours. A total of 2532 patients were admitted to our centre for prospective	209
validation, and the prediction model made 16858 times predictions. In the prospective cohort, there was	210
no significant difference in age, gender, baseline creatinine and urea nitrogen, and complications. The	211
12 proportion of mechanical ventilation and the ICU stay time in AKI patients were longer with higher	212
13 mortality. Above all, there was no significant difference between the prospective and the retrospective	213
 cohort. More detail sees in supplementation file Table S2. In the end, 358 positive results were predicted, 11 	214

BMJ Open

and the rest were negative results. There are 344 patients with severe AKI were diagnosed and the
prediction accuracy was 83.5%. The model with the highest area under the curve was XGBoost, 0.84
with the best sensitivity of 0.72, the specificity of 0.80. The results of the prospective study are similar
to those of the external validation of the model, and are relatively stable. More detail is presented in
Figure 3 and Table 2.

221 Discussion:

In this study, we built predictive models by machine learning to predict the incidence of severe AKI with three databases in different regions and in the next 48 hours. After internal and external validation, prospective validation over one year was carried out to verify the model effects. The three databases come from three countries that are in Asia, Europe, and North America, which proves that the model is universal to some extent.

Despite the huge amount of data, many databases are still not suitable for prospective research because they are not updated promptly. Tomasev, N and colleagues have provided research on AKI prediction models with a large amount of data[10]. The study covered 703782 adult patients with 6 billion individual items, including 620000 elements. In this study, a depth neural network model was used for real-time prediction. A total of 55.8% of severe AKI patients were predicted within the first 48 hours, although each accurate prediction was accompanied by two mispredictions[10]. This study provided a new scheme for real-time prediction and indicated that we should prospectively evaluate and independently validate models to explore their effectiveness. In a prospective study, Flechet, M et al compared an AKI prediction model with clinicians in 252 patients and found that the clinical effect of the random forest model for predicting AKI-II/III was equivalent to that of clinicians. Our prediction

2	
3	
4	
5	
6	
7	
, o	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
21	
24	
25	
26	
27	
28	
29	
30	
31	
37	
J∠ 22	
22	
34	
35	
36	
37	
38	
39	
40	
40 // 1	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
50	
60	
υU	

1

237 model graphical visualization of the model was installed in the centre's database for better usage. In 238 addition, our database is updated daily to achieve daily predictions and present the results to researchers. 239 In the prospective validation of our study, the stability of the prediction model confirmed its promise, 240 which provides a basis for future research. 241 There are many studies of artificial intelligence for predicting the occurrence of AKI, but most of them 242 are single-centre studies, and the extrapolation effect has been controversial. In 2016, Koyner, J, and his 243 colleague published the first study of an AKI prediction model based on multi-centre data. In all 202961 244 patients, 17541 (8.6%) had AKI, 4251 (3.5%) had AKI-II, and 1242 (0.6%) had AKI-III. A multivariate 245 logistic regression model was used to predict AKI in this study with an AUROC of 0.74 (95% CI=0.74). 246 With the classification of AKI, the AUROC of the prediction model gradually increased to 0.84[8]. 247 Subsequently, the study team used a new machine learning algorithm, to build a more accurate model to 248 predict the occurrence of AKI-II, with an AUROC of 0.9 within 24 hours and 0.87 within 48 hours[19]. 249 Recently, the research team included data from two other centres, namely, LUMC (N=200613) and NUS 250 (N=246895), to externally validate the AKI-II prediction model with AUROCs reaching 0.85 to 0.86, 251 suggesting that the artificial intelligence model has stable predictive ability[12]. This series of studies 252 included many data points, suggesting the feasibility of artificial intelligence in the diagnosis of AKI, 253 but the proportion of positive patients (3.5%) and ICU patients (30%) was too low to properly predict 254 AKI. Our research is similar to the above. The SAHZJU-ICU database is a single-centre database 255 representing south-eastern China, and the MIMIC database is a well-known open ICU database in the 256 United States. The AmsterdamUMC database is a public database located in Europe. The population 257 structure and diseases in the three databases are complete but different in the distribution of complications 258 and race. Therefore, it provides a prediction model with unparalleled stability compared with other

BMJ Open

3 4 5	259	studies.
6 7	260	
8 9 10	261	Limitations:
11 12 13	262	This retrospective multi-centre study was unable to carry out more clinical feature mining and
14 15	263	comparison because of different data structures. The differences between the three databases partly
16 17 18	264	reflect some demographic differences between Europe, the United States and China, resulting in a decline
19 20 21	265	in the accuracy of the prediction model. There are some differences in the number of patients included
22 23	266	in the three databases, which may affect the choice of variables. As a result of the study design, we
24 25 26	267	deleted patients with ICU hospitalization of less than 48 hours, which may result in the exclusion of most
27 28 20	268	relatively mild patients and may reduce false positives. Second, in the prospective data study in 2020,
30 31	269	there may be deviations in the inclusion of patients in the centre, thus affecting the interpretation of the
32 33 34	270	follow-up prospective results. Finally, given the low incidence of severe AKI and the great difference in
35 36	271	the proportion of positive and negative samples, the data may be accidental. The diagnostic performance
37 38 39	272	of severe AKI is good with the sensitivity as high as 0.85 in model construction and external validation.
40 41	273	however, the sensitivity decreases to 0.72 in the prospective validation, and the overall PPV effect is
42 43 44	274	general. Our model seems to be superior to diagnostic non-AKI patients rather than AKI because of the
45 46 47	275	proportion of positive data that we include. A large number of negative data will increase the specificity
48 49	276	and reduce the sensitivity. In the retrospective study, we reduced the proportion of negative data by
50 51 52	277	randomization but retain all date in prospective phase with the sensitivity decreases. We believe that such
53 54	278	results are still acceptable and need to be viewed by the reader as a whole.
55 56 57	279	
58 59	280	Conclusion:

3 4 5	281	Based on databases of patients of different races from different countries, we constructed stable				
6 7	282	machine learning models to predict the occurrence of AKI in the next 48 hours. Prospective validation				
8 9 10	283	through the implementation of an updated local database is an effective exploration of further research.				
11 12 13	284					
14 15	285	Data Availability Statement:				
16 17 18	286	The model code can be obtained by email if readers need it, but we cannot guarantee that all the				
19 20 21	287	code will be provided. Two public databases can be applied from the official website of their respective				
22 23	288	databases.				
24 25 26	289	Ethics approval:				
27 28	290	Our research was approved by the ethics committee of the Second Affiliated Hospital of Zhejiang				
29 30 31	291	University School of Medicine.				
32 33 34	292	Competing interests for authors:				
35 36	293	The authors declare that they have no competing interests.				
37 38 39	294					
40 41	295	Reference:				
42 43 44	296	1. Ronco, C.; Bellomo, R.; Kellum, J.A. Acute kidney injury. <i>The Lancet</i> 2019 , <i>394</i> , 1949-				
45 46 47	297	1964, doi:10.1016/s0140-6736(19)32563-2.				
48 49	298	2. Pakula, A.M.; Skinner, R.A. Acute Kidney Injury in the Critically III Patient: A Current				
50 51 52	299	Review of the Literature. <i>J Intensive Care Med</i> 2016 , <i>31</i> , 319-324,				
53 54	300	doi:10.1177/0885066615575699.				
55 56 57	301	3. Bellomo, R.; Kellum, J.A.; Ronco, C. Acute kidney injury. <i>The Lancet</i> 2012 , <i>380</i> , 756-				
58 59 60	302	766, doi:10.1016/s0140-6736(11)61454-2.				
		15				

BMJ Open

3	202	4	Khursia A KDICO aliginal associate suidaligas for courte kidrow inium. Nachron Clin
4 5	303	4.	Knwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin
6 7	304		<i>Pract</i> 2012 , <i>120</i> , c179-184, doi:10.1159/000339789.
8			
9 10	305	5.	Coelho, S.; Cabral, G.; Lopes, J.A.; Jacinto, A. Renal regeneration after acute kidney
11 12 13	306		injury. <i>Nephrology (Carlton)</i> 2018 , <i>23</i> , 805-814, doi:10.1111/nep.13256.
14 15 16	307	6.	Wilson, F.P.; Greenberg, J.H. Acute Kidney Injury in Real Time: Prediction, Alerts, and
17 18	308		Clinical Decision Support. Nephron 2018, 140, 116-119, doi:10.1159/000492064.
19 20 21	309	7.	Wu, Y.; Hao, W.; Chen, Y.; Chen, S.; Liu, W.; Yu, F.; Hu, W.; Liang, X. Clinical features,
22 23	310		risk factors, and clinical burden of acute kidney injury in older adults. <i>Ren Fail</i> 2020,
24 25 26	311		<i>42</i> , 1127-1134, doi:10.1080/0886022X.2020.1843491.
27 28 29	312	8.	Koyner, J.L.; Adhikari, R.; Edelson, D.P.; Churpek, M.M. Development of a Multicenter
30 31	313		Ward-Based AKI Prediction Model. Clin J Am Soc Nephrol 2016, 11, 1935-1943,
32 33 34	314		doi:10.2215/CJN.00280116.
35 36	315	9.	Low, S.; Vathsala, A.; Murali, T.M.; Pang, L.; MacLaren, G.; Ng, W.Y.; Haroon, S.;
37 38 39	316		Mukhopadhyay, A.; Lim, S.L.; Tan, B.H., et al. Electronic health records accurately
40 41 42	317		predict renal replacement therapy in acute kidney injury. BMC Nephrol 2019, 20, 32,
43 44	318		doi:10.1186/s12882-019-1206-4.
45 46 47	319	10.	Tomasev, N.; Glorot, X.; Rae, J.W.; Zielinski, M.; Askham, H.; Saraiva, A.; Mottram, A.;
48 49	320		Meyer, C.; Ravuri, S.; Protsyuk, I., et al. A clinically applicable approach to continuous
50 51 52	321		prediction of future acute kidney injury. <i>Nature</i> 2019 , <i>572</i> , 116-119,
53 54	322		doi:10.1038/s41586-019-1390-1.
56 57	323	11.	Flechet, M.; Falini, S.; Bonetti, C.; Güiza, F.; Schetz, M.; Van den Berghe, G.; Meyfroidt,
58 59 60	324		G. Machine learning versus physicians' prediction of acute kidney injury in critically ill

adults: a prospective evaluation of the AKIpredictor. Critical Care 2019, 23, 282, doi:10.1186/s13054-019-2563-x. 12. Churpek, M.M.; Carey, K.A.; Edelson, D.P.; Singh, T.; Astor, B.C.; Gilbert, E.R.; Winslow, C.; Shah, N.; Afshar, M.; Koyner, J.L. Internal and External Validation of a Machine Learning Risk Score for Acute Kidney Injury. JAMA Netw Open 2020, 3, e2012892, doi:10.1001/jamanetworkopen.2020.12892. 13. Yuan, Q.; Zhang, H.; Deng, T.; Tang, S.; Yuan, X.; Tang, W.; Xie, Y.; Ge, H.; Wang, X.; Zhou, Q., et al. Role of Artificial Intelligence in Kidney Disease. Int J Med Sci 2020, 17, 970-984, doi:10.7150/ijms.42078. Li, Y.; Xu, J.; Wang, Y.; Zhang, Y.; Jiang, W.; Shen, B.; Ding, X. A novel machine 14. learning algorithm, Bayesian networks model, to predict the high-risk patients with cardiac surgery-associated acute kidney injury. Clin Cardiol 2020, 43, 752-761, doi:10.1002/clc.23377. 15. De Vlieger, G.; Kashani, K.; Meyfroidt, G. Artificial intelligence to guide management of acute kidney injury in the ICU: a narrative review. Curr Opin Crit Care 2020, 26, 563-573, doi:10.1097/MCC.000000000000775. 16. James, M.T.; Pannu, N.; Hemmelgarn, B.R.; Austin, P.C.; Tan, Z.; McArthur, E.; Manns, B.J.; Tonelli, M.; Wald, R.; Quinn, R.R., et al. Derivation and External Validation of Prediction Models for Advanced Chronic Kidney Disease Following Acute Kidney Injury. JAMA 2017, 318, 1787-1797, doi:10.1001/jama.2017.16326. 17. Johnson, A.E.; Pollard, T.J.; Shen, L.; Lehman, L.W.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.A.-O.; Celi, L.A.; Mark, R.A.-O. MIMIC-III, a freely accessible critical

BMJ Open

3 4	347		care database.
5			
6 7 8	348	18.	Thoral, P.J.; Peppink, J.M.; Driessen, R.H.; Sijbrands, E.J.G.; Kompanje, E.J.O.;
9 10	349		Kaplan, L.; Bailey, H.; Kesecioglu, J.; Cecconi, M.; Churpek, M., et al. Sharing ICU
11 12	350		Patient Data Responsibly Under the Society of Critical Care Medicine/European
14 15	351		Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam
16 17	352		University Medical Centers Database (AmsterdamUMCdb) Example. Crit Care Med
18 19 20	353		2021 , 10.1097/CCM.0000000000004916, doi:10.1097/CCM.00000000004916.
21 22	354	19.	Koyner, J.L.; Carey, K.A.; Edelson, D.P.; Churpek, M.M. The Development of a
23 24			
25 26	355		Machine Learning Inpatient Acute Kidney Injury Prediction Model. Crit Care Med 2018,
27 28	356		<i>46</i> , 1070-1077, doi:10.1097/CCM.00000000003123.
29 30 31	357		
32 33	358	Footnot	ies
32 33 34 35 36	358 359	Footnot Contribu	tes itions: Conceptualization, QL and MH; Methodology, YX; Software, YX; Validation, YZ, and
32 33 34 35 36 37 38	358 359 360	Footnot Contribu YX.; Fo	tes utions: Conceptualization, QL and MH; Methodology, YX; Software, YX; Validation, YZ, and ormal Analysis, JC and XC; Resources, MH; Data Curation, QL; Writing – Original Draft
32 33 34 35 36 37 38 39 40	358 359 360 361	Footnot Contribu YX.; Fo	tes utions: Conceptualization, QL and MH; Methodology, YX; Software, YX; Validation, YZ, and ormal Analysis, JC and XC; Resources, MH; Data Curation, QL; Writing – Original Draft ion, QL; Writing – Review & Editing, MH; Visualization, YX; Supervision, YZ and QL; Project
32 33 34 35 36 37 38 39 40 41 42 43	358 359 360 361 362	Footnot Contribu YX.; Fo Preparat	tes utions: Conceptualization, QL and MH; Methodology, YX; Software, YX; Validation, YZ, and ormal Analysis, JC and XC; Resources, MH; Data Curation, QL; Writing – Original Draft ion, QL; Writing – Review & Editing, MH; Visualization, YX; Supervision, YZ and QL; Project
32 33 34 35 36 37 38 39 40 41 42 43 44	358 359 360 361 362	Footnot Contribu YX.; Fo Preparat Adminis	tes utions: Conceptualization, QL and MH; Methodology, YX; Software, YX; Validation, YZ, and ormal Analysis, JC and XC; Resources, MH; Data Curation, QL; Writing – Original Draft ion, QL; Writing – Review & Editing, MH; Visualization, YX; Supervision, YZ and QL; Project stration, QL;
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	358 359 360 361 362 363	Footnot Contribu YX.; Fo Preparat Adminis	tes utions: Conceptualization, QL and MH; Methodology, YX; Software, YX; Validation, YZ, and ormal Analysis, JC and XC; Resources, MH; Data Curation, QL; Writing – Original Draft ion, QL; Writing – Review & Editing, MH; Visualization, YX; Supervision, YZ and QL; Project stration, QL; g: This research received no specific grant from any funding agency in the public, commercial
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	358 359 360 361 362 363 364	Footnot Contribu YX.; Fo Preparat Adminis Funding	tes utions: Conceptualization, QL and MH; Methodology, YX; Software, YX; Validation, YZ, and ormal Analysis, JC and XC; Resources, MH; Data Curation, QL; Writing – Original Draft tion, QL; Writing – Review & Editing, MH; Visualization, YX; Supervision, YZ and QL; Project stration, QL; g: This research received no specific grant from any funding agency in the public, commercial or-profit sectors.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	358 359 360 361 362 363 364 365	Footnot Contribut YX.; Foot Preparate Administ Funding or not-foot	tes ations: Conceptualization, QL and MH; Methodology, YX; Software, YX; Validation, YZ, and ormal Analysis, JC and XC; Resources, MH; Data Curation, QL; Writing – Original Draft cion, QL; Writing – Review & Editing, MH; Visualization, YX; Supervision, YZ and QL; Project stration, QL; g: This research received no specific grant from any funding agency in the public, commercial or-profit sectors. s of Interest: Not Applicable.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	 358 359 360 361 362 363 364 365 366 	Footnot Contribu YX.; Fo Preparat Adminis Funding or not-fo Conflict	tes utions: Conceptualization, QL and MH; Methodology, YX; Software, YX; Validation, YZ, and ormal Analysis, JC and XC; Resources, MH; Data Curation, QL; Writing – Original Draft tion, QL; Writing – Review & Editing, MH; Visualization, YX; Supervision, YZ and QL; Project stration, QL; g: This research received no specific grant from any funding agency in the public, commercial or-profit sectors. s of Interest: Not Applicable. und public involvement Patients and/or the public were not involved in the design, or conduct, or
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	 358 359 360 361 362 363 364 365 366 367 	Footnot Contribu YX.; Fo Preparat Adminis Funding or not-fo Conflict Patient a reportin	tes ations: Conceptualization, QL and MH; Methodology, YX; Software, YX; Validation, YZ, and ormal Analysis, JC and XC; Resources, MH; Data Curation, QL; Writing – Original Draft cion, QL; Writing – Review & Editing, MH; Visualization, YX; Supervision, YZ and QL; Project stration, QL; g: This research received no specific grant from any funding agency in the public, commercial or-profit sectors. s of Interest: Not Applicable. und public involvement Patients and/or the public were not involved in the design, or conduct, or g, or dissemination plans of this research.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	 358 359 360 361 362 363 364 365 366 367 368 	Footnot Contribut YX.; Foot Preparate Administ Funding Or not-foot Conflict Patient a reportin	tes utions: Conceptualization, QL and MH; Methodology, YX; Software, YX; Validation, YZ, and ormal Analysis, JC and XC; Resources, MH; Data Curation, QL; Writing – Original Draft tion, QL; Writing – Review & Editing, MH; Visualization, YX; Supervision, YZ and QL; Project stration, QL; g: This research received no specific grant from any funding agency in the public, commercial or-profit sectors. s of Interest: Not Applicable. und public involvement Patients and/or the public were not involved in the design, or conduct, or g, or dissemination plans of this research. nce and peer review Not commissioned; externally peer reviewed.

3		
4	369	Acknowledgements: Thank my colleagues in general ICU for cooperating with us in our prospective
5		
6	270	study. Thenks to two public detabases nomely MIMIC and Amsterdam IMC for providing important
7	370	study. Thanks to two public databases namery MINITC and AmsterdamONIC for providing important
8		
9	371	data.
10		
11		
12	372	
13		
14	373	Supplemental Figure:
15	575	Supplemental Figure.
16		
17	374	File name: Figure S1.tif
18		
19		
20	375	Title and Description of data: The variable importance parameter histogram of early diagnosis prediction
21		
22	376	models of severe AKI uses a multiple logistic regression algorithm and five machine learning algorithms
23	0/0	niodels of severe rise uses a manipe togistic regression argoritani and rive maenne rearning argoritanis.
24		
25	377	File name: Figure S2.tif
26		
27	270	Tide and Description of Later The K C
28	3/8	The and Description of data: The K-S curve used to determine the cut-off value of positive and negative
29		
30	379	diagnosis of early diagnosis prediction models of severe AKI.
31		
32		
33	380	File name: Figure S3. tif
34		
35	381	Title of data: The visual interface for prospective studies of the AKI early diagnosis prediction models
36	001	The of data. The visual interface for prospective studies of the Arci early diagnosis prediction models.
37		
38	382	Description of data: Different patients have independent card display information, in which the last line
39		
40	202	
41	383	of the card is the AKI diagnosis. The visual interface was not available to doctors during the prospective
42		
43	384	study and was used only by the researchers to verify the diagnosis and for sampling verification
44		
45		
46	385	File name: Table S1.docx
47		
48	206	Title and of Description data: Missing data between three databases in the study, and values included in
49	300	The and of Description data. Missing data between three databases in the study and values included in
50		
51	387	the model.
52		
53		
54	388	File name: Table S2.docx
55		
56	389	Title and of Description data: Clinical Demographics and Outcomes of SHZILLICU natients in model
57	000	The and of Description data. Chinear Demographics and Outcomes of STLSO-ICO patients in model
58		
59	390	building set and prospective validation.
60		

BMJ Open

3	
4	
5	
6	
7	
/ 0	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
25	
22	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
15	
45	
40	
47	
48	
49	
50	
51	
52	
53	
57	
54	
22	
56	
57	
58	
59	

60

391 File name: **Table S3.docx**

- 392 Title of data: TRIPOD Checklist of Prediction Model Development and Validation
- **393** Description of data: Writing norms of this type of research.

394

395 Figure Legend:

Figure 1: The research flow chart. The data collection time interval of the study was 7 days before
diagnosis and the prediction interval was 48 hours. The early prediction model of AKI diagnosis was
constructed and verified by our database and the MIMIC database and incorporated into the
AmsterdamUMC database for external validation. We carried out a one-year prospective validation
through the database of the centre.

401 Figure 2: The AUROC curve of the internal validation set of the SHZJU-ICU database and the MIMIC402 database.

403 Figure 3: The AUROC curve of the external validation set of the AmsterdamUMC database for 3A and

404 the prospective validation in our center for 3B.

338x451mm (300 x 300 DPI)

External and prospective validation set ROC curves

Title and Description of data: The K-S curve used to determine the cut-off value of positive and negative diagnosis of early diagnosis prediction models of severe AKI.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

File name: Figure S3. tif

Title of data: The visual interface for prospective studies of the AKI early diagnosis prediction models. Description of data: Different patients have independent card display information, in which the last line of the card is the AKI diagnosis. The visual interface was not available to doctors during the prospective study and was used only by the researchers to verify the diagnosis and for sampling verification.

1.烧伤2.低血器 术后4.高血压	容重性休克3.气管切开	A002#		1.累及体表45 血症;3.低钠	i%的烧伤;2.低蛋的 血症;4.慢性支气管
APACHE II SOFA	27 缺失参数,无法评估	APACHE II SOFA	缺失参数,无法评估 缺失参数,无法评估	APACHE II SOFA	缺失参数,无法i
Sepsis	已发生sepsis A	Sepsis	低风险	Sepsis	低原
AKI		AKI	缺失参数,无法评估	AKI	高肌酐型AK
疑似转床		疑似转床			
A004床	-	A004床		A005床	
				1.烧伤 体表> 竭	90%的烧伤 2.呼吸
APACHE II	缺失参数,无法评估	APACHE II	缺失参数,无法评估	APACHE II	
SOFA	缺失参数,无法评估	SOFA	缺失参数,无法评估	SOFA	缺失参数,无法;
Sepsis	低风险	Sepsis	低风险	Sepsis	已发生sepsis
AKI	缺失参数,无法评估	AKI	缺失参数,无法评估	AKI	3EAK
SEALAR CE		52.0/165.02			

File name: Table S1.docx

Title and of Description data: Missing data between three databases in the study and values included in

the model.				
	SHZJU-ICU	MIMIC	AmsterdamUMC	Including in Model
Age			\checkmark	
Gender			V	
Race		\checkmark	×	×
Primary disease		\checkmark	×	×
Comorbidity		\checkmark	×	×
Ventilation		\checkmark		\checkmark
Operation		\checkmark	×	×
ICU hours		\checkmark		\checkmark
Survived		\checkmark	\checkmark	\checkmark
Vital sign				
Temperature		\checkmark	\checkmark	\checkmark
Systolic pressure		\checkmark	\checkmark	\checkmark
Diastolic pressure		\checkmark	\checkmark	\checkmark
Respiratory rate			\checkmark	
Heart rate		\checkmark		\checkmark
Oxygen saturation			\checkmark	
Urine			\checkmark	
GCS score		×	×	×
Laboratory results				

Scr	\checkmark	\checkmark	\checkmark	
BUN	\checkmark	\checkmark	\checkmark	
RBC	\checkmark			\checkmark
MCV	\checkmark		\checkmark	\checkmark
Hb	\checkmark			\checkmark
WBC	\checkmark			\checkmark
NEUT	\checkmark	\checkmark		\checkmark
PLT	\checkmark	\checkmark		\checkmark
HCV		\checkmark	×	×
TBLB		\checkmark		\checkmark
DBLB	\checkmark	\checkmark		\checkmark
IBLB	\checkmark	\checkmark		\checkmark
CRP		\checkmark		\checkmark
PCT		└ ×	×	×
Serum kalium				\checkmark
Serum natrium		\checkmark		\checkmark
Serum chlorine	\checkmark	\checkmark		\checkmark
РТ	\checkmark	\checkmark		
APTT	\checkmark	\checkmark	\checkmark	\checkmark
INR	\checkmark		\checkmark	\checkmark
СК	\checkmark		\checkmark	\checkmark
LDH	\checkmark		\checkmark	\checkmark
Troponin	\checkmark		V	\checkmark
Blood glucose	\checkmark	\checkmark	V	\checkmark
PH	\checkmark		\checkmark	\checkmark
Lactic acid	\checkmark	\checkmark	N	\checkmark
Anion gap			V	
ABC			V	
SBC				
PaCO ₂			V	
PaO ₂			V	

BMJ Open

SHZJU-ICU: The general ICU database of the second affiliated hospital of Zhejiang university school of medicine; MIMIC: Medical Information Mart for Intensive Care; APTT: Activated partial thromboplastin time; INR: International normalized ratio; LDH: Lactate dehydrogenase; PaCO2: Partial pressure of carbon dioxide; PaO2 Partial pressure of oxygen; MCV: Mean corpuscular volume; PH: Potential of hydrogen; WBC: White blood cell count; NEUT: Proportion of neutrophils; CK: Creatine kinase; Scr: Serum Creatinine; BUN: Blood urea nitrogen; RBC: Red blood cell count; Hb: Hemoglobin; PT: Prothrombin time; TBLB: Total bilirubin; DBLB: Direct bilirubin; IBLB: Indirect bilirubin; CRP: C-reactive protein; HCV: Hematocrit value; PCT: Procalcitonin; ABC: Actual Bicarbonate Radical; SBC: Standard Bicarbonate Radical; PLT: Platelet count

File name: Table S2.docx

Title and of Description data: Clinical Demographics and Outcomes of SHZJU-ICU patients in model

building set and prospective validation.

	SHZJU-ICU	SHZJU-ICU	P-value	SHZJU-ICU	SHZJU-ICU	P-value
	Negative	Severe AKI		Prospective	Prospective	
	(N=5695)	(N=766)		Negative	Positive	
				(N=2188)	(N=344)	
Age, median [IQR]	60.5	62.1	0.004	61.3	62.1	0.03
	[48.8-70.1]	[50.1-72.5]		[47.5-73.4]	[51.2-70.5]	
Gender, male (%)	3561 (64.9)	438 (59.8)	0.007	1365 (62.4)	207 (60.2)	0.438
Race	U,					
White	3 (0.05)	1 (0.1)	1	2 (0.001)	0	1
Black	1 (0.02)	0	1	0	0	1
Asian	5691(99.9)	764 (99.7)	1	2185 (99.9)	344(100)	1
Other	0	1 (0.1)	1	1 (0.001)	0	1
Admission Scr	0.9 (0.34)	1.0 (0.40)	<0.001	0.8 (0.32)	0.9 (0.35)	<0.001
(mg/dL), mean						
(sd)						
Admission BUN	18 (11)	21 (9)	<0.001	17 (11)	20 (10)	0.007
(mg/dL), mean						
(sd)						
Cancer, n (%)	644 (11.3)	48 (6.3)	<0.001	230 (10.5)	26 (7.6)	0.102
Cirrhosis, n (%)	43 (0.8)	6 (0.8)	0.89	15 (0.7)	3 (0.8)	0.726
Cardiopathy, n	231 (4.1)	42 (5.5)	0.08	98 (4.5)	19 (5.7)	0.403
(%)						
Diabetes, n (%)	305 (5.4)	63 (8.2)	0.002	142 (6.5)	29 (8.6)	0.203
Hypertension, n	889 (15.6)	115 (15.0)	0.70	324(14.8)	56 (16.4)	0.466
(%)						
Ventilation, n (%)	2569 (45.1)	592 (77.3)	<0.001	1102 (50.4)	239 (69.5)	<0.001
Operation, n (%)	3361 (59.1)	373 (48.7)	<0.001	1234(56.4)	160 (46.7)	0.001
ICU Hours,	50.8	164.4	<0.001	58.7	145.6	<0.001
median [IQR]	[23.0-139.5]	[70.3-328.6]		[34.2-160.4]	[68.5-314.8]	
Survived, n (%)	4997 (87.7)	380 (49.6)	<0.001	1868 (85.4)	178 (51.9)	<0.001

SHZJU-ICU: The general ICU database of the second affiliated hospital of Zhejiang university school of medicine; *MIMIC*: Medical Information Mart for Intensive Care; *IQR*: Inter-Quartile Range; *ICU*: Intensive Care Unit; *AKI*: Acute Kidney Injury. *Scr*: serum creatinine; *BUN*: blood urea nitrogen.

File name: Table S3.docx

Title of data: TRIPOD Checklist of Prediction Model Development and Validation

Description of data: Writing norms of this type of research.

1Section/Topic	I		Checklist Item	Page									
Title and abstract	t												
Title			Identify the study as developing and/or validating a multivariable prediction model, the	Vac D1									
The	1	, v	target population, and the outcome to be predicted.	res; PI									
A h atra at	0		Provide a summary of objectives, study design, setting, participants, sample size,	V DO									
Abstract	2);∨	predictors, outcome, statistical analysis, results, and conclusions.	Yes; P2									
Introduction													
			Explain the medical context (including whether diagnostic or prognostic) and rationale										
	Ва	;V	for developing or validating the multivariable prediction model, including references to	Yes; P3									
Background			existing models.										
and objectives			Specify the objectives, including whether the study describes the development or										
	Bb);∨	validation of the model or both.	Yes; P4, L76-79									
Methods													
			Describe the study design or source of data (e.g., randomized trial, cohort, or registry										
	4a	4a);∨	data), separately for the development and validation data sets, if applicable.	Yes; P4, L80								
Source of data		ta		Specify the key study dates, including start of accrual; end of accrual; and, if applicable,									
	4b);∨	end of follow-up.	Yes; P4, L84-8									
	Ба										Specify key elements of the study setting (e.g., primary care, secondary care, general	+	
		;V	population) including number and location of centres.	Yes									
Participants	5b);V	Describe eligibility criteria for participants.	Yes; P5, L104									
	5c):V	Give details of treatments received, if relevant.	NA									
		,	Clearly define the outcome that is predicted by the prediction model, including how and										
Outcome	6a);∨	when assessed.	Yes; P6, L111									
	6b):V	Report any actions to blind assessment of the outcome to be predicted.	NA									
	7a			Clearly define all predictors used in developing or validating the multivariable prediction									
		a ⊅;V	model, including how and when they were measured.	Yes; P6, L116									
Predictors	7b		Report any actions to blind assessment of predictors for the outcome and other										
		7b	7b	7b);∨	nredictors	NA						
Sample size	8)·\/	Explain how the study size was arrived at	NA									
	data 9	ng data 9			, •	Describe how missing data were handled (e.g. complete-case analysis single	1111						
Missing data);∨	imputation multiple imputation) with details of any imputation method	Yes; P6, L127								
	0a	D	Describe how predictors were handled in the analyses	Yes: P6 1.116									
	ou		Specify type of model, all model-building procedures (including any predictor selection)	103, 10, 2110									
Statistical	0b	D	and method for internal validation	Yes; P6, L119									
analysis	00	V	For validation, describe how the predictions were calculated	Vac: D6 1 126									
methode	00		Specify all measures used to assess model performance and if relevant to compare	105, 10, 1120									
moulous	0d);∨	multiple models	Yes; P6, L159									
	0e	V	Describe any model undating (e.g., recalibration) arising from the validation, if done	NT A									
Dick groups	14	v	Describe any model updating (e.g., recalibration) ansing from the validation, if done.	NA Var: DC_1111									
RISK groups	11	;v	Provide details on now risk groups were created, if done.	Yes; P6, L111									

BMJ Open

Development		V	For validation, identify any differences from the development data in setting, eligibility	V DC 1 122			
vs. validation	י 1		criteria, outcome, and predictors.	1es; P0, L152			
Results							
			Describe the flow of participants through the study, including the number of participants				
	За);∨	with and without the outcome and, if applicable, a summary of the follow-up time. A	Yes; Figure 1			
			diagram may be helpful.				
Participante			Describe the characteristics of the participants (basic demographics, clinical features,	Voc. D9 1 169			
Farticipants	3b);V	available predictors), including the number of participants with missing data for	180			
			predictors and outcome.	180			
	30	V	For validation, show a comparison with the development data of the distribution of	Vac Tabla?			
	30	v	important variables (demographics, predictors and outcome).	168, 140162			
Model	4a	D	Specify the number of participants and outcome events in each analysis.	Yes, P8, L168			
development	4h	D	If done, report the unadjusted association between each candidate predictor and	Vec			
development	40	D	outcome.	103			
Model	5a	5a	52	П	Present the full prediction model to allow predictions for individuals (i.e., all regression	Yes	
specification			coefficients, and model intercept or baseline survival at a given time point).	103.			
speemeaton	5b	D	Explain how to the use the prediction model.	Yes, P9, L196			
Model	16	16		Report performance measures (with CIs) for the prediction model	Yes P9 1.190		
performance		, •		103,17,1170			
Model-updating	17	17	V	If done, report the results from any model updating (i.e., model specification, model	NA		
		•	performance).	1121			
Discussion							
Limitations	18)·\/	Discuss any limitations of the study (such as nonrepresentative sample, few events per	Yes. P12, L236			
Limitationio		.,•	predictor, missing data).	103,112,2200			
	9a	V	For validation, discuss the results with reference to performance in the development	Yes P11 L217			
Interpretation		·	data, and any other validation data.	105,111, L217			
	9b)·V	Give an overall interpretation of the results, considering objectives, limitations, results	Yes. P10 L198			
	30		from similar studies, and other relevant evidence.				
Implications	20);V	Discuss the potential clinical use of the model and implications for future research.	Yes, P9, L193			
Other information							
Supplementary	21)·\/	Provide information about the availability of supplementary resources, such as study	Yes			
information	[, •	protocol, Web calculator, and data sets.	100			
Funding	22	;∨	Give the source of funding and the role of the funders for the present study.	NA			

BMJ Open

Severe Acute Kidney Injury Predicting Model based on transcontinental databases: a single-center perspective study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054092.R2
Article Type:	Original research
Date Submitted by the Author:	21-Nov-2021
Complete List of Authors:	Liang, Qiqiang; Zhejiang University School of Medicine Second Affiliated Hospital Xu, Yongfeng; HealSci Technology Co Zhou, Yu; Zhejiang University School of Medicine Second Affiliated Hospital Chen, Xinyi; Zhejiang University School of Medicine Second Affiliated Hospital Chen, Juan; Zhejiang University School of Medicine Second Affiliated Hospital Huang, Man; Zhejiang University School of Medicine Second Affiliated Hospital
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Diagnostics
Keywords:	Acute renal failure < NEPHROLOGY, INTENSIVE & CRITICAL CARE, Information technology < BIOTECHNOLOGY & BIOINFORMATICS, Adult intensive & critical care < INTENSIVE & CRITICAL CARE
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4 5	1	Severe Acute Kidney Injury Predicting Model based on transcontinental
6 7	2	databases: a single-center perspective study
8 9 10	3	Qiqiang Liang ¹ ; Yongfeng Xu ² ; Yu Zhou ¹ ; Xinyi Chen ¹ , MM; Juan Chen ¹ ; Man Huang ^{1*}
11 12 13	4	¹ General Intensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou,
14 15	5	China.
16 17 18	6	² BSc, HealSci Technology Co., Ltd, Beijing China.
19 20 21	7	*Corresponding author: Man Huang, MD PhD.
22 23	8	Department: General Intensive Care Unit
24 25 26	9	Hospital: Second Affiliated Hospital of Zhejiang University School of Medicine
27 28 20	10	Address: No. 1511, Jianghong Road, Bingjiang District, Hangzhou City, Zhejiang Province
29 30 31	11	Tel: + 86 571 89713427
32 33 34	12	Fax: + 86 571 89713427
35 36	13	E-mail: <u>huangman@zju.edu.cn</u> .
37 38 39	14	ORCID: 0000-0002-0842-2254
40 41 42	15	
43 44	16	
45 46 47	17	
48 49	18	
50 51 52	19	
53 54 55	20	
56 57	21	
58 59 60	22	

23	Abstract:
24	Objectives: There are many studies of acute kidney injury (AKI) diagnosis models lack of external
25	validation and prospective validation. We constructed the models using three databases to predict severe
26	AKI within 48 hours in intensive care unit (ICU) patients.
27	Design: A retrospective and prospective cohort study.
28	Setting: We studied critically ill patients in our database (SHZJU-ICU) and two other public databases,
29	the Medical Information Mart for Intensive Care (MIMIC) and AmsterdamUMC databases, including
30	basic demographics, vital signs, and laboratory results. We predicted the diagnosis of severe AKI in
31	patients in the next 48 hours using machine-learning algorithms with the three databases. Then, we
32	carried out real-time severe AKI prediction in the prospective validation study at our centre for one year.
33	Participants: All patients included in three databases with uniform exclusion criteria.
34	Primary and secondary outcome measures: Effect evaluation index of prediction models.
35	Results: We included 58492 patients, and a total of 5257 (9.0%) patients met the definition of severe
36	AKI. In the internal validation of the SHZJU-ICU and MIMIC databases, the best area under the receiver
37	operating characteristic curve (AUROC) of the model was 0.86. The external validation results by
38	AmsterdamUMC database were also satisfactory, with the best AUROC of 0.86. A total of 2532 patients
39	were admitted to the center for prospective validation; 358 positive results were predicted, and 344
40	patients were diagnosed with severe AKI, with the best sensitivity of 0.72, the specificity of 0.80, and
41	the AUROC of 0.84.
42	Conclusion: The prediction model of severe AKI exhibits promises as a clinical application based on
43	dynamic vital signs and laboratory results of multi-center databases with prospective and external
44	validation.

45 Keywords: Machine learning; Acute kidney injury; Real-time prospective validation; External
46 validation.

47 Strengths and limitations of this study:

- 48 A prospective validation in machine learning of AKI research rather than other studies;
- 49 Three large database containing different national populations and regions;
- 50 Variable's sampling limited by the monitoring frequency of clinical data;
- 51 Differences in the samples proportion of three databases;
- 52 The dimensions of variables are not rich enough.

54 Introduction:

Acute kidney injury (AKI), as a common clinical complication in the intensive care unit (ICU), significantly increases the duration of hospitalization and mortality[1]. AKI is divided into three types according to the various aetiologies: prerenal (renal hypoperfusion), intrarenal (vascular, glomerular, or tubulointerstitial lesions), and postrenal (urinary tract obstruction)[2]. Although nearly all diseases associated with ICU admission may cause AKI, acute tubular necrosis (ATN) and prerenal azotaemia are the most common causes[3].

All AKI diagnostic criteria including the latest Kidney Disease: Improving Global Outcomes (KDIGO) standard are currently based on the creatinine level and urine volume[4]. However, the increase in the creatinine level or decrease in the urine volume lags the onset of AKI[2]. Many studies have suggested that early diagnosis and treatment of reversible AKI can reduce mortality[5]. Therefore, the creatinine level and urine volume are not satisfactory to meet clinical diagnostic demands. Consequently, many researchers have tried to develop an early warning model by analysing the risk factors for AKI[6]. Page 5 of 31

BMJ Open

Patient complications, such as diabetes, hypertension, cardiovascular disease, chronic liver disease, sepsis, and trauma, are identified as important risk factors for AKI[7]. The AKI prediction model and scoring system developed based on high-risk factors has gradually become the focus of research considering the lower clinical application threshold compared with that of new biomarkers[6]. Although most previous prediction models use the multiple logistic regression model, a variety of AKI prediction models based on machine learning have resulted in satisfactory outcomes[6]. Since the first AKI prediction model study based on artificial intelligence was published in 2016, researchers have built more than 20 published AKI prediction models successively by using local or multi-centre databases[6,8-14]. The results indicate that these models can predict the occurrence of AKI and the need for renal replacement therapy (RRT) within 24 or 48 hours, with accuracies ranging from 81% to 97%[6,15]. In addition, many studies have focused on subspecialized conditions, including cardiac surgery, trauma, and burns[14-16]. However, the common defect in these studies is the lack of external validation and prospective validation, which causes the prediction model to deviate from the clinical scenarios and limits extrapolation beyond the scope of the data. In this study, we built models to predict AKI within 48 hours in critically ill patients by using transcontinental three databases. Then, we evaluated the clinical effect of the model through a one-year prospective validation at our centre. Methods: Study design and setting

87 We collected patients using three ICU databases and prospectively validated the models in our centre.

88 The first database was our centre general ICU database (SHZJU-ICU) of the Second Affiliated Hospital

of Zhejiang University School of Medicine, an academic teaching hospital. Since its establishment in 2017, it has included 12000 ICU patients' data and is updated daily. The Medical Information Mart for Intensive Care (MIMIC) III database, the second one, is an open ICU database provided by the Massachusetts Institute of Technology and includes nearly 60000 ICU patients from North America[17]. Lastly, the AmsterdamUMC database is an available European ICU database with health data related to 23000 patients admitted to ICUs in parts of Europe[18]. The research flow chart is shown in Figure 1. **Study definition** In this study, the diagnosis of AKI was confirmed based on three stages according to the KDIGO criteria[4]. We defined the patients who met the KDIGO AKI II and III criteria as severe AKI groups and the others as negative groups. We excluded patients with lack of creatinine measurements during admission, patients with creatinine baseline more than 3.0 mg/dL at admission, patients who met severe AKI diagnosis within 24 hours, and patients who used RRT within 48 hours after admission[19]. In addition, we excluded pregnant women, patients younger than 14 years old, and patients hospitalized in the ICU for fewer than 48 hours. After the patient was admitted to ICU, we performed a prediction every 24 hours and recorded a prediction time. If the patient was diagnosed with severe AKI within 48 hours, the predictive time was defined as a positive predictive point, and the others were defined as a negative point. The study was evaluated and approved by the Ethics Committee of the Second Affiliated Hospital of Zhejiang University School of Medicine as study number 2019-078. **Data Collection** The variables included demographic data, vital signs, basic and primary diseases, laboratory results, important operation records, and drug records. Comorbidity included hypertension, diabetes, cardiopathy,

BMJ Open

liver disease, and malignant tumors. The primary disease was the main cause of admission to the ICU following the ICD-10 codes. The vital signs and clinical laboratory results were transformed into different variables according to the average, variance, maximum, minimum, and final value before diagnosis. We use a method similar to the forward incremental method in the multivariate logic regression model, that is, the combination of embedded feature selection and forward addition for feature selection. First of all, all variables are trained in the model, then list by variables importance. variables are added to the model one by one according to the variable importance. a variable is retained if it causes the AUC growth to be greater than 0.01, otherwise delete it. We transformed the MIMIC and AmsterdamUMC databases according to our centre database structure, unifying the unit and diagnostic codes. We deleted variables missing more than 50%. Variables missing more than 30% but less than 50% are listed to clinicians who determine the potential correlation between these variables and AKI. We carry out multiple interpolation for these variables which clinicians require to be retained, and the others deleted. Variables missing less than 30% are fill in multiple interpolation. All Missing data between three databases and values included in the model shown in supplementation file Table S1. Model construction and external validation The ratio of the training and internal validation sets was 4:1. The SHZJU and MIMIC databases training sets were mixed into a new training set. There were more negative data than positive data, so we randomly sampled the negative datasets and constructed a new data subset with a sampling ratio of

positive and negative data of 1:5 in model building in order to extract the importance variables. In thesubsequent model validation, we adopted the original data set. We used multiple logistic regression,

131 random forest, XGBoost, AdaBoost, LightGBoost, gradient boosting decision tree (GBDT), and debug

to assess the variables and model-related parameters by the fivefold cross-validation method. After the
models were built, we used the SHZJU-ICU and MIMIC test sets for internal validation of the model and the AmsterdamUMC database for external validation. The most appropriate cut-off value was determined according to the K-S curve. The prediction model represents the results of each prediction with a probability between 0 to 1.0. We define results more than 0.4 as high-risk, that is, positive results, and the rest as negative results. Through internal validation and external validation, we calibrated the model by adjusting the super-parameters and using the Platt calibration algorithm and compared the calibration effect by drawing a reliability diagram. All model building and validation processes were performed in Python 3.6. **Prospective validation** The prospective research period was 2020.01.01 to 2020.12.31. We collected real-time data when

patients were admitted to the ICU, transformed the data according to the requirements, and formed a complete sample for the prediction model after passing the integrity test. We had established a visualization scheme and allowed researchers to review the predictions daily. The daily prediction results were not publicly accessible during the study to avoid affecting clinicians' decisions, but the diagnosis results were available to the researchers as visual graphics. We sampled the 20% predicted data every month and deleted samples with more than 50% missing values to ensure data correctness. When a patient has the following conditions, AKI prediction system will end the patient's prospective prediction: A. a positive diagnosis; B. Transfer out of ICU or death with negative diagnosis. All diagnosis of severe AKI needs to be reviewed by two ICU attending physicians independently, and if the they have different opinion, the third one will be appealed. Statistical analysis:

154 The population characteristics were reported as the medians and inter-quartile ranges (IQRs) for

BMJ Open

skewed data and the means and standard deviations for normally distributed data. The independent sample T-test was used for normally distributed data, and the rank-sum test was used for the rest. Dichotomous variables were assessed by the chi-square test, and a P value less than 0.05 was considered statistically significant. The non-normally distributed data were analyzed by exponential transformation and logarithmic transformation. The effect of the model was evaluated by parameters such as the AUROC, accuracy, specificity, and F1-score. Patient and Public Involvement: The information of cases in three databases was in a state of complete desensitization in the process of building the model. During the prospective study, all the patients signed an informed consent form at the beginning of admission to ICU. The real-time data discussed and used by only the study members, and were not made public during the study period. All data were anonymized before the authors accessed them for the purpose of this study. Therefore, patients' priorities, experience, and preferences will not affect the development of the research question and outcome measures. If necessary, we will inform patients of relevant research results by telephone. **Results:** According to the inclusion criteria and exclusion criteria, we selected 58492 patients from three databases who met the requirements of the study, including 6461 patients from the SHZJU-ICU database, 36690 patients from the MIMIC database, and 15341 patients from the AmsterdamUMC database. A total of 5257 (9.0%) patients met the definition of severe AKI (11.8% in SHZJU-ICU, 7.6% in MIMIC,

and 10.9% in AmsterdamUMC). The distributions of age and sex in the three centers were similar, but

176 the differences in race were large. Asian patients accounted for more than 99% in the SHZJU-ICU

2										
3 4 5	177	database, and	only approxi	mately 2	2.5% in the MIM	IIC database.	White pe	cople accounted for	more than	
6 7 8	178	70% of the M	IIMIC databas	se. In ad	ldition, patients f	from the MIM	IIC datab	ase had a higher in	ncidence of	
9 10	179	the tumor, liv	er cirrhosis, d	iabetes,	and hypertensio	n. Patients in	the Amst	terdamUMC and S	HZJU-ICU	
11 12 13	180	databases had	d a higher pro	oportior	n of mechanical	ventilation a	ind overa	ll survival rate. S	evere AKI	
14 15	181	patients had l	onger ICU hos	spital st	ays and higher m	ortality. More	e details a	are presented in Ta	ble 1.	
16 17 18	182 183	Table 1: Cl kidney injur	inical Demo y.	graphio	cs and Outcor	nes in patie	ents with	n or without sev	ere acute	
19		SHZJU-ICU	SHZJU-ICU	P-	MIMIC	MIMIC	P-	AmsterdamUMC	AmsterdamUMC	P-
20		Negative	Severe AKI	valu	Negative	Severe AKI	value	Negative	severe AKI	value
21		(N=5695)	(N=766)	•	(N=33879)	(N=2811)	value	(N=13661)	(N=1680)	Value
2 <mark>2</mark>	Age median [IOP]	(N=3033)	(11-700)	0.00	(11-55575)	64.0	<0.001	(N=13001)	64.3	0.04
237	Age, metian [iQK]			0.00	62.0	04.0	<0.001		64.5	0.04
25		[48.8-70.1]	[50.1-72.5]	4	[45.0-76.0]	[52.0-76.0]		[54.5,74.5]	[52.5,78.5]	
26 [°] 27	Gender, male (%)	3561 (64.9)	438 (59.8)	0.00 7	18976 (56.0)	1524 (54.2)	0.06	8920 (65.3)	1054 (63.9)	0.03
28	Race							/	1	1
29	White	3 (0.05)	1 (0.1)	1	23796 (70.2)	2005 (71.3)	0.23	1	1	1
31	Black	1 (0.02)	0	1	2455 (7.2)	199 (7.1)	0.45	/	1	/
32	Asian	5691(99.9)	764 (99.7)	1	918 (2.7)	70 (2.5)	0.54	1	1	1
33	Other	0	1 (0.1)	1	6710 (19.8)	537 (19.1)	0.34	1	/	1
34 357	Admission Scr	0.9 (0.34)	1.0 (0.40)	<0.0	1.1 (0.41)	1.1 (0.50)	0.04	1.2 (0.35)	1.1 (0.38)	<0.00
36	(mɑ/dL). mean		. ,	01					. ,	1
37	(sd)									
38	Admission BUN	18 (11)	21 (9)	<0.0	17 (12)	23 (12)	<0.001	18 (13)	23 (10)	<0.00
40	(mg/dl) mean		_ (()	01	()				()	1
41	(sd)									
42	Cancor n (%)	644 (11 3)	48 (6 3)	<0.0	6652 (19.6)	752 (26.8)	<0.001		1	1
43` 44		044 (11.5)	40 (0.3)	01	0032 (13.0)	152 (20.0)	40.00		1	,
45	Cirrhosis, n (%)	43 (0 8)	6 (0.8)	0.89	1180 (3.5)	426 (15 2)	<0.001	1	/	1
46	Cardionathy n	231 (4 1)	42 (5 5)	0.08	4840 (14 3)	336 (12.0)	0.001	/		
4/	(%)	231 (4.1)	42 (0.0)	0.00	+0+0 (1+.3)	550 (12.0)	0.001	7	1	,
49	(70)	205 (5.4)	62 (0.2)	0.00	7050 (04.4)	700 (00 4)	-0.001	1	1	1
50	Diabetes, n (%)	305 (5.4)	63 (8.2)	0.00	7250 (21.4)	789 (28.1)	<0.001	/	1	1
51				2						
521 53	Hypertension, n (%)	889 (15.6)	115 (15.0)	0.70	16328 (48.2)	1513 (53.8)	<0.001	1	1	/
54 55	Ventilation, n (%)	2569 (45.1)	592 (77.3)	<0.0	13009 (38.4)	1503(53.5)	<0.001	7718(56.5)	1248(74.3)	<0.00
56				01						1
57	Operation, n (%)	3361 (59.1)	373 (48.7)	<0.0	12455 (36.7)	1430 (50.8)	<0.001	/	/	/
58 59				01						

60

1

Page 11 of 31

59

60

1 2												
	Hours,	50.8	164.4	<0.0	51.0	103.4	<	0.001	24.0	142.0	1	<0.0
+ 5 media	an [IQR]	[23.0-139.5]	[70.3-328.6]	01	[28.5-110	.3] [50.1-26	51.3]		[19.8,63.5]	[45.4,	394.2]	1
5 Survi	ved, n (%)	4997 (87.7)	380 (49.6)	<0.0	25648 (75.	.7) 1356 (48	.2) <	0.001	10942(80.1)	1033	(61.5)	<0.0
7				01								1
3' 9	184	SHZJU-ICU	: The genera	ICU d	database o	of the second	affiliate	ed hos	pital of Zheji	ang univer	sity	
10	185	school of m	edicine; MIM	IC: Me	edical Info	rmation Mart	for Int	ensive	e Care; IQR:	Inter-Qua	rtile	
11	186	Range; ICU	: Intensive Ca	are Un	it; <i>AKI</i> : Ac	ute Kidney In	jury. S	<i>cr</i> : ser	um creatinin	e; <i>BUN</i> : bl	ood	
12	187	urea nitroge	n.									
14 15	188	There were	e significant d	ifferend	ces in the i	mportant parar	neters c	of the v	variables amo	ng the diffe	rent	
17 18	189	models (see I	Figure S1). Hov	wever,	the trend of	the creatinine	level in	the pa	st week was st	till an impor	tant	
19 20 21	190	variable, folle	owed by urine	volume	e, blood ure	ea nitrogen leve	el, temp	erature	e, and length o	f ICU stay.	The	
22 23	191	cut-off value	used to disting	guish bo	etween a ne	egative and pos	sitive pr	edictio	on was determi	ined by the	K-S	
24 25 26	192	curve, with v	value of 0.423	(see Fig	gure S2). T	The GBDT mod	del had	the be	st prediction e	effect in the	test	
27 28 29	193	set, followed	et, followed by XGBoost and LightGBoost. In the two central internal validation sets, the two best-									
30 31	194	performing n	performing machine learning algorithms with great AUROC are LightGBoost (SHZJU-ICU of 83.2%,									
33 34	195	MIMIC of 86	5.0%) and XGI	Boost (S	SHZJU-IC	U 85.9%, MIM	IC 85.6	%), as	detailed in Fi	gure 2. Ove	rall,	
35 36 37	196	the sensitivit	y (SHZJU-ICU	J 0.84 ,	MIMIC 0.	83) and the ne	gative j	predict	ive value (SH	IZJU-ICU 0	.90,	
38 39	197	MIMIC 0.90) of the predic	tive m	odel were	high, but the s	specific	ity wa	s general (SH	ZJU-ICU 0	.79,	
40 41 42	198	MIMIC 0.75), as shown in	Table 2	2. In the ex	ternal validation	on based	d on A	msterdamUM	C database,	the	
13 14 15	199	overall mode	l validation ef	fect res	sults were s	atisfactory, and	d XGBo	oost ha	ad the best per	rformance, v	with	
46 47	200	an AUROC o	of 0.84, as sho	wn in I	Figure 2 an	d Table 2. We	built a	visual	prediction int	erface based	d on	
48 49 50	201	the prediction	n model (suppl	ementa	tion file Fi	gure S3).						
51 52	202	T 11 A T			1 1 2		•					
53 54	203	Table 2: M	odel validati	on res	sults by th	iree databas	es wit	n mao	chine learnii	ng algorith	חוי 	
55	Model		AUROC	A	ccuracy	Sensitivity	Spe	cificit _.	y PPV	NPV	F1	
57	Internal v	validation wi	th SHZJU-IC	U data	abase							
58	Logistic	regression	0.748	0.	.662	0.834	0.57	6	0.496	0.874	0.622	

				<u> </u>						
Internal validation with SHZJU-ICU database										
Logistic regression	0.748	0.662	0.834	0.576	0.496	0.874	0.622			
LightGBoost	0.832	0.741	0.839	0.692	0.576	0.896	0.683			

GBDT		0.845	0.765	0.843	0.725	0.606	0.902	0.705
AdaBoo	st	0.806	0.721	0.824	0.67	0.555	0.884	0.663
Random	Forest	0.821	0.763	0.71	0.789	0.627	0.845	0.666
XGBoos	t	0.859	0.779	0.81	0.763	0.631	0.889	0.709
Internal	validation wit	th MIMIC data	ıbase					
Logistic	regression	0.733	0.695	0.643	0.72	0.535	0.801	0.584
LightGB	loost	0.86	0.768	0.822	0.741	0.613	0.893	0.702
GBDT		0.846	0.765	0.786	0.755	0.616	0.876	0.691
AdaBoo	st	0.837	0.732	0.831	0.683	0.567	0.89	0.674
Random	r Forest	0.832	0.738	0.791	0.712	0.578	0.872	0.668
XGBoos	t	0.856	0.758	0.833	0.721	0.598	0.895	0.695
External	l validation w	ith Amsterda	mUMC datal	base				
Logistic	regression	0.704	0.767	0.516	0.893	0.706	0.787	0.596
LightGB	loost	0.859	0.763	0.827	0.731	0.606	0.894	0.7
GBDT		0.861	0.764	0.84	0.727	0.606	0.901	0.704
AdaBoo	st	0.85	0.755	0.813	0.726	0.597	0.886	0.689
Random	Forest	0.82	0.743	0.77	0.729	0.587	0.864	0.666
XGBoost		0.865	0.75	0.873	0.688	0.584	0.916	0.7
Prospec	tive validatio	n with SHZJU	I-ICU					
Logistic	regression	0.758	0.772	0.648	0.834	0.662	0.826	0.655
LightGB	loost	0.819	0.796	0.596	0.895	0.74	0.816	0.66
GBDT		0.827	0.781	0.706	0.818	0.66	0.848	0.683
AdaBoo	st	0.808	0.766	0.686	0.805	0.638	0.837	0.661
Random	Forest	0.804	0.755	0.715	0.775	0.613	0.845	0.66
XGBoos	t	0.841	0.779	0.724	0.807	0.652	0.854	0.686
204	AUROC: Are	ea Under Rece	eiver Operatir	ng Characteris	stic; <i>PPV</i> : Posit	tive Predictiv	ve Value; A	IPV:
205	Negative Pro	edictive Value	; SHZJU-IC	U: The gener	al ICU databas	se of the se	cond affilia	ated
206	hospital of	Zhejiang univ	ersity schoo	l of medicine	e; <i>MIMIC</i> : Med	dical Informa	ation Mart	for
207	Intensive Ca	ire; <i>GBDT</i> : Gra	adient Booste	ed Decision T	ree.			
208								
209	According	to the inclusion	n and exclusion	on criteria, we	delete 267 pati	ents among 9	94 patients	with
	U			,	ł	5		
210	creatinine bas	seline more than	n 3.0 mg/dL at	admission, 39	patients met sev	vere AKI diag	gnosis withi	n 24
			-			-		
211	hours, and 26	patients who u	sed RRT with	in 48 hours aft	er admission, 10	08 patients ho	spitalized ir	n the
						-		

ICU for fewer than 48 hours. A total of 2532 patients were admitted to our centre for prospective

validation, and the prediction model made 16858 times predictions. In the prospective cohort, there was

no significant difference in age, gender, baseline creatinine and urea nitrogen, and complications. The

BMJ Open

proportion of mechanical ventilation and the ICU stay time in AKI patients were longer with higher mortality. Above all, there was no significant difference between the prospective and the retrospective cohort. More detail sees in supplementation file Table S2. In the end, 358 positive results were predicted, and the rest were negative results. There are 344 patients with severe AKI were diagnosed and the prediction accuracy was 83.5%. The model with the highest area under the curve was XGBoost, 0.84 with the best sensitivity of 0.72, the specificity of 0.80. The results of the prospective study are similar to those of the external validation of the model, and are relatively stable. More detail is presented in Figure 3 and Table 2. **Discussion:** In this study, we built predictive models by machine learning to predict the incidence of severe AKI with three databases in different regions and in the next 48 hours. After internal and external validation, prospective validation over one year was carried out to verify the model effects. The three databases come from three countries that are in Asia, Europe, and North America, which proves that the model is

universal to some extent.

Despite the huge amount of data, many databases are still not suitable for prospective research because they are not updated promptly. Tomasev, N and colleagues have provided research on AKI prediction models with a large amount of data[10]. The study covered 703782 adult patients with 6 billion individual items, including 620000 elements. In this study, a depth neural network model was used for real-time prediction. A total of 55.8% of severe AKI patients were predicted within the first 48 hours, although each accurate prediction was accompanied by two mispredictions[10]. This study provided a new scheme for real-time prediction and indicated that we should prospectively evaluate and

independently validate models to explore their effectiveness. In a prospective study, Flechet, M et al compared an AKI prediction model with clinicians in 252 patients and found that the clinical effect of the random forest model for predicting AKI-II/III was equivalent to that of clinicians. Our prediction model graphical visualization of the model was installed in the centre's database for better usage. In addition, our database is updated daily to achieve daily predictions and present the results to researchers. In the prospective validation of our study, the stability of the prediction model confirmed its promise, which provides a basis for future research. There are many studies of artificial intelligence for predicting the occurrence of AKI, but most of them are single-centre studies, and the extrapolation effect has been controversial. In 2016, Koyner, J, and his colleague published the first study of an AKI prediction model based on multi-centre data. In all 202961 patients, 17541 (8.6%) had AKI, 4251 (3.5%) had AKI-II, and 1242 (0.6%) had AKI-III. A multivariate logistic regression model was used to predict AKI in this study with an AUROC of 0.74 (95% CI=0.74). With the classification of AKI, the AUROC of the prediction model gradually increased to 0.84[8]. Subsequently, the study team used a new machine learning algorithm, to build a more accurate model to predict the occurrence of AKI-II, with an AUROC of 0.9 within 24 hours and 0.87 within 48 hours[19]. Recently, the research team included data from two other centres, namely, LUMC (N=200613) and NUS (N=246895), to externally validate the AKI-II prediction model with AUROCs reaching 0.85 to 0.86, suggesting that the artificial intelligence model has stable predictive ability[12]. This series of studies included many data points, suggesting the feasibility of artificial intelligence in the diagnosis of AKI, but the proportion of positive patients (3.5%) and ICU patients (30%) was too low to properly predict AKI. Our research is similar to the above. The SAHZJU-ICU database is a single-centre database representing south-eastern China, and the MIMIC database is a well-known open ICU database in the

264

Limitations:

1

BMJ Open

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
25	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
20	
29	
40	
41	
42	
43	
44	
45	
46	
<u>4</u> 7	
-+/ 40	
48	
49	
50	
51	
52	
53	
54	
55	
55	
20	
57	
58	
59	
60	

United States. The AmsterdamUMC database is a public database located in Europe. The population
structure and diseases in the three databases are complete but different in the distribution of complications
and race. Therefore, it provides a prediction model with unparalleled stability compared with other
studies.

265 This retrospective multi-centre study was unable to carry out more clinical feature mining and 266 comparison because of different data structures. The differences between the three databases partly 267 reflect some demographic differences between Europe, the United States and China, resulting in a decline 268 in the accuracy of the prediction model. There are some differences in the number of patients included 269 in the three databases, which may affect the choice of variables. As a result of the study design, we 270 deleted patients with ICU hospitalization of less than 48 hours, which may result in the exclusion of most 271 relatively mild patients and may reduce false positives. Second, in the prospective data study in 2020, 272 there may be deviations in the inclusion of patients in the centre, thus affecting the interpretation of the 273 follow-up prospective results. Finally, given the low incidence of severe AKI and the great difference in 274 the proportion of positive and negative samples, the data may be accidental. Our model seems to be 275 superior to diagnostic non-AKI patients rather than AKI because of the proportion of positive data that 276 we include. In the retrospective study, we reduced the proportion of negative data by randomization but 277 retain all date in prospective phase with the sensitivity decreases.

278

279 Conclusion:

Based on databases of patients of different races from different countries, we constructed stable

3 4 5	281	machine learning models to predict the occurrence of AKI in the next 48 hours. Prospective validat						
6 7	282	hrough the implementation of an updated local database is an effective exploration of further research						
8 9 10	283							
11 12 13	284	Data Availability Statement:						
14 15	285	The model code can be obtained by email if readers need it, but we cannot guarantee that all the						
16 17 18	286	code will be provided. Two public databases can be applied from the official website of their respective						
19 20 21	287	databases.						
22 23	288	Ethics approval:						
24 25 26	289	Our research was approved by the ethics committee of the Second Affiliated Hospital of Zhejiang						
27 28 29	290	University School of Medicine.						
30 31	291	Competing interests for authors:						
32 33 34	292	The authors declare that they have no competing interests.						
35 36	293							
37 38 39	294	Reference:						
40 41 42	295	1. Ronco, C.; Bellomo, R.; Kellum, J.A. Acute kidney injury. <i>The Lancet</i> 2019 , <i>394</i> , 1949-						
43 44	296	1964, doi:10.1016/s0140-6736(19)32563-2.						
45 46 47	297	2. Pakula, A.M.; Skinner, R.A. Acute Kidney Injury in the Critically III Patient: A Current						
48 49	298	Review of the Literature. J Intensive Care Med 2016, 31, 319-324,						
50 51 52	299	doi:10.1177/0885066615575699.						
53 54 55	300	3. Bellomo, R.; Kellum, J.A.; Ronco, C. Acute kidney injury. <i>The Lancet</i> 2012 , <i>380</i> , 756-						
56 57	301	766, doi:10.1016/s0140-6736(11)61454-2.						
58 59 60	302	4. Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. <i>Nephron Clin</i>						

1 2			
3 4 5	303		<i>Pract</i> 2012 , <i>120</i> , c179-184, doi:10.1159/000339789.
6 7	304	5.	Coelho, S.; Cabral, G.; Lopes, J.A.; Jacinto, A. Renal regeneration after acute kidney
8 9 10	305		injury. <i>Nephrology (Carlton)</i> 2018 , <i>23</i> , 805-814, doi:10.1111/nep.13256.
11 12 13	306	6.	Wilson, F.P.; Greenberg, J.H. Acute Kidney Injury in Real Time: Prediction, Alerts, and
14 15	307		Clinical Decision Support. Nephron 2018, 140, 116-119, doi:10.1159/000492064.
16 17 18	308	7.	Wu, Y.; Hao, W.; Chen, Y.; Chen, S.; Liu, W.; Yu, F.; Hu, W.; Liang, X. Clinical features,
19 20 21	309		risk factors, and clinical burden of acute kidney injury in older adults. Ren Fail 2020,
22 23	310		<i>42</i> , 1127-1134, doi:10.1080/0886022X.2020.1843491.
24 25 26	311	8.	Koyner, J.L.; Adhikari, R.; Edelson, D.P.; Churpek, M.M. Development of a Multicenter
27 28	312		Ward-Based AKI Prediction Model. Clin J Am Soc Nephrol 2016, 11, 1935-1943,
29 30 31	313		doi:10.2215/CJN.00280116.
32 33 24	314	9.	Low, S.; Vathsala, A.; Murali, T.M.; Pang, L.; MacLaren, G.; Ng, W.Y.; Haroon, S.;
35 36	315		Mukhopadhyay, A.; Lim, S.L.; Tan, B.H., et al. Electronic health records accurately
37 38 39	316		predict renal replacement therapy in acute kidney injury. BMC Nephrol 2019, 20, 32,
40 41	317		doi:10.1186/s12882-019-1206-4.
42 43 44	318	10.	Tomasev, N.; Glorot, X.; Rae, J.W.; Zielinski, M.; Askham, H.; Saraiva, A.; Mottram, A.;
45 46 47	319		Meyer, C.; Ravuri, S.; Protsyuk, I., et al. A clinically applicable approach to continuous
47 48 49	320		prediction of future acute kidney injury. <i>Nature</i> 2019 , <i>572</i> , 116-119,
50 51 52	321		doi:10.1038/s41586-019-1390-1.
53 54	322	11.	Flechet, M.; Falini, S.; Bonetti, C.; Güiza, F.; Schetz, M.; Van den Berghe, G.; Meyfroidt,
55 56 57	323		G. Machine learning versus physicians' prediction of acute kidney injury in critically ill
58 59	324		adults: a prospective evaluation of the AKIpredictor. Critical Care 2019, 23, 282,
60			16

1

2			
3 4 5	325		doi:10.1186/s13054-019-2563-x.
6 7 8	326	12.	Churpek, M.M.; Carey, K.A.; Edelson, D.P.; Singh, T.; Astor, B.C.; Gilbert, E.R.;
9 10	327		Winslow, C.; Shah, N.; Afshar, M.; Koyner, J.L. Internal and External Validation of a
11 12 13	328		Machine Learning Risk Score for Acute Kidney Injury. JAMA Netw Open 2020, 3,
14 15	329		e2012892, doi:10.1001/jamanetworkopen.2020.12892.
17 18	330	13.	Yuan, Q.; Zhang, H.; Deng, T.; Tang, S.; Yuan, X.; Tang, W.; Xie, Y.; Ge, H.; Wang,
19 20 21	331		X.; Zhou, Q., et al. Role of Artificial Intelligence in Kidney Disease. Int J Med Sci 2020,
22 23	332		<i>17</i> , 970-984, doi:10.7150/ijms.42078.
24 25 26	333	14.	Li, Y.; Xu, J.; Wang, Y.; Zhang, Y.; Jiang, W.; Shen, B.; Ding, X. A novel machine
27 28 20	334		learning algorithm, Bayesian networks model, to predict the high-risk patients with
30 21	335		cardiac surgery-associated acute kidney injury. Clin Cardiol 2020, 43, 752-761,
21			
32 33 34	336		doi:10.1002/clc.23377.
32 33 34 35 36	336 337	15.	doi:10.1002/clc.23377. De Vlieger, G.; Kashani, K.; Meyfroidt, G. Artificial intelligence to guide management
32 33 34 35 36 37 38 39	336 337 338	15.	doi:10.1002/clc.23377. De Vlieger, G.; Kashani, K.; Meyfroidt, G. Artificial intelligence to guide management of acute kidney injury in the ICU: a narrative review. <i>Curr Opin Crit Care</i> 2020 , <i>26</i> , 563-
32 33 34 35 36 37 38 39 40 41 42	336 337 338 339	15.	doi:10.1002/clc.23377. De Vlieger, G.; Kashani, K.; Meyfroidt, G. Artificial intelligence to guide management of acute kidney injury in the ICU: a narrative review. <i>Curr Opin Crit Care</i> 2020 , <i>26</i> , 563- 573, doi:10.1097/MCC.0000000000775.
32 33 34 35 36 37 38 39 40 41 42 43 44	336 337 338 339 340	15.	doi:10.1002/clc.23377. De Vlieger, G.; Kashani, K.; Meyfroidt, G. Artificial intelligence to guide management of acute kidney injury in the ICU: a narrative review. <i>Curr Opin Crit Care</i> 2020 , <i>26</i> , 563- 573, doi:10.1097/MCC.0000000000775. James, M.T.; Pannu, N.; Hemmelgarn, B.R.; Austin, P.C.; Tan, Z.; McArthur, E.; Manns,
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	336 337 338 339 340 341	15.	doi:10.1002/clc.23377. De Vlieger, G.; Kashani, K.; Meyfroidt, G. Artificial intelligence to guide management of acute kidney injury in the ICU: a narrative review. <i>Curr Opin Crit Care</i> 2020 , <i>26</i> , 563- 573, doi:10.1097/MCC.0000000000775. James, M.T.; Pannu, N.; Hemmelgarn, B.R.; Austin, P.C.; Tan, Z.; McArthur, E.; Manns, B.J.; Tonelli, M.; Wald, R.; Quinn, R.R., et al. Derivation and External Validation of
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	 336 337 338 339 340 341 342 	15.	 doi:10.1002/clc.23377. De Vlieger, G.; Kashani, K.; Meyfroidt, G. Artificial intelligence to guide management of acute kidney injury in the ICU: a narrative review. <i>Curr Opin Crit Care</i> 2020, <i>26</i>, 563- 573, doi:10.1097/MCC.0000000000775. James, M.T.; Pannu, N.; Hemmelgarn, B.R.; Austin, P.C.; Tan, Z.; McArthur, E.; Manns, B.J.; Tonelli, M.; Wald, R.; Quinn, R.R., et al. Derivation and External Validation of Prediction Models for Advanced Chronic Kidney Disease Following Acute Kidney Injury.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	 336 337 338 339 340 341 342 343 	15.	doi:10.1002/clc.23377. De Vlieger, G.; Kashani, K.; Meyfroidt, G. Artificial intelligence to guide management of acute kidney injury in the ICU: a narrative review. <i>Curr Opin Crit Care</i> 2020 , <i>26</i> , 563- 573, doi:10.1097/MCC.0000000000775. James, M.T.; Pannu, N.; Hemmelgarn, B.R.; Austin, P.C.; Tan, Z.; McArthur, E.; Manns, B.J.; Tonelli, M.; Wald, R.; Quinn, R.R., et al. Derivation and External Validation of Prediction Models for Advanced Chronic Kidney Disease Following Acute Kidney Injury. <i>JAMA</i> 2017 , <i>318</i> , 1787-1797, doi:10.1001/jama.2017.16326.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	 336 337 338 339 340 341 342 343 344 	15. 16.	 doi:10.1002/clc.23377. De Vlieger, G.; Kashani, K.; Meyfroidt, G. Artificial intelligence to guide management of acute kidney injury in the ICU: a narrative review. <i>Curr Opin Crit Care</i> 2020, <i>26</i>, 563- 573, doi:10.1097/MCC.00000000000775. James, M.T.; Pannu, N.; Hemmelgarn, B.R.; Austin, P.C.; Tan, Z.; McArthur, E.; Manns, B.J.; Tonelli, M.; Wald, R.; Quinn, R.R., et al. Derivation and External Validation of Prediction Models for Advanced Chronic Kidney Disease Following Acute Kidney Injury. <i>JAMA</i> 2017, <i>318</i>, 1787-1797, doi:10.1001/jama.2017.16326. Johnson, A.E.; Pollard, T.J.; Shen, L.; Lehman, L.W.; Feng, M.; Ghassemi, M.; Moody,
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	 336 337 338 339 340 341 342 343 344 345 	15. 16. 17.	 doi:10.1002/clc.23377. De Vlieger, G.; Kashani, K.; Meyfroidt, G. Artificial intelligence to guide management of acute kidney injury in the ICU: a narrative review. <i>Curr Opin Crit Care</i> 2020, <i>26</i>, 563- 573, doi:10.1097/MCC.00000000000775. James, M.T.; Pannu, N.; Hemmelgarn, B.R.; Austin, P.C.; Tan, Z.; McArthur, E.; Manns, B.J.; Tonelli, M.; Wald, R.; Quinn, R.R., et al. Derivation and External Validation of Prediction Models for Advanced Chronic Kidney Disease Following Acute Kidney Injury. <i>JAMA</i> 2017, <i>318</i>, 1787-1797, doi:10.1001/jama.2017.16326. B.; Szolovits, P.AO.; Celi, L.A.; Mark, R.AO. MIMIC-III, a freely accessible critical

BMJ Open

3 4 5	347	18. Thoral, P.J.; Peppink, J.M.; Driessen, R.H.; Sijbrands, E.J.G.; Kompanje, E.J.O.;
6 7 8	348	Kaplan, L.; Bailey, H.; Kesecioglu, J.; Cecconi, M.; Churpek, M., et al. Sharing ICU
9 10	349	Patient Data Responsibly Under the Society of Critical Care Medicine/European
11 12 13	350	Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam
14 15	351	University Medical Centers Database (AmsterdamUMCdb) Example. Crit Care Med
16 17 18	352	2021, 10.1097/CCM.000000000004916, doi:10.1097/CCM.00000000004916.
19 20 21	353	19. Koyner, J.L.; Carey, K.A.; Edelson, D.P.; Churpek, M.M. The Development of a
22 23	354	Machine Learning Inpatient Acute Kidney Injury Prediction Model. Crit Care Med 2018,
24 25 26	355	<i>46</i> , 1070-1077, doi:10.1097/CCM.000000000003123.
27 28	356	
29 30 31	357	Footnotes
32 33 34	358	Contributions: Conceptualization, QL and MH; Methodology, YX; Software, YX; Validation, YZ, and
35 36	359	YX.; Formal Analysis, JC and XC; Resources, MH; Data Curation, QL; Writing - Original Draft
37 38 39	360	Preparation, QL; Writing – Review & Editing, MH; Visualization, YX; Supervision, YZ and QL; Project
40 41 42	361	Administration, QL;
42 43 44	362	Funding: This research received no specific grant from any funding agency in the public, commercial
45 46 47	363	or not-for-profit sectors.
48 49	364	Conflicts of Interest: Not Applicable.
50 51 52	365	Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or
53 54	366	reporting, or dissemination plans of this research.
55 56 57	367	Provenance and peer review Not commissioned; externally peer reviewed.
58 59 60	368	Acknowledgements: Thank my colleagues in general ICU for cooperating with us in our prospective
		18

3		
4	369	study. Thanks to two public databases namely MIMIC and AmsterdamUMC for providing important
5		
6 7	370	data. Thanks for all patient advisers.
/ Q		1
0	074	
10	371	
10		
12	372	Supplemental Figure:
13		
14	070	
15	3/3	File name: Figure S1.tif
16		
17	374	Title and Description of data: The variable importance parameter histogram of early diagnosis prediction
18		
19	075	
20	3/5	models of severe AKI uses a multiple logistic regression algorithm and five machine learning algorithms.
21		
22	376	File name: Figure S2.tif
23		
24	277	Tide and Description of data. The IC Operation data data minutes at a fillent of the state of the state of the
25	3//	The and Description of data: The K-S curve used to determine the cut-off value of positive and negative
26		
27	378	diagnosis of early diagnosis prediction models of severe AKI.
28		
29	270	File name: Table S1 door
30	379	File name: Table S1.docx
37		
33	380	Title and of Description data: Missing data between three databases in the study and values included in
34		
35	381	the model
36	501	the model.
37		
38	382	File name: Table S2.docx
39		
40	383	Title and of Description data: Clinical Demographics and Outcomes of SHZIU-ICU natients in model
41	000	The and of Description and. Chinear Demographies and Outcomes of Stills's fee patients in model
42		
43	384	building set and prospective validation.
44		
45	385	File name: Table S3.docx
46		
4/		
48	386	Title of data: TRIPOD Checklist of Prediction Model Development and Validation
49 50		
51	387	Description of data: Writing norms of this type of research.
52		
53		
54	388	
55		
56	389	Figure Legend:
57		
58	200	The second flow short The data will don't the data will don't the data and
59	290	Figure 1. The research flow chart. The data collection time interval of the study was / days before
60		

diagnosis and the prediction interval was 48 hours. The early prediction model of AKI diagnosis was
constructed and verified by our database and the MIMIC database and incorporated into the
AmsterdamUMC database for external validation. We carried out a one-year prospective validation
through the database of the centre.

395 Figure 2: The AUROC curve of the internal validation set of the SHZJU-ICU database and the MIMIC

database.

397 Figure 3: The AUROC curve of the external validation set of the AmsterdamUMC database for 3A and

398 the prospective validation in our center for 3B.

338x451mm (300 x 300 DPI)

Title and Description of data: The K-S curve used to determine the cut-off value of positive and negative diagnosis of early diagnosis prediction models of severe AKI.

File name: Table S1.docx

Title and of Description data: Missing data between three databases in the study and values included in

the model.

	SHZJU-ICU	MIMIC	AmsterdamUMC	Including in Mod
Age	\checkmark	\checkmark		\checkmark
Gender	\checkmark	\checkmark	\checkmark	
Race	\checkmark	\checkmark	×	×
Primary disease	\checkmark	\checkmark	×	×
Comorbidity	\checkmark	\checkmark	×	×
Ventilation	\checkmark	\checkmark		
Operation	\checkmark	\checkmark	×	×
ICU hours		\checkmark	\checkmark	\checkmark
Survived	\checkmark	\checkmark		\checkmark
Vital sign				
Temperature		\checkmark		
Systolic pressure	\checkmark	\checkmark	\checkmark	\checkmark
Diastolic pressure	\checkmark	\checkmark	\checkmark	\checkmark
Respiratory rate	\checkmark	\checkmark		\checkmark
Heart rate	\checkmark	\checkmark		\checkmark
Oxygen saturation	\checkmark	\checkmark	V	\checkmark
Urine	\checkmark	\checkmark		\checkmark
GCS score	\checkmark	×	×	×
Laboratory results			'h	
Scr	\checkmark	\checkmark		\checkmark
BUN	\checkmark	\checkmark		\checkmark
RBC	\checkmark	\checkmark		\checkmark
MCV	\checkmark	\checkmark		
Hb	\checkmark	\checkmark		\checkmark
WBC	\checkmark	\checkmark		
NEUT	\checkmark	\checkmark		\checkmark
PLT	\checkmark	\checkmark		
HCV	\checkmark	\checkmark	×	×
TBLB	\checkmark	\checkmark		
DBLB	\checkmark	\checkmark		
IBLB	\checkmark			
CRP	\checkmark			
PCT		×	×	×
Serum kalium	\checkmark			
Serum natrium				
Serum chlorine				$\overline{}$

РТ	\checkmark	\checkmark	\checkmark	
APTT		\checkmark		
INR				
СК				
LDH				
Troponin				
Blood glucose	\checkmark	\checkmark		
РН	\checkmark	\checkmark		
Lactic acid	\checkmark	\checkmark		
Anion gap	\checkmark	\checkmark		
ABC	V			
SBC	V			
PaCO ₂	V			
PaO ₂	V	\checkmark		

SHZJU-ICU: The general ICU database of the second affiliated hospital of Zhejiang university school of medicine; MIMIC: Medical Information Mart for Intensive Care; APTT: Activated partial thromboplastin time; INR: International normalized ratio; LDH: Lactate dehydrogenase; PaCO₂: Partial pressure of carbon dioxide; PaO₂ Partial pressure of oxygen; MCV: Mean corpuscular volume; PH: Potential of hydrogen; WBC: White blood cell count; NEUT: Proportion of neutrophils; CK: Creatine kinase; Scr: Serum Creatinine; BUN: Blood urea nitrogen; RBC: Red blood cell count; Hb: Hemoglobin; PT: Prothrombin time; TBLB: Total bilirubin; DBLB: Direct bilirubin; IBLB: Indirect bilirubin; CRP: C-reactive protein; HCV: Hematocrit value; PCT: Procalcitonin; ABC: Actual Bicarbonate Radical; SBC: Standard Bicarbonate Radical; PLT: Platelet count

File name: Table S2.docx

Title and of Description data: Clinical Demographics and Outcomes of SHZJU-ICU patients in model

building set and prospective validation.

	SHZJU-ICU	SHZJU-ICU	P-value	SHZJU-ICU	SHZJU-ICU	P-value
	Negative	Severe AKI		Prospective	Prospective	
	(N=5695)	(N=766)		Negative	Positive	
				(N=2188)	(N=344)	
Age, median [IQR]	60.5	62.1	0.004	61.3	62.1	0.03
	[48.8-70.1]	[50.1-72.5]		[47.5-73.4]	[51.2-70.5]	
Gender, male (%)	3561 (64.9)	438 (59.8)	0.007	1365 (62.4)	207 (60.2)	0.438
Race						
White	3 (0.05)	1 (0.1)	1	2 (0.001)	0	1
Black	1 (0.02)	0	1	0	0	1
Asian	5691(99.9)	764 (99.7)	1	2185 (99.9)	344(100)	1
Other	0	1 (0.1)	1	1 (0.001)	0	1
Admission Scr	0.9 (0.34)	1.0 (0.40)	<0.001	0.8 (0.32)	0.9 (0.35)	<0.001
(mg/dL), mean						
(sd)						
Admission BUN	18 (11)	21 (9)	<0.001	17 (11)	20 (10)	0.007
(mg/dL), mean						
(sd)						
Cancer, n (%)	644 (11.3)	48 (6.3)	<0.001	230 (10.5)	26 (7.6)	0.102
Cirrhosis, n (%)	43 (0.8)	6 (0.8)	0.89	15 (0.7)	3 (0.8)	0.726
Cardiopathy, n	231 (4.1)	42 (5.5)	0.08	98 (4.5)	19 (5.7)	0.403
(%)						
Diabetes, n (%)	305 (5.4)	63 (8.2)	0.002	142 (6.5)	29 (8.6)	0.203
Hypertension, n	889 (15.6)	115 (15.0)	0.70	324(14.8)	56 (16.4)	0.466
(%)						
Ventilation, n (%)	2569 (45.1)	592 (77.3)	<0.001	1102 (50.4)	239 (69.5)	<0.001
Operation, n (%)	3361 (59.1)	373 (48.7)	<0.001	1234(56.4)	160 (46.7)	0.001
ICU Hours,	50.8	164.4	<0.001	58.7	145.6	<0.001
median [IQR]	[23.0-139.5]	[70.3-328.6]		[34.2-160.4]	[68.5-314.8]	
Survived, n (%)	4997 (87.7)	380 (49.6)	<0.001	1868 (85.4)	178 (51.9)	<0.001

SHZJU-ICU: The general ICU database of the second affiliated hospital of Zhejiang university school of medicine; *MIMIC*: Medical Information Mart for Intensive Care; *IQR*: Inter-Quartile Range; *ICU*: Intensive Care Unit; *AKI*: Acute Kidney Injury. *Scr*: serum creatinine; *BUN*: blood urea nitrogen.

File name: Table S3.docx

Title of data: TRIPOD Checklist of Prediction Model Development and Validation

Description of data: Writing norms of this type of research.

1Section/Topic	I		Checklist Item	Page
Title and abstract	t			
Title	1);∨	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	Yes; P1
Abstract 2 0;V);∨	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	Yes; P2
Introduction			·	
Background	За);∨	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	Yes; P3
and objectives	Зb);∨	Specify the objectives, including whether the study describes the development or validation of the model or both.	Yes; P4, L76-79
Methods				
	4a);∨	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	Yes; P4, L80
Source of data	4b);∨	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	Yes; P4, L84-86
	Ба);V	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	Yes
Participants	ōb);V	Describe eligibility criteria for participants.	Yes; P5, L104
	5c);∨	Give details of treatments received, if relevant.	NA
Outcome	ба);∨	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	Yes; P6, L111
	6b);V	Report any actions to blind assessment of the outcome to be predicted.	NA
	7a);V	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.	Yes; P6, L116
Predictors	7b);∨	Report any actions to blind assessment of predictors for the outcome and other predictors.	NA
Sample size	8);V	Explain how the study size was arrived at.	NA
Missing data	9);V	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	Yes; P6, L127
	0a	D	Describe how predictors were handled in the analyses.	Yes; P6, L116
Statistical	0b	D	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	Yes; P6, L119
analysis	0c	V	For validation, describe how the predictions were calculated.	Yes; P6, L126
methods	0d);∨	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	Yes; P6, L159

	0e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	NA				
Risk groups	11);V	Provide details on how risk groups were created, if done.	Yes; P6, L111				
Development	10	V	For validation, identify any differences from the development data in setting, eligibility	N DC 1 122				
vs. validation		v	criteria, outcome, and predictors.	res; Po, L132				
Results								
			Describe the flow of participants through the study, including the number of participants					
	3a);V	with and without the outcome and, if applicable, a summary of the follow-up time. A	Yes; Figure 1				
			diagram may be helpful.					
Participante			Describe the characteristics of the participants (basic demographics, clinical features,	Vec D8 1 168				
Fanicipants	3b);V	available predictors), including the number of participants with missing data for	100-				
			predictors and outcome.	180				
	20	V	For validation, show a comparison with the development data of the distribution of	V				
	30	v	important variables (demographics, predictors and outcome).	res, rablez				
Madal	4a	D	Specify the number of participants and outcome events in each analysis.	Yes, P8, L168				
dovelopment	46	D	If done, report the unadjusted association between each candidate predictor and	Yes				
development	40		outcome.					
Madal	5a	D	Present the full prediction model to allow predictions for individuals (i.e., all regression	V				
			coefficients, and model intercept or baseline survival at a given time point).	1 05.				
specification	5b	D	Explain how to the use the prediction model.	Yes, P9, L196				
Model	16	۰v	Report performance measures (with CIs) for the prediction model.	Yes, P9, L190				
performance		,.						
Model-updating	17	V	If done, report the results from any model updating (i.e., model specification, model	NA				
			performance).	1111				
Discussion	1	-		Γ				
Limitations	18	•·V	Discuss any limitations of the study (such as nonrepresentative sample, few events per	Yes. P12, L236				
		,.	predictor, missing data).					
	9a	V	For validation, discuss the results with reference to performance in the development	Yes P11 L217				
Interpretation	<u> </u>	v	data, and any other validation data.	105, 111, 2217				
interpretation	9h		Give an overall interpretation of the results, considering objectives, limitations, results	Ves P10 I 198				
	50	, v	from similar studies, and other relevant evidence.	105,110 2190				
Implications	20);V	Discuss the potential clinical use of the model and implications for future research.	Yes, P9, L193				
Other information								
Supplementary	21		Provide information about the availability of supplementary resources, such as study	Vac				
information		, v	protocol, Web calculator, and data sets.	105				
Funding	22);V	Give the source of funding and the role of the funders for the present study.	NA				

TRIPOD Checklist: Prediction Model Development and Validation

1Section/Topic	ltem		Checklist Item	Page
litle and abstract		1	Identify the study as developing and/or validating a multivariable prediction model, the	1
Title	1	D;V	target population, and the outcome to be predicted.	Yes; P1
Abstract	2	D;V	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	Yes; P2
Introduction				
			Explain the medical context (including whether diagnostic or prognostic) and rationale	
Background	3a	D;V	for developing or validating the multivariable prediction model, including references to existing models.	Yes; P3
3b D;V			Specify the objectives, including whether the study describes the development or validation of the model or both	Yes; P4, L76-79
Methods		1		I
	4a	D;V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data) separately for the development and validation data sets, if applicable	Yes; P4, L83-92
Source of data	4b	D;V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up	Yes; P4, L83-
	5a	D·V	Specify key elements of the study setting (e.g., primary care, secondary care, general	Yes
Participants			population) including number and location of centres.	105
	<u>5b</u>	D;V	Describe eligibility criteria for participants.	Yes; P4, L103
	50		Clearly define the outcome that is predicted by the prediction model, including how and	NA Vagi D6, L 111
Outcome	6b	D,V	when assessed. Report any actions to blind assessment of the outcome to be predicted	NA
	7a	D:V	Clearly define all predictors used in developing or validating the multivariable prediction	Yes: P6. L116
Predictors	76	D.)/	model, including how and when they were measured. Report any actions to blind assessment of predictors for the outcome and other	NA
Sampla siza	7D 9		predictors.	NA NA
	0	D, V	Explain now me study size was anneed at.	INA
Missing data	9	D;V	imputation, multiple imputation) with details of any imputation method.	Yes; P6, L127
	10a	D	Describe how predictors were handled in the analyses.	Yes; P6, L125
Statistical	10b	D	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	Yes; P6, L130- 138
analysis	10c	V	For validation, describe how the predictions were calculated.	Yes; P6, L139
methods	10d	D;V	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	Yes; P7, L159
	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	Yes; P7, L137
Risk groups	11	D;V	Provide details on how risk groups were created, if done.	Yes; P6, L111
Development	12	V	For validation, identify any differences from the development data in setting, eligibility	Ves: P6 1 132
vs. validation	12	•	criteria, outcome, and predictors.	103, 10, 2152
Results	1	1		1
	13a	D;V	with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	Yes; Figure 1
Participants	13b	D;V	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for	Yes, P8, L168- 180 and
	12-		For validation, show a comparison with the development data of the distribution of	SupTable2 Yes,
	130	V	important variables (demographics, predictors and outcome).	SupTable3
Model	14a	D	Specify the number of participants and outcome events in each analysis.	Yes, P8, L168
development	14b	D	If done, report the unadjusted association between each candidate predictor and outcome.	Yes, SupTable1
Model	15a	D	Present the full prediction model to allow predictions for individuals (i.e., all regression	Yes.
specification	15b	D	Explain how to the use the prediction model.	Yes, P9, L196
Model performance	16	D;V	Report performance measures (with CIs) for the prediction model.	Yes, P9, L190
Model-updating	17	V	If done, report the results from any model updating (i.e., model specification, model performance).	NA
Discussion				
Limitations	18	D;V	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	Yes, P12, L246
	19a	v	For validation, discuss the results with reference to performance in the development data, and any other validation data	Yes, P11, L237
Interpretation	19b	D:V	Give an overall interpretation of the results, considering objectives, limitations, results	Yes, P10 L210-
Impliantions	20		Trom similar studies, and other relevant evidence.	245
Other information	20	D;V	Discuss the potential clinical use of the model and implications for future research.	res, P12, L254
Supplementary		_	Provide information about the availability of supplementary resources, such as study	
information	21	D;V	protocol, Web calculator, and data sets.	Yes
Funding	22	D;V	Give the source of funding and the role of the funders for the present study.	NA

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

BMJ Open

Severe Acute Kidney Injury Predicting Model based on transcontinental databases: a single-center prospective study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054092.R3
Article Type:	Original research
Date Submitted by the Author:	11-Dec-2021
Complete List of Authors:	Liang, Qiqiang; Zhejiang University School of Medicine Second Affiliated Hospital Xu, Yongfeng; Zhejiang University School of Medicine Second Affiliated Hospital Zhou, Yu; Zhejiang University School of Medicine Second Affiliated Hospital Chen, Xinyi; Zhejiang University School of Medicine Second Affiliated Hospital Chen, Juan; Zhejiang University School of Medicine Second Affiliated Hospital Huang, Man; Zhejiang University School of Medicine Second Affiliated Hospital
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Diagnostics
Keywords:	Acute renal failure < NEPHROLOGY, INTENSIVE & CRITICAL CARE, Information technology < BIOTECHNOLOGY & BIOINFORMATICS, Adult intensive & critical care < INTENSIVE & CRITICAL CARE

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
0	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
ו ∠ רב	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
30	
22	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
43	
44	
45	
46	
47	
48	
40	
49	
50	
51	
52	
53	
51	
54 rr	
55	
56	
57	
58	
59	
60	

Severe Acute Kidney Injury Predicting Model based on transcontinental 1

2 databases: a single-center prospective study

- 3 Qiqiang Liang¹; Yongfeng Xu¹; Yu Zhou²; Xinyi Chen², MM; Juan Chen²; Man Huang^{1*}
- 4 General Intensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou,

5 China.

- 6 *Corresponding author: Man Huang, MD PhD.
- 7 Department: General Intensive Care Unit
- 8 Hospital: Second Affiliated Hospital of Zhejiang University School of Medicine
- 9 Address: No. 1511, Jianghong Road, Bingjiang District, Hangzhou City, Zhejiang Province

10 Tel: + 86 571 89713427

11 Fax: + 86 571 89713427

12 E-mail: huangman@zju.edu.cn.

13 ORCID: 0000-0002-0842-2254

- 14
- District, Hang. 15
- 16
- 17
- 18

22

- 19
- 20
- 21

1		
2		
3	22	A best sets
4 5	23	Abstract:
6 7	24	Objectives: There are many studies of acute kidney injury (AKI) diagnosis models lack of external
8 9 10	25	validation and prospective validation. We constructed the models using three databases to predict severe
11 12 13	26	AKI within 48 hours in intensive care unit (ICU) patients.
14 15	27	Design: A retrospective and prospective cohort study.
16 17 18	28	Setting: We studied critically ill patients in our database (SHZJU-ICU) and two other public databases,
19 20 21	29	the Medical Information Mart for Intensive Care (MIMIC) and AmsterdamUMC databases, including
22 23	30	basic demographics, vital signs, and laboratory results. We predicted the diagnosis of severe AKI in
24 25 26	31	patients in the next 48 hours using machine-learning algorithms with the three databases. Then, we
27 28 20	32	carried out real-time severe AKI prediction in the prospective validation study at our center for one year.
30 31	33	Participants: All patients included in three databases with uniform exclusion criteria.
32 33 34	34	Primary and secondary outcome measures: Effect evaluation index of prediction models.
35 36	35	Results: We included 58492 patients, and a total of 5257 (9.0%) patients met the definition of severe
37 38 39	36	AKI. In the internal validation of the SHZJU-ICU and MIMIC databases, the best area under the receiver
40 41 42	37	operating characteristic curve (AUROC) of the model was 0.86. The external validation results by
42 43 44	38	AmsterdamUMC database were also satisfactory, with the best AUROC of 0.86. A total of 2532 patients
45 46 47	39	were admitted to the center for prospective validation; 358 positive results were predicted, and 344
48 49	40	patients were diagnosed with severe AKI, with the best sensitivity of 0.72, the specificity of 0.80, and
50 51 52	41	the AUROC of 0.84.
53 54 55	42	Conclusion: The prediction model of severe AKI exhibits promises as a clinical application based on
56 57	43	dynamic vital signs and laboratory results of multi-center databases with prospective and external
58 59	44	validation.

Keywords: Machine learning; Acute kidney injury; Real-time prospective validation; External

validation. Strengths and limitations of this study: A prospective validation in machine learning of AKI research rather than other studies; Three large database containing different national populations and regions; Variable's sampling limited by the monitoring frequency of clinical data; Differences in the samples proportion of three databases; The dimensions of variables are not rich enough. Data sharing statement: No data available. **Introduction:** Acute kidney injury (AKI), as a common clinical complication in the intensive care unit (ICU), significantly increases the duration of hospitalization and mortality[1]. AKI is divided into three types according to the various aetiologies: prerenal (renal hypoperfusion), intrarenal (vascular, glomerular, or tubulointerstitial lesions), and postrenal (urinary tract obstruction)[2]. Although nearly all diseases associated with ICU admission may cause AKI, acute tubular necrosis (ATN) and prerenal azotaemia are the most common causes[3]. All AKI diagnostic criteria including the latest Kidney Disease: Improving Global Outcomes (KDIGO) standard are currently based on the creatinine level and urine volume[4]. However, the increase in the creatinine level or decrease in the urine volume lags the onset of AKI[2]. Many studies have suggested

- that early diagnosis and treatment of reversible AKI can reduce mortality[5]. Therefore, the creatinine
- level and urine volume are not satisfactory to meet clinical diagnostic demands. Consequently, many

Page 5 of 31

BMJ Open

67	researchers have tried to develop an early warning model by analysing the risk factors for AKI[6].
68	Patient complications, such as diabetes, hypertension, cardiovascular disease, chronic liver disease,
69	sepsis, and trauma, are identified as important risk factors for AKI[7]. The AKI prediction model and
70	scoring system developed based on high-risk factors has gradually become the focus of research
71	considering the lower clinical application threshold compared with that of new biomarkers[6]. Although
72	most previous prediction models use the multiple logistic regression model, a variety of AKI prediction
73	models based on machine learning have resulted in satisfactory outcomes[6]. Since the first AKI
74	prediction model study based on artificial intelligence was published in 2016, researchers have built more
75	than 20 published AKI prediction models successively by using local or multi-centre databases[6,8-14].
76	The results indicate that these models can predict the occurrence of AKI and the need for renal
77	replacement therapy (RRT) within 24 or 48 hours, with accuracies ranging from 81% to 97%[6,15]. In
78	addition, many studies have focused on subspecialized conditions, including cardiac surgery, trauma,
79	and burns[14-16]. However, the common defect in these studies is the lack of external validation and
80	prospective validation, which causes the prediction model to deviate from the clinical scenarios and limits
81	extrapolation beyond the scope of the data.
82	In this study, we built models to predict AKI within 48 hours in critically ill patients by using
83	transcontinental three databases. Then, we evaluated the clinical effect of the model through a one-year
84	prospective validation at our centre.
85	
86	Methods:
87	Study design and setting
88	We collected patients using three ICU databases and prospectively validated the models in our centre.

The first database was our centre general ICU database (SHZJU-ICU) of the Second Affiliated Hospital of Zhejiang University School of Medicine, an academic teaching hospital. Since its establishment in 2017, it has included 12000 ICU patients' data and is updated daily. The Medical Information Mart for Intensive Care (MIMIC) III database, the second one, is an open ICU database provided by the Massachusetts Institute of Technology and includes nearly 60000 ICU patients from North America[17]. Lastly, the AmsterdamUMC database is an available European ICU database with health data related to 23000 patients admitted to ICUs in parts of Europe[18]. The research flow chart is shown in Figure 1. **Study definition** In this study, the diagnosis of AKI was confirmed based on three stages according to the KDIGO criteria[4]. We defined the patients who met the KDIGO AKI II and III criteria as severe AKI groups and the others as negative groups. We excluded patients with lack of creatinine measurements during admission, patients with creatinine baseline more than 3.0 mg/dL at admission, patients who met severe AKI diagnosis within 24 hours, and patients who used RRT within 48 hours after admission[19]. In addition, we excluded pregnant women, patients younger than 14 years old, and patients hospitalized in the ICU for fewer than 48 hours. After the patient was admitted to ICU, we performed a prediction every 24 hours and recorded a prediction time. If the patient was diagnosed with severe AKI within 48 hours, the predictive time was defined as a positive predictive point, and the others were defined as a negative point. The study was evaluated and approved by the Ethics Committee of the Second Affiliated Hospital of Zhejiang University School of Medicine as study number 2019-078. **Data Collection** The variables included demographic data, vital signs, basic and primary diseases, laboratory results,

Page 7 of 31

BMJ Open

important operation records, and drug records. Comorbidity included hypertension, diabetes, cardiopathy, liver disease, and malignant tumors. The primary disease was the main cause of admission to the ICU following the ICD-10 codes. The vital signs and clinical laboratory results were transformed into different variables according to the average, variance, maximum, minimum, and final value before diagnosis. We use a method similar to the forward incremental method in the multivariate logic regression model, that is, the combination of embedded feature selection and forward addition for feature selection. First of all, all variables are trained in the model, then list by variables importance. variables are added to the model one by one according to the variable importance. a variable is retained if it causes the AUC growth to be greater than 0.01, otherwise delete it. We transformed the MIMIC and AmsterdamUMC databases according to our centre database structure, unifying the unit and diagnostic codes. We deleted variables missing more than 50%. Variables missing more than 30% but less than 50% are listed to clinicians who determine the potential correlation between these variables and AKI. We carry out multiple interpolation for these variables which clinicians require to be retained, and the others deleted. Variables missing less than 30% are fill in multiple interpolation. All Missing data between three databases and values included in the model shown in supplementation file Table S1.

Model construction and external validation

127 The ratio of the training and internal validation sets was 4:1. The SHZJU and MIMIC databases 128 training sets were mixed into a new training set. There were more negative data than positive data, so we 129 randomly sampled the negative datasets and constructed a new data subset with a sampling ratio of 130 positive and negative data of 1:5 in model building in order to extract the importance variables. In the 131 subsequent model validation, we adopted the original data set. We used multiple logistic regression, 132 random forest, XGBoost, AdaBoost, LightGBoost, gradient boosting decision tree (GBDT), and debug

to assess the variables and model-related parameters by the fivefold cross-validation method. After the models were built, we used the SHZJU-ICU and MIMIC test sets for internal validation of the model and the AmsterdamUMC database for external validation. The most appropriate cut-off value was determined according to the K-S curve. The prediction model represents the results of each prediction with a probability between 0 to 1.0. We define results more than 0.4 as high-risk, that is, positive results, and the rest as negative results. Through internal validation and external validation, we calibrated the model by adjusting the super-parameters and using the Platt calibration algorithm and compared the calibration effect by drawing a reliability diagram. All model building and validation processes were performed in Python 3.6.

142 Prospective validation

The prospective research period was 2020.01.01 to 2020.12.31. We collected real-time data when patients were admitted to the ICU, transformed the data according to the requirements, and formed a complete sample for the prediction model after passing the integrity test. We had established a visualization scheme and allowed researchers to review the predictions daily. The daily prediction results were not publicly accessible during the study to avoid affecting clinicians' decisions, but the diagnosis results were available to the researchers as visual graphics. We sampled the 20% predicted data every month and deleted samples with more than 50% missing values to ensure data correctness. When a patient has the following conditions, AKI prediction system will end the patient's prospective prediction: A. a positive diagnosis; B. Transfer out of ICU or death with negative diagnosis. All diagnosis of severe AKI needs to be reviewed by two ICU attending physicians independently, and if the they have different opinion, the third one will be appealed.

154 Statistical analysis:

BMJ Open

The population characteristics were reported as the medians and inter-quartile ranges (IQRs) for skewed data and the means and standard deviations for normally distributed data. The independent sample T-test was used for normally distributed data, and the rank-sum test was used for the rest. Dichotomous variables were assessed by the chi-square test, and a P value less than 0.05 was considered statistically significant. The non-normally distributed data were analyzed by exponential transformation and logarithmic transformation. The effect of the model was evaluated by parameters such as the AUROC, accuracy, specificity, and F1-score. **Patient and Public Involvement:** The information of cases in three databases was in a state of complete desensitization in the process of building the model. During the prospective study, all the patients signed an informed consent form at the beginning of admission to ICU. The real-time data discussed and used by only the study members, and were not made public during the study period. All data were anonymized before the authors accessed them for the purpose of this study. Therefore, patients' priorities, experience, and preferences will not affect the development of the research question and outcome measures. If necessary, we will inform patients of relevant research results by telephone. **Results:** According to the inclusion criteria and exclusion criteria, we selected 58492 patients from three

173 databases who met the requirements of the study, including 6461 patients from the SHZJU-ICU database,

- 174 36690 patients from the MIMIC database, and 15341 patients from the AmsterdamUMC database. A
- total of 5257 (9.0%) patients met the definition of severe AKI (11.8% in SHZJU-ICU, 7.6% in MIMIC,
- and 10.9% in AmsterdamUMC). The distributions of age and sex in the three centers were similar, but

С		
2		
4		
5		
7		
8		
9	_	
1	0 1	
1	2	
1	3	
1	4	
1	5 6	
1	7	
1	8	
1	9	
2	0 1	
2	' 2	
2	3	
2	4	
2	5 6	Age
2	7	
2	8	Gei
2	9	
3	0 1	Rad
3 2		- au
	ν	- M
3	2 3	V
3 3	2 3 4	B
3 3 3 3	2 3 4 5	V B A
3 3 3 3 3 3 3 3 3	234567	B A C
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2345678	V B A C Adı
3 3 3 3 3 3 3 3 3 3 3	23456789	V B A C Adı (mç
3 3 3 3 3 3 3 3 3 4	2345678901	V B A C Adı (mç (sd
3 3 3 3 3 3 3 3 4 4 4	23456789012	V B A C Adı (mç (sd
3 3 3 3 3 3 3 3 4 4 4 4 4	234567890123	V B A C Adı (mç (sd Adı (mç
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4	2345678901234	V B A C Adı (mç (sd (mç (sd)
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4	234567890123456	V B A C Adı (mç (sd (mç (sd (sd
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4	2345678901234567	V B A C Adı (mç (sd (mç (sd Car
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4	2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8	V B A C Adı (mç (sd (sd (sd Car Car
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4	234567890123456789	V B A C Adı (mç (sd (sd (sd Car Cirr Car
3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5	23456789012345678901	V B A C Adı (mç (sd (sd (sd (sd Car Car Car (%)
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5	2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2	V B A C Adı (mç (sd Adı (mç (sd Car Car Car Car Car
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3	V B A C (mç (sd (sd (mç (sd (sd Car Car Car (%) Dia
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5	23456789012345678901234	V B A A (mç (sd A dı (mç (sd A dı (mç (sd Car Car Car Car Car Car Dia
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	2345678901234567890123456	V B A C Adı (mç (sd (sd (sd (sd (sd Car Car Car Car (%) Dia Hyp
333333344444444445555555555555555555555	23456789012345678901234567	V B A C (mg (sd (sd (sd (sd (sd Car Car (%) Dia Hyp (%)
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5	2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8	V B A C Adı (mç (sd (sd (sd (sd (sd Car Car Car Car Car Car Car Car Car (%) Dia
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5	2345678901234567890123456789	V B A C Adı (mç (sd Adı (mç (sd Car Car Car Car Car (%) Dia Hyp (%) Ver

177	the difference	es in race wer	e large	e. Asian patients	s accounted fo	r more t	han 99% in the S	HZJU-ICU			
178	database, and	only approxir	nately 2	2.5% in the MIN	MIC database.	White pe	cople accounted for	r more than			
179	70% of the MIMIC database. In addition, patients from the MIMIC database had a higher incidence of										
180	the tumor, liver cirrhosis, diabetes, and hypertension. Patients in the AmsterdamUMC and SHZJU-ICU										
181	databases had a higher proportion of mechanical ventilation and overall survival rate. Severe AKI										
182	patients had l	onger ICU hos	spital st	ays and higher r	nortality. More	e details a	are presented in Ta	ble 1.			
183 184	Table 1: Cl kidney injur	inical Demo y.	graphi	cs and Outco	mes in patie	ents with	n or without sev	ere acute			
	SHZJU-ICU	SHZJU-ICU	P-	MIMIC	MIMIC	P-	AmsterdamUMC	AmsterdamUMC	P-		
	Negative	Severe AKI	valu	Negative	Severe AKI	value	Negative	severe AKI	value		
	(N=5695)	(N=766)	е	(N=33879)	(N=2811)		(N=13661)	(N=1680)			
ge, median [IQR]	60.5	62.1	0.00	62.0	64.0	<0.001	64.5	64.3	0.04		
	[48.8-70.1]	[50.1-72.5]	4	[45.0-76.0]	[52.0-76.0]		[54.5,74.5]	[52.5,78.5]			
ender. male (%)	3561 (64.9)	438 (59.8)	0.00	18976 (56.0)	1524 (54.2)	0.06	8920 (65.3)	1054 (63.9)	0.03		
			7								
ace					<u>`</u>		1	1	1		
White	3 (0 05)	1 (0 1)	1	23796 (70.2)	2005 (71.3)	0.23	1	1	1		
Black	1 (0 02)	0	1	2455 (7.2)	199 (7.1)	0.45					
Asian	5691(99.9)	764 (99 7)	1	918 (2.7)	70 (2 5)	0.54			/		
Other	0	1 (0 1)	1	6710 (19.8)	537 (19.1)	0.34	1	1	/		
dmission Sor	0.0 (0.24)	1 0 (0 40)	<0.0	1 1 (0 41)	1 1 (0 50)	0.04	1 2 (0 25)	1 1 (0 29)	, <0.00		
	0.9 (0.04)	1.0 (0.40)	<0.0 01	1.1 (0.41)	1.1 (0.50)	0.04	1.2 (0.33)	1.1 (0.36)	1		
ad)			01						I		
dmission BUN	18 (11)	21 (9)	<0.0	17 (12)	23 (12)	<0.001	18 (13)	23 (10)	<0.00		
ng/dl) mean		21(0)	01		20 (12)	.0.001	10 (10)	20 (10)	1		
sd)			01						•		
ancer n (%)	644 (11 3)	48 (6 3)	<0.0	6652 (19.6)	752 (26.8)	<0.001	1	1	1		
	011(11.0)	10 (0.0)	01	0002 (10.0)	102 (20.0)	0.001			1		
irrhosis n (%)	43 (0.8)	6 (0.8)	0.89	1180 (3.5)	426 (15 2)	<0.001	/	1	/		
ardionathy n	231 (4 1)	42 (5 5)	0.08	4840 (14 3)	336 (12.0)	0.001			/		
()	201 (4.1)	42 (0.0)	0.00	4040 (14.3)	550 (12.0)	0.001	,	1	1		
(0)	205 (5.4)	62 (9 2)	0.00	7250 (21.4)	790 (29 1)	<0.001	1	1	1		
iaveles, II (%)	JUJ (J.4)	00 (0.2)	0.00	1200 (21.4)	103 (20.1)	~ 0.001	1	1	I		
·····	000 (45 0)	445 (45 0)	2	46000 (40.0)	4540 (50.0)	-0.004			1		
ypertension, n %)	889 (15.6)	115 (15.0)	0.70	10328 (48.2)	1513 (53.8)	<0.001	1	1	1		
entilation, n (%)	2569 (45.1)	592 (77.3)	<0.0	13009 (38.4)	1503(53.5)	<0.001	7718(56.5)	1248(74.3)	<0.00		
			01						1		
pera	tion, n (%)	3361 (59.1)	373 (48.7)	<0.0 01	12455 (36.7)	1430 (50.8)	<0.001	1	1		1
-------	------------------------	-----------------	-----------------	------------	-------------------	----------------------	--------------------	----------------------	--------------------	---------	----
U	Hours,	50.8	164.4	<0.0	51.0	103.4	<0.001	24.0	142.0	0	<0
edia	n [IQR]	[23.0-139.5]	[70.3-328.6]	01	[28.5-110.3]	[50.1-261.3]		[19.8,63.5]	[45.4	,394.2]	1
irviv	ved, n (%)	4997 (87.7)	380 (49.6)	<0.0	25648 (75.7)	1356 (48.2)	<0.001	10942(80.1)	1033	(61.5)	<0
				01							1
	185	SHZJU-ICU	: The genera	I ICU d	latabase of th	e second affi	liated hos	pital of Zheii	ang unive	rsitv	
	186	school of m	edicine: MIN	1/C: Me	edical Informa	ation Mart for	Intensive	e Care: <i>IQR</i> :	Inter-Qua	artile	
	187	Range: ICU	: Intensive C	are Un	it: AKI: Acute	Kidnev Iniurv	. Scr. ser	um creatinin	e: <i>BUN</i> : bl	lood	
	188	urea nitroge	n.		-,)]-)			-,		
	189	There were	e significant d	lifferenc	es in the impo	ortant paramete	ers of the	variables amo	ng the diffe	erent	
	190	models (see F	Figure S1). Ho	wever, 1	the trend of the	creatinine leve	el in the pa	st week was st	till an impo	rtant	
	191	variable, follo	owed by urine	volume	, blood urea ni	trogen level, te	emperature	e, and length o	f ICU stay.	The	
	192	cut-off value	used to disting	guish be	etween a negat	ive and positive	e predictio	on was determ	ined by the	K-S	
	193	curve, with v	alue of 0.423	(see Fig	gure S2). The	GBDT model l	had the be	st prediction e	effect in the	e test	
	194	set, followed	by XGBoost	and Lig	ghtGBoost. In	the two centra	l internal	validation set	s, the two l	best-	
	195	performing m	nachine learni	ng algo	rithms with gre	eat AUROC ar	e LightGE	Boost (SHZJU	-ICU of 83	.2%,	
	196	MIMIC of 86	5.0%) and XG	Boost (S	SHZJU-ICU 85	5.9%, MIMIC 8	85.6%), as	detailed in Fi	gure 2. Ove	erall,	
	197	the sensitivity	y (SHZJU-IC	U 0.84,	MIMIC 0.83)	and the negati	ve predict	ive value (SH	ZJU-ICU (0.90,	
	198	MIMIC 0.90) of the predi	ctive m	odel were higl	n, but the spec	ificity wa	s general (SH	ZJU-ICU (0.79,	
	199	MIMIC 0.75)), as shown in	Table 2	2. In the extern	al validation b	ased on A	msterdamUM	C database	, the	
	200	overall mode	l validation ef	ffect res	ults were satis	factory, and X	GBoost ha	nd the best per	rformance,	with	
	201	an AUROC o	of 0.84, as sho	wn in Fi	igure 2 and Tal	ole 2.					
	202										
	000	Table O: M	مطما بيمانطحية	00		dotobasa-	with me	bine le	الأحمام م	hm	
	203	Table 2: M	odel validat	ion res	suits by three	e databases	with mad	chine learni	ng algorit	nm	
	Mod <u>el</u>		AUROC		ccuracy <u>Se</u>	ensitiv <u>ity</u> S	Spec <u>ificit</u>	y PPV	NPV_	F1	
		alidation wi		U data	abaso						
	Internal v	anualion wi	III SHZJU-IC		inusc						
	Internal v Logistic	regression	0.748	0.	662 0.	834 0	0.576	0.496	0.874	0.622	

10

LightGBoost

60

GBDT		0.845	0.765	0.843	0.725	0.606	0.902	0.705
AdaBoo	st	0.806	0.721	0.824	0.67	0.555	0.884	0.663
Random	Forest	0.821	0.763	0.71	0.789	0.627	0.845	0.666
XGBoos	t	0.859	0.779	0.81	0.763	0.631	0.889	0.709
Internal	validation wit	th MIMIC data	ıbase					
Logistic	regression	0.733	0.695	0.643	0.72	0.535	0.801	0.584
LightGB	loost	0.86	0.768	0.822	0.741	0.613	0.893	0.702
GBDT		0.846	0.765	0.786	0.755	0.616	0.876	0.691
AdaBoo	st	0.837	0.732	0.831	0.683	0.567	0.89	0.674
Random	r Forest	0.832	0.738	0.791	0.712	0.578	0.872	0.668
XGBoos	t	0.856	0.758	0.833	0.721	0.598	0.895	0.695
External validation with AmsterdamUMC database								
Logistic	regression	0.704	0.767	0.516	0.893	0.706	0.787	0.596
LightGB	loost	0.859	0.763	0.827	0.731	0.606	0.894	0.7
GBDT		0.861	0.764	0.84	0.727	0.606	0.901	0.704
AdaBoo	st	0.85	0.755	0.813	0.726	0.597	0.886	0.689
Random	Forest	0.82	0.743	0.77	0.729	0.587	0.864	0.666
XGBoos	t	0.865	0.75	0.873	0.688	0.584	0.916	0.7
Prospec	tive validatio	n with SHZJU	I-ICU					
Logistic	regression	0.758	0.772	0.648	0.834	0.662	0.826	0.655
LightGB	loost	0.819	0.796	0.596	0.895	0.74	0.816	0.66
GBDT		0.827	0.781	0.706	0.818	0.66	0.848	0.683
AdaBoo	st	0.808	0.766	0.686	0.805	0.638	0.837	0.661
Random	Forest	0.804	0.755	0.715	0.775	0.613	0.845	0.66
XGBoos	t	0.841	0.779	0.724	0.807	0.652	0.854	0.686
204	AUROC: Are	ea Under Rece	eiver Operatir	ng Characteris	stic; <i>PPV</i> : Posit	tive Predictiv	ve Value; A	IPV:
205	Negative Pro	edictive Value	; SHZJU-IC	U: The gener	al ICU databas	se of the se	cond affilia	ated
206	hospital of	Zhejiang univ	ersity schoo	l of medicine	e; <i>MIMIC</i> : Med	dical Informa	ation Mart	for
207	Intensive Ca	ire; <i>GBDT</i> : Gra	adient Booste	ed Decision T	ree.			
208								
209	According	to the inclusion	n and exclusion	on criteria, we	delete 267 pati	ents among 9	94 patients	with
	U			,	ł	5		
210	creatinine bas	seline more than	n 3.0 mg/dL at	admission, 39	patients met sev	vere AKI diag	gnosis withi	n 24
			-			-		
211	hours, and 26	patients who u	sed RRT with	in 48 hours aft	er admission, 10	08 patients ho	spitalized ir	n the
						-		

ICU for fewer than 48 hours. A total of 2532 patients were admitted to our centre for prospective

validation, and the prediction model made 16858 times predictions. In the prospective cohort, there was

no significant difference in age, gender, baseline creatinine and urea nitrogen, and complications. The

BMJ Open

proportion of mechanical ventilation and the ICU stay time in AKI patients were longer with higher mortality. Above all, there was no significant difference between the prospective and the retrospective cohort. More detail sees in supplementation file Table S2. In the end, 358 positive results were predicted, and the rest were negative results. There are 344 patients with severe AKI were diagnosed and the prediction accuracy was 83.5%. The model with the highest area under the curve was XGBoost, 0.84 with the best sensitivity of 0.72, the specificity of 0.80. The results of the prospective study are similar to those of the external validation of the model, and are relatively stable. More detail is presented in Figure 3 and Table 2. **Discussion:** In this study, we built predictive models by machine learning to predict the incidence of severe AKI with three databases in different regions and in the next 48 hours. After internal and external validation, prospective validation over one year was carried out to verify the model effects. The three databases come from three countries that are in Asia, Europe, and North America, which proves that the model is

universal to some extent.

Despite the huge amount of data, many databases are still not suitable for prospective research because they are not updated promptly. Tomasev, N and colleagues have provided research on AKI prediction models with a large amount of data[10]. The study covered 703782 adult patients with 6 billion individual items, including 620000 elements. In this study, a depth neural network model was used for real-time prediction. A total of 55.8% of severe AKI patients were predicted within the first 48 hours, although each accurate prediction was accompanied by two mispredictions[10]. This study provided a new scheme for real-time prediction and indicated that we should prospectively evaluate and

independently validate models to explore their effectiveness. In a prospective study, Flechet, M et al compared an AKI prediction model with clinicians in 252 patients and found that the clinical effect of the random forest model for predicting AKI-II/III was equivalent to that of clinicians. Our prediction model graphical visualization of the model was installed in the centre's database for better usage. In addition, our database is updated daily to achieve daily predictions and present the results to researchers. In the prospective validation of our study, the stability of the prediction model confirmed its promise, which provides a basis for future research. There are many studies of artificial intelligence for predicting the occurrence of AKI, but most of them are single-centre studies, and the extrapolation effect has been controversial. In 2016, Koyner, J, and his colleague published the first study of an AKI prediction model based on multi-centre data. In all 202961 patients, 17541 (8.6%) had AKI, 4251 (3.5%) had AKI-II, and 1242 (0.6%) had AKI-III. A multivariate logistic regression model was used to predict AKI in this study with an AUROC of 0.74 (95% CI=0.74). With the classification of AKI, the AUROC of the prediction model gradually increased to 0.84[8]. Subsequently, the study team used a new machine learning algorithm, to build a more accurate model to predict the occurrence of AKI-II, with an AUROC of 0.9 within 24 hours and 0.87 within 48 hours[19]. Recently, the research team included data from two other centres, namely, LUMC (N=200613) and NUS (N=246895), to externally validate the AKI-II prediction model with AUROCs reaching 0.85 to 0.86, suggesting that the artificial intelligence model has stable predictive ability[12]. This series of studies included many data points, suggesting the feasibility of artificial intelligence in the diagnosis of AKI, but the proportion of positive patients (3.5%) and ICU patients (30%) was too low to properly predict AKI. Our research is similar to the above. The SAHZJU-ICU database is a single-centre database representing south-eastern China, and the MIMIC database is a well-known open ICU database in the

264

Limitations:

1

BMJ Open

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
25	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
20	
29	
40	
41	
42	
43	
44	
45	
46	
<u>4</u> 7	
-+/ 10	
48	
49	
50	
51	
52	
53	
54	
55	
55	
20	
57	
58	
59	
60	

United States. The AmsterdamUMC database is a public database located in Europe. The population
structure and diseases in the three databases are complete but different in the distribution of complications
and race. Therefore, it provides a prediction model with unparalleled stability compared with other
studies.

265 This retrospective multi-centre study was unable to carry out more clinical feature mining and 266 comparison because of different data structures. The differences between the three databases partly 267 reflect some demographic differences between Europe, the United States and China, resulting in a decline 268 in the accuracy of the prediction model. There are some differences in the number of patients included 269 in the three databases, which may affect the choice of variables. As a result of the study design, we 270 deleted patients with ICU hospitalization of less than 48 hours, which may result in the exclusion of most 271 relatively mild patients and may reduce false positives. Second, in the prospective data study in 2020, 272 there may be deviations in the inclusion of patients in the centre, thus affecting the interpretation of the 273 follow-up prospective results. Finally, given the low incidence of severe AKI and the great difference in 274 the proportion of positive and negative samples, the data may be accidental. Our model seems to be 275 superior to diagnostic non-AKI patients rather than AKI because of the proportion of positive data that 276 we include. In the retrospective study, we reduced the proportion of negative data by randomization but 277 retain all date in prospective phase with the sensitivity decreases.

278

279 Conclusion:

Based on databases of patients of different races from different countries, we constructed stable

2		
3 4 5	281	machine learning models to predict the occurrence of AKI in the next 48 hours. Prospective validation
6 7 8	282	through the implementation of an updated local database is an effective exploration of further research.
9 10	283	
11 12 13	284	Data sharing statement: No data available.
14 15 16	285	Ethics approval: Our research was approved by the ethics committee of the Second Affiliated Hospital
17 18	286	of Zhejiang University School of Medicine.
19 20 21	287	Competing interests for authors: The authors declare that they have no competing interests.
22 23 24	288	
24 25 26	289	Reference:
27 28 29	290	1. Ronco, C.; Bellomo, R.; Kellum, J.A. Acute kidney injury. <i>The Lancet</i> 2019 , <i>394</i> , 1949-
30 31	291	1964, doi:10.1016/s0140-6736(19)32563-2.
32 33 34	292	2. Pakula, A.M.; Skinner, R.A. Acute Kidney Injury in the Critically III Patient: A Current
35 36 37	293	Review of the Literature. <i>J Intensive Care Med</i> 2016 , <i>31</i> , 319-324,
38 39	294	doi:10.1177/0885066615575699.
40 41 42	295	3. Bellomo, R.; Kellum, J.A.; Ronco, C. Acute kidney injury. <i>The Lancet</i> 2012 , <i>380</i> , 756-
43 44 45	296	766, doi:10.1016/s0140-6736(11)61454-2.
46 47	297	4. Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. <i>Nephron Clin</i>
48 49 50	298	<i>Pract</i> 2012 , <i>120</i> , c179-184, doi:10.1159/000339789.
51 52	299	5. Coelho, S.; Cabral, G.; Lopes, J.A.; Jacinto, A. Renal regeneration after acute kidney
53 54 55	300	injury. Nephrology (Carlton) 2018, 23, 805-814, doi:10.1111/nep.13256.
56 57 58	301	6. Wilson, F.P.; Greenberg, J.H. Acute Kidney Injury in Real Time: Prediction, Alerts, and
59 60	302	Clinical Decision Support. <i>Nephron</i> 2018 , <i>140</i> , 116-119, doi:10.1159/000492064.

1			
3			
4 5	303	7.	Wu, Y.; Hao, W.; Chen, Y.; Chen, S.; Liu, W.; Yu, F.; Hu, W.; Liang, X. Clinical features,
6 7	304		risk factors, and clinical burden of acute kidney injury in older adults. Ren Fail 2020,
8 9 10	305		<i>42</i> , 1127-1134, doi:10.1080/0886022X.2020.1843491.
11 12	306	8.	Koyner, J.L.; Adhikari, R.; Edelson, D.P.; Churpek, M.M. Development of a Multicenter
13 14 15	307		Ward-Based AKI Prediction Model. Clin J Am Soc Nephrol 2016, 11, 1935-1943,
16 17	308		doi:10.2215/CJN.00280116.
18 19			
20 21	309	9.	Low, S.; Vathsala, A.; Murali, T.M.; Pang, L.; MacLaren, G.; Ng, W.Y.; Haroon, S.;
22 23	310		Mukhopadhyay, A.; Lim, S.L.; Tan, B.H., et al. Electronic health records accurately
24 25 26	311		predict renal replacement therapy in acute kidney injury. BMC Nephrol 2019, 20, 32,
27 28	312		doi:10.1186/s12882-019-1206-4.
29 30 31	313	10.	Tomasev, N.; Glorot, X.; Rae, J.W.; Zielinski, M.; Askham, H.; Saraiva, A.; Mottram, A.;
32 33	314		Meyer, C.; Ravuri, S.; Protsyuk, I., et al. A clinically applicable approach to continuous
34 35 36	315		prediction of future acute kidney injury. Nature 2019, 572, 116-119,
37 38 20	316		doi:10.1038/s41586-019-1390-1.
40 41	317	11.	Flechet, M.; Falini, S.; Bonetti, C.; Güiza, F.; Schetz, M.; Van den Berghe, G.; Meyfroidt,
42 43 44	318		G. Machine learning versus physicians' prediction of acute kidney injury in critically ill
45 46	319		adults: a prospective evaluation of the AKIpredictor. Critical Care 2019, 23, 282,
47 48 49	320		doi:10.1186/s13054-019-2563-x.
50 51	321	12.	Churpek, M.M.; Carey, K.A.; Edelson, D.P.; Singh, T.; Astor, B.C.; Gilbert, E.R.;
52 53 54	322		Winslow, C.; Shah, N.; Afshar, M.; Koyner, J.L. Internal and External Validation of a
55 56 57	323		Machine Learning Risk Score for Acute Kidney Injury. JAMA Netw Open 2020, 3,
58 59 60	324		e2012892, doi:10.1001/jamanetworkopen.2020.12892.
-			40

2			
3 4 5	325	13.	Yuan, Q.; Zhang, H.; Deng, T.; Tang, S.; Yuan, X.; Tang, W.; Xie, Y.; Ge, H.; Wang,
6 7	326		X.; Zhou, Q., et al. Role of Artificial Intelligence in Kidney Disease. Int J Med Sci 2020,
9 10	327		<i>17</i> , 970-984, doi:10.7150/ijms.42078.
11 12 13	328	14.	Li, Y.; Xu, J.; Wang, Y.; Zhang, Y.; Jiang, W.; Shen, B.; Ding, X. A novel machine
14 15	329		learning algorithm, Bayesian networks model, to predict the high-risk patients with
16 17 18	330		cardiac surgery-associated acute kidney injury. Clin Cardiol 2020, 43, 752-761,
19 20 21	331		doi:10.1002/clc.23377.
22 23	332	15.	De Vlieger, G.; Kashani, K.; Meyfroidt, G. Artificial intelligence to guide management
24 25 26	333		of acute kidney injury in the ICU: a narrative review. Curr Opin Crit Care 2020, 26, 563-
27 28 20	334		573, doi:10.1097/MCC.000000000000775.
30 31	335	16.	James, M.T.; Pannu, N.; Hemmelgarn, B.R.; Austin, P.C.; Tan, Z.; McArthur, E.; Manns,
32 33 34	336		B.J.; Tonelli, M.; Wald, R.; Quinn, R.R., et al. Derivation and External Validation of
35 36	337		Prediction Models for Advanced Chronic Kidney Disease Following Acute Kidney Injury.
37 38 39	338		<i>JAMA</i> 2017 , <i>318</i> , 1787-1797, doi:10.1001/jama.2017.16326.
40 41 42	339	17.	Johnson, A.E.; Pollard, T.J.; Shen, L.; Lehman, L.W.; Feng, M.; Ghassemi, M.; Moody,
43 44	340		B.; Szolovits, P.AO.; Celi, L.A.; Mark, R.AO. MIMIC-III, a freely accessible critical
45 46 47	341		care database.
48 49	342	18.	Thoral, P.J.; Peppink, J.M.; Driessen, R.H.; Sijbrands, E.J.G.; Kompanje, E.J.O.;
50 51 52	343		Kaplan, L.; Bailey, H.; Kesecioglu, J.; Cecconi, M.; Churpek, M., et al. Sharing ICU
53 54 55	344		Patient Data Responsibly Under the Society of Critical Care Medicine/European
56 57	345		Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam
58 59 60	346		University Medical Centers Database (AmsterdamUMCdb) Example. Crit Care Med

BMJ Open

1		
2		
3	0.47	
4	347	2021 , 10.1097/CCM.000000000004916, doi:10.1097/CCM.000000000004916.
5		
7	348	19. Koyner, J.L.; Carey, K.A.; Edelson, D.P.; Churpek, M.M. The Development of a
, 8		
9	240	Machine Learning Innetiant Asute Kidney, Injuny Dradiation Madel. Crit Care Mad 2019
10	349	Machine Learning Inpatient Acute Kidney Injury Prediction Model. Crit Care Med 2018,
11		
12	350	<i>46</i> , 1070-1077, doi:10.1097/CCM.000000000003123.
13		
14	351	
15	001	
16		
17	352	Footnotes
18		
19	353	Contributions: Conceptualization, OL and MH: Methodology, YX: Software, YX: Validation, YZ, and
20	000	contributions. conceptualization, Q1 and W11, Methodology, 177, Software, 177, Vandation, 12, and
21		
22	354	YX.; Formal Analysis, JC and XC; Resources, MH; Data Curation, QL; Writing – Original Draft
25		
24 25	355	Preparation, OL: Writing – Review & Editing, MH: Visualization, YX: Supervision, YZ and OL: Project
25		
27	050	
28	356	Administration, QL;
29		
30	357	Funding : This research received no specific grant from any funding agency in the public, commercial
31		
32	050	
33	358	or not-for-profit sectors.
34		
35	359	Conflicts of Interest: Not Applicable.
36		
37	360	Detions and public involvement Detions and/or the public ware not involved in the design or conduct or
38	300	ratient and public involvement ratients and/or the public were not involved in the design, of conduct, of
39		
40 41	361	reporting, or dissemination plans of this research.
41		
43	362	Provenance and neer review Not commissioned: externally neer reviewed
44	002	Trovenance and peer review two commissioned, externally peer reviewed.
45		
46	363	Acknowledgements: Thank my colleagues in general ICU for cooperating with us in our prospective
47		
48	364	study. Thanks to two public databases namely MIMIC and AmsterdamUMC for providing important
49		
50	005	
51	365	data. Thanks for all patient advisers.
52		
53	366	
54		
55	007	
50	301	Supplemental Figure:
57 58		
50	368	File name: Figure S1.tif
60		

 Title and Description of data: The variable importance parameter histogram of early diagnosis prediction models of severe AKI uses a multiple logistic regression algorithm and five machine learning algorithms. File name: Figure S2.tif Title and Description of data: The K-S curve used to determine the cut-off value of positive and negative diagnosis of early diagnosis prediction models of severe AKI. File name: Table S1.docx Title and of Description data: Missing data between three databases in the study and values included in the model. File name: Table S2.docx Title and of Description data: Clinical Demographics and Outcomes of SHZJU-ICU patients in model building set and prospective validation. File name: Table S3.docx Title of data: TRIPOD Checklist of Prediction Model Development and Validation Description of data: Writing norms of this type of research. **Figure Legend:** Figure 1: The research flow chart. The data collection time interval of the study was 7 days before diagnosis and the prediction interval was 48 hours. The early prediction model of AKI diagnosis was constructed and verified by our database and the MIMIC database and incorporated into the AmsterdamUMC database for external validation. We carried out a one-year prospective validation through the database of the centre. Figure 2: The AUROC curve of the internal validation set of the SHZJU-ICU database and the MIMIC

2		
3 4 5	391	database.
6 7	392	Figure 3: The AUROC curve of the external validation set of the AmsterdamUMC database for 3A and
8 9 10	393	the prospective validation in our center for 3B.
11 12		
13 14 15		
16 17		
18 19 20		
21 22		
23 24 25		
26 27		
28 29 30		
31 32		
33 34 35		
36 37		
38 39 40		
41 42		
43 44 45		
46 47		
48 49 50		
51 52		
53 54 55		
56 57		
58 59 60		
		20

338x451mm (300 x 300 DPI)

Title and Description of data: The K-S curve used to determine the cut-off value of positive and negative diagnosis of early diagnosis prediction models of severe AKI.

File name: Table S1.docx

Title and of Description data: Missing data between three databases in the study and values included in

the model.

	SHZJU-ICU	MIMIC	AmsterdamUMC	Including in Mod
Age	\checkmark	\checkmark		\checkmark
Gender	\checkmark	\checkmark	\checkmark	
Race	\checkmark	\checkmark	×	×
Primary disease	\checkmark	\checkmark	×	×
Comorbidity	\checkmark	\checkmark	×	×
Ventilation	\checkmark	\checkmark		
Operation	\checkmark	\checkmark	×	×
ICU hours		\checkmark	\checkmark	\checkmark
Survived	\checkmark	\checkmark		\checkmark
Vital sign				
Temperature		\checkmark		
Systolic pressure	\checkmark	\checkmark	\checkmark	\checkmark
Diastolic pressure	\checkmark	\checkmark	\checkmark	\checkmark
Respiratory rate	\checkmark	\checkmark		\checkmark
Heart rate	\checkmark	\checkmark		\checkmark
Oxygen saturation	\checkmark	\checkmark	V	\checkmark
Urine	\checkmark	\checkmark		\checkmark
GCS score	\checkmark	×	×	×
Laboratory results			'h	
Scr	\checkmark	\checkmark		\checkmark
BUN	\checkmark	\checkmark		\checkmark
RBC	\checkmark	\checkmark		\checkmark
MCV	\checkmark	\checkmark		
Hb	\checkmark	\checkmark		\checkmark
WBC	\checkmark	\checkmark		
NEUT	\checkmark	\checkmark		\checkmark
PLT	\checkmark	\checkmark		
HCV	\checkmark	\checkmark	×	×
TBLB	\checkmark	\checkmark		
DBLB	\checkmark	\checkmark		
IBLB	\checkmark			
CRP	\checkmark			
PCT		×	×	×
Serum kalium	\checkmark			
Serum natrium				
Serum chlorine				$\overline{}$

РТ	\checkmark	\checkmark	\checkmark	
APTT		\checkmark		
INR				
СК				
LDH				
Troponin				
Blood glucose		\checkmark		
РН	\checkmark	\checkmark		
Lactic acid		\checkmark		
Anion gap	\checkmark	\checkmark		
ABC	V			
SBC	V			
PaCO ₂	V			
PaO ₂	V	\checkmark		

SHZJU-ICU: The general ICU database of the second affiliated hospital of Zhejiang university school of medicine; MIMIC: Medical Information Mart for Intensive Care; APTT: Activated partial thromboplastin time; INR: International normalized ratio; LDH: Lactate dehydrogenase; PaCO₂: Partial pressure of carbon dioxide; PaO₂ Partial pressure of oxygen; MCV: Mean corpuscular volume; PH: Potential of hydrogen; WBC: White blood cell count; NEUT: Proportion of neutrophils; CK: Creatine kinase; Scr: Serum Creatinine; BUN: Blood urea nitrogen; RBC: Red blood cell count; Hb: Hemoglobin; PT: Prothrombin time; TBLB: Total bilirubin; DBLB: Direct bilirubin; IBLB: Indirect bilirubin; CRP: C-reactive protein; HCV: Hematocrit value; PCT: Procalcitonin; ABC: Actual Bicarbonate Radical; SBC: Standard Bicarbonate Radical; PLT: Platelet count

File name: Table S2.docx

Title and of Description data: Clinical Demographics and Outcomes of SHZJU-ICU patients in model

building set and prospective validation.

	SHZJU-ICU	SHZJU-ICU	P-value	SHZJU-ICU	SHZJU-ICU	P-value
	Negative	Severe AKI		Prospective	Prospective	
	(N=5695)	(N=766)		Negative	Positive	
				(N=2188)	(N=344)	
Age, median [IQR]	60.5	62.1	0.004	61.3	62.1	0.03
	[48.8-70.1]	[50.1-72.5]		[47.5-73.4]	[51.2-70.5]	
Gender, male (%)	3561 (64.9)	438 (59.8)	0.007	1365 (62.4)	207 (60.2)	0.438
Race	U,					
White	3 (0.05)	1 (0.1)	1	2 (0.001)	0	1
Black	1 (0.02)	0	1	0	0	1
Asian	5691(99.9)	764 (99.7)	1	2185 (99.9)	344(100)	1
Other	0	1 (0.1)	1	1 (0.001)	0	1
Admission Scr	0.9 (0.34)	1.0 (0.40)	<0.001	0.8 (0.32)	0.9 (0.35)	<0.001
(mg/dL), mean						
(sd)						
Admission BUN	18 (11)	21 (9)	<0.001	17 (11)	20 (10)	0.007
(mg/dL), mean						
(sd)						
Cancer, n (%)	644 (11.3)	48 (6.3)	<0.001	230 (10.5)	26 (7.6)	0.102
Cirrhosis, n (%)	43 (0.8)	6 (0.8)	0.89	15 (0.7)	3 (0.8)	0.726
Cardiopathy, n	231 (4.1)	42 (5.5)	0.08	98 (4.5)	19 (5.7)	0.403
(%)						
Diabetes, n (%)	305 (5.4)	63 (8.2)	0.002	142 (6.5)	29 (8.6)	0.203
Hypertension, n	889 (15.6)	115 (15.0)	0.70	324(14.8)	56 (16.4)	0.466
(%)						
Ventilation, n (%)	2569 (45.1)	592 (77.3)	<0.001	1102 (50.4)	239 (69.5)	<0.001
Operation, n (%)	3361 (59.1)	373 (48.7)	<0.001	1234(56.4)	160 (46.7)	0.001
ICU Hours,	50.8	164.4	<0.001	58.7	145.6	<0.001
median [IQR]	[23.0-139.5]	[70.3-328.6]		[34.2-160.4]	[68.5-314.8]	
Survived, n (%)	4997 (87.7)	380 (49.6)	<0.001	1868 (85.4)	178 (51.9)	<0.001

SHZJU-ICU: The general ICU database of the second affiliated hospital of Zhejiang university school of medicine; *MIMIC*: Medical Information Mart for Intensive Care; *IQR*: Inter-Quartile Range; *ICU*: Intensive Care Unit; *AKI*: Acute Kidney Injury. *Scr*: serum creatinine; *BUN*: blood urea nitrogen.

File name: Table S3.docx

Title of data: TRIPOD Checklist of Prediction Model Development and Validation

Description of data: Writing norms of this type of research.

1Section/Topic	1		Checklist Item	Page
Title and abstract	:			
Title	1);∨	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	Yes; P1
Abstract 2 0;V			Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	Yes; P2
Introduction			·	
Background	За	 Explain the medical context (including whether diagnostic or prognostic) at for developing or validating the multivariable prediction model, including re existing models. 		Yes; P3
and objectives	3b);∨	Specify the objectives, including whether the study describes the development or validation of the model or both.	Yes; P4, L76-79
Methods	_			
	4a	4a b;V Describe the study design or source of data (e.g., randomized trial, col data), separately for the development and validation data sets, if appli		Yes; P4, L80
Source of data	4b);∨	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	Yes; P4, L84-86
	5а);V	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	Yes
Participants	5b);V	/ Describe eligibility criteria for participants.	
	5c);V	Give details of treatments received, if relevant.	NA
Outcome	ба);∨	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	Yes; P6, L111
	6b);∨	Report any actions to blind assessment of the outcome to be predicted.	NA
	7a);V	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.	Yes; P6, L116
Predictors	7b	¢;∨	Report any actions to blind assessment of predictors for the outcome and other predictors.	NA
Sample size	8);∨	Explain how the study size was arrived at.	NA
Missing data	9);V	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	Yes; P6, L127
	0a	D	Describe how predictors were handled in the analyses.	Yes; P6, L116
Statistical	0b	D	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	Yes; P6, L119
analysis	0c	V	For validation, describe how the predictions were calculated.	Yes; P6, L126
methods	0d);∨	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	Yes; P6, L159

	0e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	NA		
Risk groups	11);V	Provide details on how risk groups were created, if done.	Yes; P6, L111		
Development	10	V	For validation, identify any differences from the development data in setting, eligibility	N DC 1 122		
vs. validation	12 V		criteria, outcome, and predictors.	1 es; r0, L132		
Results						
			Describe the flow of participants through the study, including the number of participants			
	За);∨	with and without the outcome and, if applicable, a summary of the follow-up time. A	Yes; Figure 1		
			diagram may be helpful.			
Participante		Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for	Describe the characteristics of the participants (basic demographics, clinical features,	Vec D8 1 168		
Fanicipants	3b		100-			
			predictors and outcome.	180		
	20	V	For validation, show a comparison with the development data of the distribution of	Vac Table?		
	30	v	important variables (demographics, predictors and outcome).	Yes, Table2		
Madal	4a	D	Specify the number of participants and outcome events in each analysis.	Yes, P8, L168		
dovelopment	46	6	If done, report the unadjusted association between each candidate predictor and			
development	40	U	outcome.	105		
Madal	F -	6	Present the full prediction model to allow predictions for individuals (i.e., all regression	V		
	ъа	D	coefficients, and model intercept or baseline survival at a given time point).	103.		
specification	5b	D	Explain how to the use the prediction model.	Yes, P9, L196		
Model	16	۰v	Report performance measures (with CIs) for the prediction model.	Yes, P9, L190		
performance		,.				
Model-updating	17	V	If done, report the results from any model updating (i.e., model specification, model	NA		
			performance).			
Discussion	-	-		Γ		
Limitations	18	•·V	Discuss any limitations of the study (such as nonrepresentative sample, few events per	Yes. P12, L236		
		,.	predictor, missing data).			
	9a	V	For validation, discuss the results with reference to performance in the development	Yes P11 L217		
Interpretation	<u> </u>	·	data, and any other validation data.	105, 111, 2217		
interpretation	9h	··\/	Give an overall interpretation of the results, considering objectives, limitations, results	Ves P10 I 198		
	56	, v	from similar studies, and other relevant evidence.	105,110 2190		
Implications	20);V	Discuss the potential clinical use of the model and implications for future research.	Yes, P9, L193		
Other information						
Supplementary	21		Provide information about the availability of supplementary resources, such as study	Vac		
information		, v	protocol, Web calculator, and data sets.	105		
Funding	22);V	Give the source of funding and the role of the funders for the present study.	NA		

TRIPOD Checklist: Prediction Model Development and Validation

1Section/Topic	ltem		Checklist Item	Page
litle and abstract		1	Identify the study as developing and/or validating a multivariable prediction model, the	1
Title	1	D;V	target population, and the outcome to be predicted.	Yes; P1
Abstract	2	D;V	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	Yes; P2
Introduction				
			Explain the medical context (including whether diagnostic or prognostic) and rationale	
Background	3a	D;V	for developing or validating the multivariable prediction model, including references to existing models.	Yes; P3
	3b	D;V	Specify the objectives, including whether the study describes the development or validation of the model or both	Yes; P4, L76-79
Methods		1		1
	4a	D;V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data) separately for the development and validation data sets, if applicable	Yes; P4, L83-92
Source of data	4b	D;V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up	Yes; P4, L83-
	5a	D·V	Specify key elements of the study setting (e.g., primary care, secondary care, general	Yes
Participants			population) including number and location of centres.	105
	<u>5b</u>	D;V	Describe eligibility criteria for participants.	Yes; P4, L103
	50		Clearly define the outcome that is predicted by the prediction model, including how and	NA Vagi D6, L 111
Outcome	6b	D,V	when assessed. Report any actions to blind assessment of the outcome to be predicted	NA
	7a	D:V	Clearly define all predictors used in developing or validating the multivariable prediction	Yes: P6. L116
Predictors	76	D.)/	model, including how and when they were measured. Report any actions to blind assessment of predictors for the outcome and other	NA
Sampla siza	7D 9		predictors.	NA NA
	0	D, V	Explain now me study size was anneed at.	INA
Missing data	9	D;V	imputation, multiple imputation) with details of any imputation method.	Yes; P6, L127
	10a	D	Describe how predictors were handled in the analyses.	Yes; P6, L125
Statistical	10b	D	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	Yes; P6, L130- 138
analysis	10c	V	For validation, describe how the predictions were calculated.	Yes; P6, L139
methods	10d	D;V	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	Yes; P7, L159
	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	Yes; P7, L137
Risk groups	11	D;V	Provide details on how risk groups were created, if done.	Yes; P6, L111
Development	12	V	For validation, identify any differences from the development data in setting, eligibility	Ves: P6 1 132
vs. validation	12	•	criteria, outcome, and predictors.	103, 10, 2152
Results	1	1		1
	13a	D;V	with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	Yes; Figure 1
Participants	13b	D;V	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for	Yes, P8, L168- 180 and
	12-		For validation, show a comparison with the development data of the distribution of	SupTable2 Yes,
	130	V	important variables (demographics, predictors and outcome).	SupTable3
Model	14a	D	Specify the number of participants and outcome events in each analysis.	Yes, P8, L168
development	14b	D	If done, report the unadjusted association between each candidate predictor and outcome.	Yes, SupTable1
Model	15a	D	Present the full prediction model to allow predictions for individuals (i.e., all regression	Yes.
specification	15b	D	Explain how to the use the prediction model.	Yes, P9, L196
Model performance	16	D;V	Report performance measures (with CIs) for the prediction model.	Yes, P9, L190
Model-updating	17	V	If done, report the results from any model updating (i.e., model specification, model performance).	NA
Discussion				
Limitations	18	D;V	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	Yes, P12, L246
	19a	v	For validation, discuss the results with reference to performance in the development data, and any other validation data	Yes, P11, L237
Interpretation	19b	D:V	Give an overall interpretation of the results, considering objectives, limitations, results	Yes, P10 L210-
Impliantions	20		Trom similar studies, and other relevant evidence.	245
Other information	20	D;V	Discuss the potential clinical use of the model and implications for future research.	res, P12, L254
Supplementary		_	Provide information about the availability of supplementary resources, such as study	
information	21	D;V	protocol, Web calculator, and data sets.	Yes
Funding	22	D;V	Give the source of funding and the role of the funders for the present study.	NA

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

BMJ Open

Severe Acute Kidney Injury Predicting Model based on transcontinental databases: a single-center prospective study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054092.R4
Article Type:	Original research
Date Submitted by the Author:	04-Feb-2022
Complete List of Authors:	Liang, Qiqiang; Zhejiang University School of Medicine Second Affiliated Hospital Xu, Yongfeng; Zhejiang University School of Medicine Second Affiliated Hospital Zhou, Yu; Zhejiang University School of Medicine Second Affiliated Hospital Chen, Xinyi; Zhejiang University School of Medicine Second Affiliated Hospital Chen, Juan; Zhejiang University School of Medicine Second Affiliated Hospital Huang, Man; Zhejiang University School of Medicine Second Affiliated Hospital
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Diagnostics
Keywords:	Acute renal failure < NEPHROLOGY, INTENSIVE & CRITICAL CARE, Information technology < BIOTECHNOLOGY & BIOINFORMATICS, Adult intensive & critical care < INTENSIVE & CRITICAL CARE

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
0	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
ו ∠ רב	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
30	
22	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
43	
44	
45	
46	
47	
48	
40	
49	
50	
51	
52	
53	
51	
54 rr	
55	
56	
57	
58	
59	
60	

Severe Acute Kidney Injury Predicting Model based on transcontinental 1

2 databases: a single-center prospective study

- 3 Qiqiang Liang¹; Yongfeng Xu¹; Yu Zhou²; Xinyi Chen², MM; Juan Chen²; Man Huang^{1*}
- 4 General Intensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou,

5 China.

- 6 *Corresponding author: Man Huang, MD PhD.
- 7 Department: General Intensive Care Unit
- 8 Hospital: Second Affiliated Hospital of Zhejiang University School of Medicine
- District, Hang. 9 Address: No. 1511, Jianghong Road, Bingjiang District, Hangzhou City, Zhejiang Province

10 Tel: + 86 571 89713427

11 Fax: + 86 571 89713427

12 E-mail: huangman@zju.edu.cn.

13 ORCID: 0000-0002-0842-2254

14

15

16

17

18

19

20

21

22

BMJ Open

2		
3	00	
4	23	Abstract:
5		
7	24	Objectives: There are many studies of acute kidney injury (AKI) diagnosis models lack of external
, 8		
9	05	
10	25	validation and prospective validation. We constructed the models using three databases to predict severe
10		
12	26	AKI within 48 hours in intensive care unit (ICU) patients.
12	-	
14		
15	27	Design: A retrospective and prospective cohort study.
16		
17	28	Setting: We studied critically ill patients in our database (SHZIU-ICU) and two other public databases
18		
19		
20	29	the Medical Information Mart for Intensive Care (MIMIC) and AmsterdamUMC databases, including
21		
22	30	basis demographics with signs, and laboratory results. We predicted the diagnosis of severe AKI in
23	30	basic demographics, vital signs, and laboratory results. We predicted the diagnosis of severe AKI in
24		
25	31	patients in the next 48 hours using machine-learning algorithms with the three databases. Then, we
26		
27	20	
28	32	carried out real-time severe AKI prediction in the prospective validation study at our center for one year.
29		
30	33	Participants: All patients included in three databases with uniform exclusion criteria.
31		
32		
33	34	Primary and secondary outcome measures: Effect evaluation index of prediction models.
34		
35	35	Results: We included 58492 patients and a total of 5257 (9.0%) patients met the definition of severe
36	00	results. We included 56 172 patients, and a total of 5257 (3.070) patients include definition of severe
37		
38	36	AKI. In the internal validation of the SHZJU-ICU and MIMIC databases, the best area under the receiver
39		
40	37	operating operatoristic curve (AUDOC) of the model was 0.86 The external validation results by
41	57	operating characteristic curve (AOKOC) of the model was 0.80. The external validation results by
42		
43	38	AmsterdamUMC database were also satisfactory, with the best AUROC of 0.86. A total of 2532 patients
44		
45	20	
46	39	were admitted to the center for prospective validation; 358 positive results were predicted, and 344
47		
48	40	patients were diagnosed with severe AKI, with the best sensitivity of 0.72, the specificity of 0.80, and
49		
50		
51	41	the AUROC of 0.84.
52		
53	42	Conclusion: The prediction model of severe AKI exhibits promises as a clinical application based on
54	T L	conclusion. The prediction model of severe rise exhibits promises us a chinear application based on
55		
56	43	dynamic vital signs and laboratory results of multi-center databases with prospective and external
57		
58	<u>1</u> 1	validation
50		1 UIIUUIVII.

ך ע	
4	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21	
22	
2J 24	
24	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
77 15	
45	
40	
47	
4ð	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
-	

1 2

45 Keywords: Machine learning; Acute kidney injury; Real-time prospective validation; External
46 validation.

47 Strengths and limitations of this study:

- 48 A prospective validation in machine learning of AKI research rather than other studies;
- 49 Three large database containing different national populations and regions;
- 50 Variable's sampling limited by the monitoring frequency of clinical data;
- 51 Differences in the samples proportion of three databases;
- 52 The dimensions of variables are not rich enough.
- 53 Data sharing statement: No data available.

54

55 Introduction:

Acute kidney injury (AKI), as a common clinical complication in the intensive care unit (ICU), significantly increases the duration of hospitalization and mortality[1]. AKI is divided into three types according to the various aetiologies: prerenal (renal hypoperfusion), intrarenal (vascular, glomerular, or tubulointerstitial lesions), and postrenal (urinary tract obstruction)[2]. Although nearly all diseases associated with ICU admission may cause AKI, acute tubular necrosis (ATN) and prerenal azotaemia are the most common causes[3].

63 standard are currently based on the creatinine level and urine volume[4]. However, the increase in the 64 creatinine level or decrease in the urine volume lags the onset of AKI[2]. Many studies have suggested 65 that early diagnosis and treatment of reversible AKI can reduce mortality[5]. Therefore, the creatinine 66 level and urine volume are not satisfactory to meet clinical diagnostic demands. Consequently, many

Page 5 of 29

BMJ Open

researchers have tried to develop an early warning model by analysing the risk factors for AKI[6]. Patient complications, such as diabetes, hypertension, cardiovascular disease, chronic liver disease, sepsis, and trauma, are identified as important risk factors for AKI[7]. The AKI prediction model and scoring system developed based on high-risk factors has gradually become the focus of research considering the lower clinical application threshold compared with that of new biomarkers[6]. Although most previous prediction models use the multiple logistic regression model, a variety of AKI prediction models based on machine learning have resulted in satisfactory outcomes[6]. Since the first AKI prediction model study based on artificial intelligence was published in 2016, researchers have built more than 20 published AKI prediction models successively by using local or multi-centre databases[6,8-14]. The results indicate that these models can predict the occurrence of AKI and the need for renal replacement therapy (RRT) within 24 or 48 hours, with accuracies ranging from 81% to 97%[6,15]. In addition, many studies have focused on subspecialized conditions, including cardiac surgery, trauma, and burns[14-16]. However, the common defect in these studies is the lack of external validation and prospective validation, which causes the prediction model to deviate from the clinical scenarios and limits extrapolation beyond the scope of the data. In this study, we built models to predict AKI within 48 hours in critically ill patients by using transcontinental three databases. Then, we evaluated the clinical effect of the model through a one-year prospective validation at our centre. Methods: Study design and setting

88 We collected patients using three ICU databases and prospectively validated the models in our centre.

> The first database was our centre general ICU database (SHZJU-ICU) of the Second Affiliated Hospital of Zhejiang University School of Medicine, an academic teaching hospital. Since its establishment in 2017, it has included 12000 ICU patients' data and is updated daily. The Medical Information Mart for Intensive Care (MIMIC) III database, the second one, is an open ICU database provided by the Massachusetts Institute of Technology and includes nearly 60000 ICU patients from North America[17]. Lastly, the AmsterdamUMC database is an available European ICU database with health data related to 23000 patients admitted to ICUs in parts of Europe[18]. The research flow chart is shown in Figure 1. **Study definition** In this study, the diagnosis of AKI was confirmed based on three stages according to the KDIGO criteria[4]. We defined the patients who met the KDIGO AKI II and III criteria as severe AKI groups and the others as negative groups. We excluded patients with lack of creatinine measurements during admission, patients with creatinine baseline more than 3.0 mg/dL at admission, patients who met severe AKI diagnosis within 24 hours, and patients who used RRT within 48 hours after admission[19]. In addition, we excluded pregnant women, patients younger than 14 years old, and patients hospitalized in the ICU for fewer than 48 hours. After the patient was admitted to ICU, we performed a prediction every 24 hours and recorded a prediction time. If the patient was diagnosed with severe AKI within 48 hours, the predictive time was defined as a positive predictive point, and the others were defined as a negative point. The study was evaluated and approved by the Ethics Committee of the Second Affiliated Hospital of Zhejiang University School of Medicine as study number 2019-078. **Data Collection** The variables included demographic data, vital signs, basic and primary diseases, laboratory results,

Page 7 of 29

BMJ Open

important operation records, and drug records. Comorbidity included hypertension, diabetes, cardiopathy, liver disease, and malignant tumors. The primary disease was the main cause of admission to the ICU following the ICD-10 codes. The vital signs and clinical laboratory results were transformed into different variables according to the average, variance, maximum, minimum, and final value before diagnosis. We use a method similar to the forward incremental method in the multivariate logic regression model, that is, the combination of embedded feature selection and forward addition for feature selection. First of all, all variables are trained in the model, then list by variables importance. variables are added to the model one by one according to the variable importance. a variable is retained if it causes the AUC growth to be greater than 0.01, otherwise delete it. We transformed the MIMIC and AmsterdamUMC databases according to our centre database structure, unifying the unit and diagnostic codes. We deleted variables missing more than 50%. Variables missing more than 30% but less than 50% are listed to clinicians who determine the potential correlation between these variables and AKI. We carry out multiple interpolation for these variables which clinicians require to be retained, and the others deleted. Variables missing less than 30% are fill in multiple interpolation. All Missing data between three databases and values included in the model shown in supplementation file Table S1.

Model construction and external validation

127 The ratio of the training and internal validation sets was 4:1. The SHZJU and MIMIC databases 128 training sets were mixed into a new training set. There were more negative data than positive data, so we 129 randomly sampled the negative datasets and constructed a new data subset with a sampling ratio of 130 positive and negative data of 1:5 in model building in order to extract the importance variables. In the 131 subsequent model validation, we adopted the original data set. We used multiple logistic regression, 132 random forest, XGBoost, AdaBoost, LightGBoost, gradient boosting decision tree (GBDT), and debug

to assess the variables and model-related parameters by the fivefold cross-validation method. After the models were built, we used the SHZJU-ICU and MIMIC test sets for internal validation of the model and the AmsterdamUMC database for external validation. The most appropriate cut-off value was determined according to the K-S curve. The prediction model represents the results of each prediction with a probability between 0 to 1.0. We define results more than 0.4 as high-risk, that is, positive results, and the rest as negative results. Through internal validation and external validation, we calibrated the model by adjusting the super-parameters and using the Platt calibration algorithm and compared the calibration effect by drawing a reliability diagram. All model building and validation processes were performed in Python 3.6.

142 Prospective validation

The prospective research period was 2020.01.01 to 2020.12.31. We collected real-time data when patients were admitted to the ICU, transformed the data according to the requirements, and formed a complete sample for the prediction model after passing the integrity test. We had established a visualization scheme and allowed researchers to review the predictions daily. The daily prediction results were not publicly accessible during the study to avoid affecting clinicians' decisions, but the diagnosis results were available to the researchers as visual graphics. We sampled the 20% predicted data every month and deleted samples with more than 50% missing values to ensure data correctness. When a patient has the following conditions, AKI prediction system will end the patient's prospective prediction: A. a positive diagnosis; B. Transfer out of ICU or death with negative diagnosis. All diagnosis of severe AKI needs to be reviewed by two ICU attending physicians independently, and if the they have different opinion, the third one will be appealed.

154 Statistical analysis:

BMJ Open

The population characteristics were reported as the medians and inter-quartile ranges (IQRs) for skewed data and the means and standard deviations for normally distributed data. The independent sample T-test was used for normally distributed data, and the rank-sum test was used for the rest. Dichotomous variables were assessed by the chi-square test, and a P value less than 0.05 was considered statistically significant. The non-normally distributed data were analyzed by exponential transformation and logarithmic transformation. The effect of the model was evaluated by parameters such as the AUROC, accuracy, specificity, and F1-score. **Patient and Public Involvement:** The information of cases in three databases was in a state of complete desensitization in the process

of building the model. During the prospective study, all the patients signed an informed consent form at
the beginning of admission to ICU. The real-time data discussed and used by only the study members,
and were not made public during the study period. All data were anonymized before the authors accessed
them for the purpose of this study. Therefore, patients' priorities, experience, and preferences will not
affect the development of the research question and outcome measures. If necessary, we will inform

169 patients of relevant research results by telephone.

171 Results:

According to the inclusion criteria and exclusion criteria, we selected 58492 patients from three databases who met the requirements of the study, including 6461 patients from the SHZJU-ICU database, 36690 patients from the MIMIC database, and 15341 patients from the AmsterdamUMC database. A total of 5257 (9.0%) patients met the definition of severe AKI (11.8% in SHZJU-ICU, 7.6% in MIMIC, and 10.9% in AmsterdamUMC). The distributions of age and sex in the three centers were similar, but

1		
-		
2		
3		
4		
5		
2		
6		
7		
8		
0		
9	_	
1	0	
1	1	
1	2	
1	- 2	
	с	
1	4	
1	5	
1	6	
1	7	
1	/ ~	
1	8	
1	9	
2	0	
2	1	
2	1	
2	2	
2	3	
2	4	
2	5	
~	2	Age,
2	6	0,
2	7	
2	8	Gond
2	ĥ	Gend
~	2	
3	υ	_
3	1	Race
3	2	W
2	2	
2	2	Bla
3	4	
3	5	As
3	6	
- 2	Ļ	00
2	Ĺ	Adm
3	В	
3	9	(mg/
4	b	(sd)
Δ	1	()
+	1	Adm
4	2	1
4	З	(mg/
4	4	(sd)
4	5	. ,
т л	Ļ	Cano
4	P	
4	7	
4	8	Cirrh
4	9	_
F	Ĺ	Card
5	ľ	(%)
5	1	(/0)
5	2	Diab
5	3	
5	6	
5		Hype
-5	6	

177	the difference	es in race wer	e large	. Asian patients	accounted for	or more t	han 99% in the SF	IZJU-ICU		
178	database, and	only approxir	nately 2	2.5% in the MIM	IIC database.	White pe	ople accounted for	more than		
179	70% of the M	IIMIC databas	e. In ad	ldition, patients	from the MIN	AIC datab	ase had a higher in	cidence of		
180	the tumor, liv	er cirrhosis, di	iabetes,	and hypertensic	on. Patients in	the Amst	erdamUMC and SF	IZJU-ICU		
181	databases had a higher proportion of mechanical ventilation and overall survival rate. Severe AKI									
182	patients had l	onger ICU hos	spital sta	ays and higher n	nortality. Mor	e details a	are presented in Tab	ble 1.		
183	Table 1: Cl	inical Demo	graphi	cs and Outcor	mes in patie	ents with	n or without seve	ere acute		
184	kidney injur	y.			·					
	SHZJU-ICU	SHZJU-ICU	P-	МІМІС	МІМІС	P-	AmsterdamUMC	AmsterdamUMC	P-	
	Negative	Severe AKI	valu	Negative	Severe AKI	value	Negative	severe AKI	value	
	(N=5695)	(N=766)	е	(N=33879)	(N=2811)		(N=13661)	(N=1680)		
median [IQR]	60.5	62.1	0.00	62.0	64.0	<0.001	64.5	64.3	0.04	
	[48.8-70.1]	[50.1-72.5]	4	[45.0-76.0]	[52.0-76.0]		[54.5,74.5]	[52.5,78.5]		
ler, male (%)	3561 (64.9)	438 (59.8)	0.00	18976 (56.0)	1524 (54.2)	0.06	8920 (65.3)	1054 (63.9)	0.03	
			7							

²⁸ Gender, male (%)	3561 (64.9)	438 (59.8)	0.00	18976 (56.0)	1524 (54.2)	0.06	8920 (65.3)	1054 (63.9)	0.03
29 30			7						
31 Race					0		/	1	1
³² White	3 (0.05)	1 (0.1)	1	23796 (70.2)	2005 (71.3)	0.23	/	1	1
Black	1 (0.02)	0	1	2455 (7.2)	199 (7.1)	0.45	/	/	/
35 Asian	5691(99.9)	764 (99.7)	1	918 (2.7)	70 (2.5)	0.54	1	1	1
³⁶ Other	0	1 (0.1)	1	6710 (19.8)	537 (19.1)	0.34	/	/	1
Admission Scr	0.9 (0.34)	1.0 (0.40)	<0.0	1.1 (0.41)	1.1 (0.50)	0.04	1.2 (0.35)	1.1 (0.38)	<0.00
39 (mg/dL), mean			01						1
⁴⁰ (sd)									
Admission BUN	18 (11)	21 (9)	<0.0	17 (12)	23 (12)	<0.001	18 (13)	23 (10)	<0.00
₁₂ (mg/dL), mean			01						1
14 (sd)									
¹⁵ Cancer, n (%)	644 (11.3)	48 (6.3)	<0.0	6652 (19.6)	752 (26.8)	<0.001	1	1	1
+0 17			01						
48 Cirrhosis, n (%)	43 (0.8)	6 (0.8)	0.89	1180 (3.5)	426 (15.2)	<0.001	/	1	1
¹⁹ Cardiopathy, n	231 (4.1)	42 (5.5)	0.08	4840 (14.3)	336 (12.0)	0.001	/	1	1
50 51 (%)									
52 Diabetes, n (%)	305 (5.4)	63 (8.2)	0.00	7250 (21.4)	789 (28.1)	<0.001	/	1	1
53			2						
55 Hypertension, n	889 (15.6)	115 (15.0)	0.70	16328 (48.2)	1513 (53.8)	<0.001	/	1	1
56(%)									
Ventilation, n (%)	2569 (45.1)	592 (77.3)	<0.0	13009 (38.4)	1503(53.5)	<0.001	7718(56.5)	1248(74.3)	<0.00
59			01						1
50									
								0	

peration, n (%)	3361 (59.1)	373 (48.7)	<0.0	12455 (36.7)	1430 (50.8)	<0.001	1	1	
			01						
U Hour	s, 50.8	164.4	<0.0	51.0	103.4	<0.001	24.0	142.0	1
edian [IQR]	[23.0-139.5]	[70.3-328.6]	01	[28.5-110.3]	[50.1-261.3]		[19.8,63.5]	[45.4,	394.2]
urvived, n (%)	4997 (87.7)	380 (49.6)	<0.0	25648 (75.7)	1356 (48.2)	<0.001	10942(80.1)	1033	(61.5)
			01						
185	SHZJU-ICU	: The genera	I ICU c	latabase of t	he second aff	iliated ho	spital of Zhej	iang univer	sity
186	school of m	edicine; MIN	IIC: Me	edical Inform	nation Mart fo	r Intensiv	e Care; IQR:	Inter-Qua	rtile
187	Range; <i>ICU</i>	: Intensive Ca	are Un	it; AKI: Acute	e Kidney Injur	y. Scr: se	rum creatinin	e; <i>BUN</i> : bl	ood
188	urea nitroge	n.							
189	There wer	e significant d	ifferenc	ces in the imp	oortant paramet	ers of the	variables amo	ng the diffe	rent
190	models (see I	Figure S1). Ho	wever,	the trend of th	e creatinine lev	el in the pa	ast week was s	till an impor	tant
191	variable, folle	owed by urine	volume	e, blood urea i	nitrogen level, t	emperatur	e, and length c	of ICU stay.	The
192	cut-off value	used to disting	guish be	etween a nega	tive and positiv	ve prediction	on was determ	ined by the	K-S
193	curve, with v	value of 0.423	(see Fig	gure S2). The	GBDT model	had the be	est prediction e	effect in the	test
194	set, followed	by XGBoost	and Lig	ghtGBoost. In	n the two centr	al internal	validation set	s, the two b	oest-
195	performing n	nachine learnii	ng algo	rithms with g	reat AUROC a	re LightGl	Boost (SHZJU	-ICU of 83.	2%,
196	MIMIC of 86	5.0%) and XGI	Boost (S	SHZJU-ICU 8	35.9%, MIMIC	85.6%), as	s detailed in Fi	gure 2. Ove	rall,
197	the sensitivit	y (SHZJU-ICU	J 0.84,	MIMIC 0.83) and the negat	ive predic	tive value (SH	IZJU-ICU 0	.90,
198	MIMIC 0.90) of the predic	ctive m	odel were hig	gh, but the spe	cificity wa	as general (SH	IZJU-ICU 0	.79,
199	MIMIC 0.75), as shown in	Table 2	2. In the exter	rnal validation	based on A	AmsterdamUM	IC database,	the
200	overall mode	l validation ef	fect res	ults were sati	sfactory, and X	GBoost h	ad the best pe	rformance, v	with
201	an AUROC o	of 0.84, as show	wn in F	igure 2 and Ta	able 2.				
202									
203	Table 2: M	odel validati	on res	sults by thre	e databases	with ma	chine learni	ng algorith	nm
Model		AUROC	A	ccuracy S	sensitivity	Specifici	y PPV	NPV	F1
Interna	validation w	th SHZJU-IC	U data	abase					
Logisti	c regression	0.748	0.	662 0	.834	0.576	0.496	0.874	0.622
LiahtG	Boost	0.832	0	741 0	.839	2.692	0.576	0.896	0.683

LightGBoost

60

GBDT		0.845	0.765	0.843	0.725	0.606	0.902	0.705
AdaBoo	st	0.806	0.721	0.824	0.67	0.555	0.884	0.663
Random	n Forest	0.821	0.763	0.71	0.789	0.627	0.845	0.666
XGBoos	st	0.859	0.779	0.81	0.763	0.631	0.889	0.709
Internal	validation wit	th MIMIC data	abase					
Logistic	regression	0.733	0.695	0.643	0.72	0.535	0.801	0.584
LightGE	Boost	0.86	0.768	0.822	0.741	0.613	0.893	0.702
GBDT		0.846	0.765	0.786	0.755	0.616	0.876	0.691
AdaBoo	st	0.837	0.732	0.831	0.683	0.567	0.89	0.674
Randon	n Forest	0.832	0.738	0.791	0.712	0.578	0.872	0.668
XGBoos	st	0.856	0.758	0.833	0.721	0.598	0.895	0.695
Externa	I validation w	ith Amsterda	mUMC datal	base				
Logistic	regression	0.704	0.767	0.516	0.893	0.706	0.787	0.596
LightGE	Boost	0.859	0.763	0.827	0.731	0.606	0.894	0.7
GBDT		0.861	0.764	0.84	0.727	0.606	0.901	0.704
AdaBoo	st	0.85	0.755	0.813	0.726	0.597	0.886	0.689
Randon	n Forest	0.82	0.743	0.77	0.729	0.587	0.864	0.666
XGBoos	st	0.865	0.75	0.873	0.688	0.584	0.916	0.7
Prospec	ctive validatio	n with SHZJU	J-ICU					
Logistic	regression	0.758	0.772	0.648	0.834	0.662	0.826	0.655
LightGE	Boost	0.819	0.796	0.596	0.895	0.74	0.816	0.66
GBDT		0.827	0.781	0.706	0.818	0.66	0.848	0.683
AdaBoo	st	0.808	0.766	0.686	0.805	0.638	0.837	0.661
Randon	n Forest	0.804	0.755	0.715	0.775	0.613	0.845	0.66
XGBoos	st	0.841	0.779	0.724	0.807	0.652	0.854	0.686
204	AUROC: Are	ea Under Rece	eiver Operatii	ng Characteris	stic; <i>PPV</i> : Posit	tive Predictiv	νe Value; Λ	IPV:
205	Negative Pro	edictive Value	; SHZJU-IC	U: The generation	al ICU databas	se of the se	cond affilia	ated
206	hospital of	Zhejiang univ	ersity schoo	l of medicine	e; <i>MIMIC</i> : Me	dical Inform	ation Mart	for
207	Intensive Ca	ire; <i>GBDT</i> : Gr	adient Booste	ed Decision T	ree.			
208								
209	According	to the inclusio	n and exclusi	on criteria, we	delete 267 pati	ents among 9	94 patients	with
	C			,		č	-	
210	creatinine bas	seline more that	n 3.0 mg/dL at	t admission, 39	patients met sev	vere AKI diag	gnosis withi	n 24
211	hours, and 26	patients who u	used RRT with	in 48 hours aft	er admission, 10)8 patients ho	spitalized ir	n the

ICU for fewer than 48 hours. A total of 2532 patients were admitted to our centre for prospective

validation, and the prediction model made 16858 times predictions. In the prospective cohort, there was

no significant difference in age, gender, baseline creatinine and urea nitrogen, and complications. The

BMJ Open

proportion of mechanical ventilation and the ICU stay time in AKI patients were longer with higher mortality. Above all, there was no significant difference between the prospective and the retrospective cohort. More detail sees in supplementation file Table S2. In the end, 358 positive results were predicted, and the rest were negative results. There are 344 patients with severe AKI were diagnosed and the prediction accuracy was 83.5%. The model with the highest area under the curve was XGBoost, 0.84 with the best sensitivity of 0.72, the specificity of 0.80. The results of the prospective study are similar to those of the external validation of the model, and are relatively stable. More detail is presented in Figure 3 and Table 2. **Discussion:** In this study, we built predictive models by machine learning to predict the incidence of severe AKI with three databases in different regions and in the next 48 hours. After internal and external validation,

prospective validation over one year was carried out to verify the model effects. The three databases
come from three countries that are in Asia, Europe, and North America, which proves that the model is
universal to some extent.

Despite the huge amount of data, many databases are still not suitable for prospective research because they are not updated promptly. Tomasev, N and colleagues have provided research on AKI prediction models with a large amount of data[10]. The study covered 703782 adult patients with 6 billion individual items, including 620000 elements. In this study, a depth neural network model was used for real-time prediction. A total of 55.8% of severe AKI patients were predicted within the first 48 hours, although each accurate prediction was accompanied by two mispredictions[10]. This study provided a new scheme for real-time prediction and indicated that we should prospectively evaluate and
BMJ Open

independently validate models to explore their effectiveness. In a prospective study, Flechet, M et al compared an AKI prediction model with clinicians in 252 patients and found that the clinical effect of the random forest model for predicting AKI-II/III was equivalent to that of clinicians. Our prediction model graphical visualization of the model was installed in the centre's database for better usage. In addition, our database is updated daily to achieve daily predictions and present the results to researchers. In the prospective validation of our study, the stability of the prediction model confirmed its promise, which provides a basis for future research. There are many studies of artificial intelligence for predicting the occurrence of AKI, but most of them are single-centre studies, and the extrapolation effect has been controversial. In 2016, Koyner, J, and his colleague published the first study of an AKI prediction model based on multi-centre data. In all 202961 patients, 17541 (8.6%) had AKI, 4251 (3.5%) had AKI-II, and 1242 (0.6%) had AKI-III. A multivariate logistic regression model was used to predict AKI in this study with an AUROC of 0.74 (95% CI=0.74). With the classification of AKI, the AUROC of the prediction model gradually increased to 0.84[8]. Subsequently, the study team used a new machine learning algorithm, to build a more accurate model to predict the occurrence of AKI-II, with an AUROC of 0.9 within 24 hours and 0.87 within 48 hours[19]. Recently, the research team included data from two other centres, namely, LUMC (N=200613) and NUS (N=246895), to externally validate the AKI-II prediction model with AUROCs reaching 0.85 to 0.86, suggesting that the artificial intelligence model has stable predictive ability[12]. This series of studies included many data points, suggesting the feasibility of artificial intelligence in the diagnosis of AKI, but the proportion of positive patients (3.5%) and ICU patients (30%) was too low to properly predict AKI. Our research is similar to the above. The SAHZJU-ICU database is a single-centre database representing south-eastern China, and the MIMIC database is a well-known open ICU database in the

264

1

BMJ Open

2
3
4
5
ر د
0
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
20 21
∠ I 22
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
20
30
37
38
39
40
41
42
/2
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
58
50
27
60

United States. The AmsterdamUMC database is a public database located in Europe. The population
structure and diseases in the three databases are complete but different in the distribution of complications
and race. Therefore, it provides a prediction model with unparalleled stability compared with other
studies.

265 This retrospective multi-

Limitations:

This retrospective multi-centre study was unable to carry out more clinical feature mining and 266 comparison because of different data structures. The differences between the three databases partly 267 reflect some demographic differences between Europe, the United States and China, resulting in a decline 268 in the accuracy of the prediction model. There are some differences in the number of patients included 269 in the three databases, which may affect the choice of variables. As a result of the study design, we 270 deleted patients with ICU hospitalization of less than 48 hours, which may result in the exclusion of most 271 relatively mild patients and may reduce false positives. Second, in the prospective data study in 2020, 272 there may be deviations in the inclusion of patients in the centre, thus affecting the interpretation of the 273 follow-up prospective results. Finally, given the low incidence of severe AKI and the great difference in 274 the proportion of positive and negative samples, the data may be accidental. Our model seems to be 275 superior to diagnostic non-AKI patients rather than AKI because of the proportion of positive data that 276 we include. In the retrospective study, we reduced the proportion of negative data by randomization but 277 retain all date in prospective phase with the sensitivity decreases.

278

279 Conclusion:

Based on databases of patients of different races from different countries, we constructed stable

BMJ Open

2								
3 4 5	281	machine learning models to predict the occurrence of AKI in the next 48 hours. Prospective validation						
6 7 8	282	hrough the implementation of an updated local database is an effective exploration of further research.						
9 10	283							
11 12 13	284	Data sharing statement: No data available.						
14 15 16	285	Ethics approval: Our research was approved by the ethics committee of the Second Affiliated Hospital						
17 18	286	of Zhejiang University School of Medicine.						
19 20 21	287	Competing interests for authors: There may be some potential competing interests between our						
22 23 24	288	research and "HealSci Technology Co. Beijing.". In this study, we jointly complete the work including						
24 25 26	289	data integration and transcoding in model construction and model visualization projects based on contract.						
27 28 29	290							
30 31	291	Reference:						
32 33 34	292	1. Ronco, C.; Bellomo, R.; Kellum, J.A. Acute kidney injury. <i>The Lancet</i> 2019 , <i>394</i> , 1949-						
35 36 37	293	1964, doi:10.1016/s0140-6736(19)32563-2.						
38 39	294	2. Pakula, A.M.; Skinner, R.A. Acute Kidney Injury in the Critically III Patient: A Current						
40 41 42	295	Review of the Literature. <i>J Intensive Care Med</i> 2016, <i>31</i> , 319-324,						
43 44	296	doi:10.1177/0885066615575699.						
45 46 47	297	3. Bellomo, R.; Kellum, J.A.; Ronco, C. Acute kidney injury. <i>The Lancet</i> 2012 , <i>380</i> , 756-						
48 49 50	298	766, doi:10.1016/s0140-6736(11)61454-2.						
51 52	299	4. Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. <i>Nephron Clin</i>						
53 54 55	300	<i>Pract</i> 2012 , <i>120</i> , c179-184, doi:10.1159/000339789.						
56 57 58	301	5. Coelho, S.; Cabral, G.; Lopes, J.A.; Jacinto, A. Renal regeneration after acute kidney						
59 60	302	injury. <i>Nephrology (Carlton)</i> 2018 , <i>23</i> , 805-814, doi:10.1111/nep.13256.						

BMJ Open

2										
3										
4	303	6.	Wilson, F.P.; Greenberg, J.H. Acute Kidney Injury in Real Time: Prediction, Alerts, and							
6										
7	304		Clinical Decision Support. <i>Nephron</i> 2018 , <i>140</i> , 116-119, doi:10.1159/000492064.							
8										
9	305	7.	Wu, Y.; Hao, W.; Chen, Y.; Chen, S.; Liu, W.; Yu, F.; Hu, W.; Liang, X. Clinical features,							
10										
11	306		risk factors, and clinical burden of acute kidney injuny in older adulte. <i>Ban Eail</i> 2020							
12	500		Tactors, and onnical burden of acute Nuney injury in older addits. Act Fall 202							
13										
15	307		1127-1134, doi:10.1080/0886022X.2020.1843491.							
16										
17	308	8.	Koyner, J.L.; Adhikari, R.; Edelson, D.P.; Churpek, M.M. Development of a Multicenter							
18										
19	300		Ward-Based AKI Prediction Model Clin J Am Soc Nenhrol 2016 11 1935-1943							
20	505									
21										
22	310		doi:10.2215/CJN.00280116.							
24										
25	311	9.	Low, S.; Vathsala, A.; Murali, T.M.; Pang, L.; MacLaren, G.; Ng, W.Y.; Haroon, S.;							
26										
27	312		Mukhopadhyay, A.; Lim, S.L.; Tan, B.H., et al. Electronic health records accurately							
28	• • =									
29	242		and the send and have been at the send to bid out initial DMC Marker (2010, 20.00)							
30	313		predict renal replacement therapy in acute kidney injury. <i>Bivic Nephrol</i> 2019, 20, 32,							
32										
33	314		doi:10.1186/s12882-019-1206-4.							
34										
35	315	10.	Tomasev, N.; Glorot, X.; Rae, J.W.; Zielinski, M.; Askham, H.; Saraiva, A.; Mottram, A.;							
36										
37	316		Meyer, C : Payuri, S : Protsyuk, L, et al. A clinically applicable approach to continuous							
38	510		meyer, C., Navuri, S., Protsyuk, I., et al. A cinically applicable approach to continuous							
40										
41	317		prediction of future acute kidney injury. <i>Nature</i> 2019 , <i>572</i> , 116-119,							
42										
43	318		doi:10.1038/s41586-019-1390-1.							
44										
45	319	11	Elechet M · Falini S · Bonetti C · Güiza E · Schetz M · Van den Berghe G · Mevfroidt							
46	010									
47 48	000									
49	320		G. Machine learning versus physicians' prediction of acute kidney injury in critically ill							
50										
51	321		adults: a prospective evaluation of the AKIpredictor. Critical Care 2019, 23, 282,							
52										
53	322		doi:10.1186/s13054-019-2563-x.							
54										
55 56	323	12	Churnek MM Carey KA Edelson DD Singh T Actor BC Cilbert ED.							
57	525	12.								
58										
59	324		Winstow, C.; Shah, N.; Atshar, M.; Koyner, J.L. Internal and External Validation of a							
60										
			16							

BMJ Open

2 3			
4 5	325		Machine Learning Risk Score for Acute Kidney Injury. JAMA Netw Open 2020, 3,
6 7 8	326		e2012892, doi:10.1001/jamanetworkopen.2020.12892.
9 10	327	13.	Yuan, Q.; Zhang, H.; Deng, T.; Tang, S.; Yuan, X.; Tang, W.; Xie, Y.; Ge, H.; Wang,
11 12 13	328		X.; Zhou, Q., et al. Role of Artificial Intelligence in Kidney Disease. Int J Med Sci 2020,
14 15	329		<i>17</i> , 970-984, doi:10.7150/ijms.42078.
17 18	330	14.	Li, Y.; Xu, J.; Wang, Y.; Zhang, Y.; Jiang, W.; Shen, B.; Ding, X. A novel machine
19 20 21	331		learning algorithm, Bayesian networks model, to predict the high-risk patients with
22 23	332		cardiac surgery-associated acute kidney injury. <i>Clin Cardiol</i> 2020, <i>43</i> , 752-761,
24 25 26	333		doi:10.1002/clc.23377.
27 28 20	334	15.	De Vlieger, G.; Kashani, K.; Meyfroidt, G. Artificial intelligence to guide management
30 31	335		of acute kidney injury in the ICU: a narrative review. Curr Opin Crit Care 2020, 26, 563-
32 33 34	336		573, doi:10.1097/MCC.000000000000775.
35 36	337	16.	James, M.T.; Pannu, N.; Hemmelgarn, B.R.; Austin, P.C.; Tan, Z.; McArthur, E.; Manns,
37 38 39	338		B.J.; Tonelli, M.; Wald, R.; Quinn, R.R., et al. Derivation and External Validation of
40 41 42	339		Prediction Models for Advanced Chronic Kidney Disease Following Acute Kidney Injury.
42 43 44	340		<i>JAMA</i> 2017 , <i>318</i> , 1787-1797, doi:10.1001/jama.2017.16326.
45 46 47	341	17.	Johnson, A.E.; Pollard, T.J.; Shen, L.; Lehman, L.W.; Feng, M.; Ghassemi, M.; Moody,
48 49	342		B.; Szolovits, P.AO.; Celi, L.A.; Mark, R.AO. MIMIC-III, a freely accessible critical
50 51 52	343		care database.
53 54	344	18.	Thoral, P.J.; Peppink, J.M.; Driessen, R.H.; Sijbrands, E.J.G.; Kompanje, E.J.O.;
56 57	345		Kaplan, L.; Bailey, H.; Kesecioglu, J.; Cecconi, M.; Churpek, M., et al. Sharing ICU
58 59 60	346		Patient Data Responsibly Under the Society of Critical Care Medicine/European
			17

1

BMJ Open

Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam

2	
3	
4	
5	
6	
7	
, 8	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
20	
29	
50 21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40	
50	
50	
ו כ ב ר	
52 52	
22	
54	
55	
56	
57	
58	
59	
60	

348		University Medical Centers Database (AmsterdamUMCdb) Example. Crit Care Med
349		2021 , 10.1097/CCM.0000000000004916, doi:10.1097/CCM.00000000004916.
350	19.	Koyner, J.L.; Carey, K.A.; Edelson, D.P.; Churpek, M.M. The Development of a
351		Machine Learning Inpatient Acute Kidney Injury Prediction Model. Crit Care Med 2018,
352		<i>46</i> , 1070-1077, doi:10.1097/CCM.000000000003123.
353		
354	Footno	tes
355	Contrib	utions: Conceptualization, QL and MH; Methodology, YX; Software, YX; Validation, YZ, and
356	YX.; F	ormal Analysis, JC and XC; Resources, MH; Data Curation, QL; Writing - Original Draft
357	Prepara	tion, QL; Writing – Review & Editing, MH; Visualization, YX; Supervision, YZ and QL; Project
358	Admini	stration, QL;
359	Fundin	g: This research received no specific grant from any funding agency in the public, commercial
360	or not-f	or-profit sectors.
361	Conflic	ts of Interest: There may be some potential competing interests between our research and
362	"HealSo	ci Technology Co. Beijing.". In this study, we jointly complete the work including data integration
363	and trar	nscoding in model construction and model visualization projects based on contract.
364	Patient	and public involvement Patients and/or the public were not involved in the design, or conduct, or
365	reportin	g, or dissemination plans of this research.
366	Provena	ance and peer review Not commissioned; externally peer reviewed.
367	Acknow	vledgements: Thank my colleagues in general ICU for cooperating with us in our prospective
368	study.	Thanks to two public databases namely MIMIC and AmsterdamUMC for providing important

3	
4	
5	
с С	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
50 77	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
<u>4</u> 7	
47	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	

1 2

369

data. Thanks for all patient advisers.

370	
371	Supplemental Figure:
372	File name: Figure S1.tif
373	Title and Description of data: The variable importance parameter histogram of early diagnosis prediction
374	models of severe AKI uses a multiple logistic regression algorithm and five machine learning algorithms.
375	File name: Figure S2.tif
376	Title and Description of data: The K-S curve used to determine the cut-off value of positive and negative
377	diagnosis of early diagnosis prediction models of severe AKI.
378	File name: Table S1.docx
379	Title and of Description data: Missing data between three databases in the study and values included in
380	the model.
381	File name: Table S2.docx
382	Title and of Description data: Clinical Demographics and Outcomes of SHZJU-ICU patients in model
383	building set and prospective validation.
384	
385	Figure Legend:
386	Figure 1: The research flow chart. The data collection time interval of the study was 7 days before
387	diagnosis and the prediction interval was 48 hours. The early prediction model of AKI diagnosis was
388	constructed and verified by our database and the MIMIC database and incorporated into the
389	AmsterdamUMC database for external validation. We carried out a one-year prospective validation

through the database of the centre.

3		
4 5	391	Figure 2: The AUROC curve of the internal validation set of the SHZJU-ICU database and the MIMIC
6 7	392	database.
8 9 10	393	Figure 3: The AUROC curve of the external validation set of the AmsterdamUMC database for 3A and
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	392 393 394	database. Figure 3: The AUROC curve of the external validation set of the AmsterdamUMC database for 3A and the prospective validation in our center for 3B.
45 46		
47 48 49 50 51 52		
53 54 55 56 57 58		
59 60		
		20

Figure 1: The research flow chart. The data collection time interval of the study was 7 days before diagnosis and the prediction interval was 48 hours. The early prediction model of AKI diagnosis was constructed and verified by our database and the MIMIC database and incorporated into the AmsterdamUMC database for external validation. We carried out a one-year prospective validation through the database of the centre.

338x451mm (300 x 300 DPI)

Figure 2: The AUROC curve of the internal validation set of the SHZJU-ICU database and the MIMIC database.

59 60

Figure 3: The AUROC curve of the external validation set of the AmsterdamUMC database for 3A and the prospective validation in our center for 3B.

Title and Description of data: The K-S curve used to determine the cut-off value of positive and negative diagnosis of early diagnosis prediction models of severe AKI.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

File name: Table S1.docx

Title and of Description data: Missing data between three databases in the study and values included in

the model.

	SHZJU-ICU	MIMIC	AmsterdamUMC	Including in Mod
Age	\checkmark	\checkmark		\checkmark
Gender	\checkmark	\checkmark	\checkmark	
Race	\checkmark	\checkmark	×	×
Primary disease	\checkmark	\checkmark	×	×
Comorbidity	\checkmark	\checkmark	×	×
Ventilation	\checkmark	\checkmark		
Operation	\checkmark	\checkmark	×	×
ICU hours		\checkmark	\checkmark	\checkmark
Survived	\checkmark	\checkmark		\checkmark
Vital sign				
Temperature		\checkmark		
Systolic pressure	\checkmark	\checkmark	\checkmark	\checkmark
Diastolic pressure	\checkmark	\checkmark	\checkmark	\checkmark
Respiratory rate	\checkmark	\checkmark		\checkmark
Heart rate	\checkmark	\checkmark		\checkmark
Oxygen saturation	\checkmark	\checkmark	V	\checkmark
Urine	\checkmark	\checkmark		\checkmark
GCS score	\checkmark	×	×	×
Laboratory results			'h	
Scr	\checkmark	\checkmark		\checkmark
BUN	\checkmark	\checkmark		\checkmark
RBC	\checkmark	\checkmark		\checkmark
MCV	\checkmark	\checkmark		
Hb	\checkmark	\checkmark		\checkmark
WBC	\checkmark	\checkmark		
NEUT				
PLT	\checkmark			
НСУ	\checkmark		×	×
TBLB	\checkmark			
DBLB	\checkmark			
IBLB	\checkmark			
CRP	\checkmark			
РСТ		×	×	×
Serum kalium	\checkmark			
Serum natrium				
Serum chlorine				$\overline{}$

РТ	\checkmark	\checkmark	 \checkmark
APTT		\checkmark	 \checkmark
INR			
СК			
LDH		\checkmark	
Troponin		\checkmark	
Blood glucose			
РН			
Lactic acid			
Anion gap			
ABC	V		
SBC	V	\checkmark	
PaCO ₂	V	\checkmark	
PaO ₂		\checkmark	

SHZJU-ICU: The general ICU database of the second affiliated hospital of Zhejiang university school of medicine; MIMIC: Medical Information Mart for Intensive Care; APTT: Activated partial thromboplastin time; INR: International normalized ratio; LDH: Lactate dehydrogenase; PaCO₂: Partial pressure of carbon dioxide; PaO₂ Partial pressure of oxygen; MCV: Mean corpuscular volume; PH: Potential of hydrogen; WBC: White blood cell count; NEUT: Proportion of neutrophils; CK: Creatine kinase; Scr: Serum Creatinine; BUN: Blood urea nitrogen; RBC: Red blood cell count; Hb: Hemoglobin; PT: Prothrombin time; TBLB: Total bilirubin; DBLB: Direct bilirubin; IBLB: Indirect bilirubin; CRP: C-reactive protein; HCV: Hematocrit value; PCT: Procalcitonin; ABC: Actual Bicarbonate Radical; SBC: Standard Bicarbonate Radical; PLT: Platelet count

File name: Table S2.docx

Title and of Description data: Clinical Demographics and Outcomes of SHZJU-ICU patients in model

building set and prospective validation.

	SHZJU-ICU	SHZJU-ICU	P-value	SHZJU-ICU	SHZJU-ICU	P-value
	Negative	Severe AKI		Prospective	Prospective	
	(N=5695)	(N=766)		Negative	Positive	
				(N=2188)	(N=344)	
Age, median [IQR]	60.5	62.1	0.004	61.3	62.1	0.03
	[48.8-70.1]	[50.1-72.5]		[47.5-73.4]	[51.2-70.5]	
Gender, male (%)	3561 (64.9)	438 (59.8)	0.007	1365 (62.4)	207 (60.2)	0.438
Race						
White	3 (0.05)	1 (0.1)	1	2 (0.001)	0	1
Black	1 (0.02)	0	1	0	0	1
Asian	5691(99.9)	764 (99.7)	1	2185 (99.9)	344(100)	1
Other	0	1 (0.1)	1	1 (0.001)	0	1
Admission Scr	0.9 (0.34)	1.0 (0.40)	<0.001	0.8 (0.32)	0.9 (0.35)	<0.001
(mg/dL), mean						
(sd)						
Admission BUN	18 (11)	21 (9)	<0.001	17 (11)	20 (10)	0.007
(mg/dL), mean						
(sd)						
Cancer, n (%)	644 (11.3)	48 (6.3)	<0.001	230 (10.5)	26 (7.6)	0.102
Cirrhosis, n (%)	43 (0.8)	6 (0.8)	0.89	15 (0.7)	3 (0.8)	0.726
Cardiopathy, n	231 (4.1)	42 (5.5)	0.08	98 (4.5)	19 (5.7)	0.403
(%)						
Diabetes, n (%)	305 (5.4)	63 (8.2)	0.002	142 (6.5)	29 (8.6)	0.203
Hypertension, n	889 (15.6)	115 (15.0)	0.70	324(14.8)	56 (16.4)	0.466
(%)						
Ventilation, n (%)	2569 (45.1)	592 (77.3)	<0.001	1102 (50.4)	239 (69.5)	<0.001
Operation, n (%)	3361 (59.1)	373 (48.7)	<0.001	1234(56.4)	160 (46.7)	0.001
ICU Hours,	50.8	164.4	<0.001	58.7	145.6	<0.001
median [IQR]	[23.0-139.5]	[70.3-328.6]		[34.2-160.4]	[68.5-314.8]	
Survived, n (%)	4997 (87.7)	380 (49.6)	<0.001	1868 (85.4)	178 (51.9)	<0.001

SHZJU-ICU: The general ICU database of the second affiliated hospital of Zhejiang university school of medicine; *MIMIC*: Medical Information Mart for Intensive Care; *IQR*: Inter-Quartile Range; *ICU*: Intensive Care Unit; *AKI*: Acute Kidney Injury. *Scr*: serum creatinine; *BUN*: blood urea nitrogen.

TRAPOD Page 30 of 29

TRIPOD Checklist: Prediction Model Development and Validation

1Section/Topic	Item		Checklist Item	Page
			Identify the study as developing and/or validating a multivariable prediction model the	
Title	1	D;V	target population, and the outcome to be predicted.	Yes; P1
Abstract	2	D;V	predictors, outcome, statistical analysis, results, and conclusions.	Yes; P2
Introduction				
Background and objectives	3a	D;V	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	Yes; P3
	3b	D;V	Specify the objectives, including whether the study describes the development or validation of the model or both	Yes; P4, L76-79
Methods				<u> </u>
Source of data	4a	D;V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	Yes; P4, L83-92
	4b	D;V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	Yes; P4, L83- 100
Participants	5а	D;V	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	Yes
	5b	D;V	Describe eligibility criteria for participants.	Yes; P4, L103
	5c	D;V	Give details of treatments received, if relevant.	NA
Outcome	6a 6b	D;V	when assessed.	Yes; P6, L111
Predictors			Clearly define all predictors used in developing or validating the multivariable prediction	
	/a	D;v	model, including how and when they were measured. Report any actions to blind assessment of predictors for the outcome and other	Yes; P6, L116
	7b	D;V	predictors.	NA
Sample size	8	D;V	Explain how the study size was arrived at.	NA
Missing data	9	D;V	imputation, multiple imputation) with details of any imputation method.	Yes; P6, L127
Statistical analysis methods	10a	D	Describe how predictors were handled in the analyses.	Yes; P6, L125
	10b	D	specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	Yes; P6, L130- 138
	10c		For validation, describe how the predictions were calculated.	Yes; P6, L139
	10d	D;V	multiple models.	Yes; P7, L159
	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	Yes; P7, L137
Risk groups	11	D;V	Provide details on how risk groups were created, if done.	Yes; P6, L111
vs. validation	12	V	criteria, outcome, and predictors.	Yes; P6, L132
Results				1
Participants	13a	D;V	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	Yes; Figure 1
	13b	D;V	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome	Yes, P8, L168- 180 and SunTable?
	13c	v	For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome)	Yes, SunTable3
Model development	14a	D	Specify the number of participants and outcome events in each analysis.	Yes, P8, L168
	14b	D	If done, report the unadjusted association between each candidate predictor and outcome.	Yes, SupTable1
Model specification	15a	D	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	Yes.
	15b	D	Explain how to the use the prediction model.	Yes, P9, L196
Model performance	16	D;V	Report performance measures (with CIs) for the prediction model.	Yes, P9, L190
Model-updating	17	V	If done, report the results from any model updating (i.e., model specification, model performance).	NA
Discussion		1		
Limitations	18	D;V	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	Yes, P12, L246
Interpretation	19a	V	For valuation, discuss the results with reference to performance in the development data, and any other validation data.	Yes, P11, L237
	19b	D;V	Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.	Yes, P10 L210- 245
Implications	20	D;V	Discuss the potential clinical use of the model and implications for future research.	Yes, P12, L254
Supplementary Provide information about the availability of supplementary resources such as study				
information	21	D;V	protocol, Web calculator, and data sets.	Yes
Funding	22	D;V	Give the source of funding and the role of the funders for the present study.	NA NA

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.