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Note S1 Reference motif prior

The hg19 human reference assembly was scanned for the presence of TF motifs using FIMO ( ,

) and applying a p-value cutoff of 10~%. Motifs that were present within the promoter regions of
genes were selected by identifying motifs that overlapped with the 1kb region (-750, +250) around all
possible transcription start sites (TSS) of a gene (so that we consider the TSS of each transcript of a
gene), making use of the GenomicRanges R package ( , ). Transcription start sites for
each transcript were downloaded from the UCSC Table Browser https://genome.ucsc.edu/cgi-bin/
hgTables, in the Ensembl genes table for hg19 on 06/10/2020. The resulting mapped motifs were then
collapsed to construct the reference motif prior network M defined as:

u { 1 if motif of TF ¢ overlaps with promoter region of gene j
ij =

0 otherwise

We chose to use the hgl9 reference genome because at the time of analysis, all of the eQTL data
used, including the latest version of GTEx (v7 at the time), as well as the ( ) data was

mapped to hg19.

Note S2 eQTLs, genotypes and QBiC

Expression QTLs for LCLs from GTEx version 7 ( , ; , ) were
downloaded from https://gtexportal .org/home/datasets on 06/10/2020. Determination of eQTLs is
described in the original paper from the GTEx consortium ( , ). Briefly, linear re-
gression in the FastQTL ( , ) package was used to identify cis-eQTLs, while adjusting for
several potentially confounding factors, including sex and genotyping platform, among others. Variants
within 1 Mb of the TSS of genes were considered. To determine significant variant-gene pairs, the follow-
ing approach was taken: [Quotation from https://www.gtexportal.org/home/documentationPage].
“a genome-wide empirical p-value threshold, pt, was defined as the empirical p-value of the gene closest to the 0.05
FDR threshold. pt was then used to calculate a nominal p-value threshold for each gene based on the beta distribu-
tion model (from FastQTL) of the minimum p-value distribution f(pmin) obtained from the permutations for the
gene. Specifically, the nominal threshold was calculated as F~1(pt), where F~1 is the inverse cumulative distri-
bution. For each gene, variants with a nominal p-value below the gene-level threshold were considered significant
and included in the final list of variant-gene pairs."

These eQTLs were then filtered to select only eQTLs where the variant resided within a TF motif
within a promoter region (described in Note S1) and where the eGene was the gene adjacent to (and
associated with) the promoter. Genotypes for NA12878 (corresponding to the GM12878 cell line) and
K562 were downloaded on 06/10/2020. The Platinum Genomes genotype for NA12878 was obtained
from https://www.illumina.com/platinumgenomes.html and the K562 genotype was obtained from
ENCODE https://www.encodeproject.org/files/ENCFF538YDL/ derived from a study by Zhou et al.

(2019) ( , ). Using the eQTL variants within motifs, we selected those variants where at
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least one of the cell lines (K562 or GM12878) had at least one alternate allele of the eQTL variant. QBiC
( , ) was then run on these eQTLs, using hg19 as a reference genome. Significant QBiC
disruptive effects of variants on TF binding were defined using the following criteria: (1) The predicted
change in TF binding is negative indicating it alters a “canonical” TF site, and, (2) if the TF binding model
was trained on human protein binding microarray (PBM) data the disruption is considered significant
at a QBiC default p-value of 1 x 107%; if the TF binding model was trained on PBM data from a different
species, the disruption is considered significant at a more stringent p-value of 1 x 10720, If the above
two criteria were met, we assigned the variant a value of ¢4;; = 1, and 0 otherwise.
We elected to use only on negative TF binding effects (a negative QBiC value) in EGRET. This decision
was motivated by two considerations. First, previous work (see Supplemental Figs. 2A-B in ( ,
)) had shown that the message passing approach used in EGRET is robust to the removal of other
unrelated TF-gene edges, suggesting that the overall network model should be robust to including only
negative effects while allowing us to identify network differences between genotypes. This is supported
by the observation that the predictive value of the entire GRN (based on ChIP-seq binding) is relatively
robust, as described in Note 58. Second, identifying SNPs that have positive effects, which could create
new binding motifs, would require a motif scan for each genotype (or the testing of each variant position
in the genome) to identify new motifs created by a individual’s unique variants; such motif scans are

computationally expensive.

Note S3 Prior modification

When running EGRET, a genotype-specific prior (“EGRET prior”) is constructed for each individual.
For each SNP within a given individual, the alternate allele count of the individual is calculated. For
each eQTL variant s in promoter region of gene j within a motif for TF 4, three attributes are assigned:
(1) the alternate allele count of the individual at that location A;;; (2) the beta value of the eQTL j;,;
and (3) the QBiC effect of the SNP g5, on the binding of the TF corresponding to the motif in which the
variant resides (only significant negative QBiC values are used). The effect of a SNP on TF binding in
the given individual is then defined as the product |gs,; As,; Bs,;|- Modifier weights to the reference motif
prior are then calculated by aggregating these effects per TF-gene pair, allowing for the fact that a gene
might have more than one variant in its promoter region affecting the binding of a particular TF. The

genotype-specific prior edge weight E;; for TF i and gene j is thus defined as

EZ] = MZ] - Z |q5i]‘ASi]‘ﬂSi]‘|
S

where M;; is the reference motif prior defined above in Note S1.

The small number of modified edges (1,520 for GM12878 and 1,182 for K562 out of a total of 39,690,052
possible edges) is a result of the stringent, successive filters we set for a TF-to-gene regulatory relation-
ship (edge) to be disrupted. For an edge ij (TF motif ¢ within the promoter of gene j to be disrupted),
(1) the TF motif i needs to contain a SNP for which the individual has the alternate allele; (2) this vari-

ant needs to be a significant eQTL affecting the expression of gene j; and (3) this variant needs to be
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predicted by QBiC to have a significant NEGATIVE effect on the binding of TF i at that specific genomic
location. These three requirements, when required simultaneously, result in a relatively small amount
of edges to be disrupted. The advantage of this approach is EGRET’s ability to identify an individual’s
genetic variants that disrupt their TF regulatory network through a hypothesized—and thus falsifiable—
mechanism (disruption of TF binding and regulation of the target gene).While these are promising re-
sults for identifying genotype-derived regulatory differences, we acknowledge that GM12878 and K562
cells, while both derived from blood, are not two genotypes of identical cell types, and that this is a

limitation in the validation analysis.

Note S4 Gene expression and PPI data

Gene expression data as TPMs (transcripts per million) for lymphoblastoid cell lines (LCLs) from The
Genotype-Tisse Expression Project (GTEx) version 7 ( , ), was downloaded from
https://gtexportal.org/home/datasets on 06/10/2020. The expression matrix was pruned to keep
only genes that had non-zero expression values in at least 50 samples. The protein-protein interaction
network is the same as used in ( , ). Briefly, human protein-protein interactions of
transcription factors from StringDb version 10 (https://string-db.org) were used to construct a PPI
network. StringDb PPI scores range from 0 to 1, and are an indicator of the confidence of the interaction.
We filtered this PPI network to keep only proteins whose corresponding genes met the same expres-
sion requirements described above (non-zero expression values in at least 50 samples). When included
in message passing, the PPI interaction scores are not thresholded, edge weights are included in the
network overlap measures of message passing.

Thus, when selecting the set of genes and TFs to be included in the GRN, we removed any TFs or
genes that did not have reasonable evidence of expression, where we defined “reasonable evidence of ex-
pression” as having non-zero values in >50 samples. Gene ID mapping from TF gene names to ensembl
IDs was done using the mapping downloaded from ftp://ftp.ensembl.org/pub/grch37/current/
gtf/homo_sapiens/Homo_sapiens.GRCh37.87.chr.gtf.gz on 06/10/2020.

Note S5 Message Passing Parameters

The refinement of E through message passing has three main practical advantages. First, and per-
haps most importantly, edge weights are updated to reflect context-specificity from the gene-gene co-
expression data. We have found this to be extremely valuable when analyzing gene regulatory networks
without genotype information (for example, see ( , )). This context-specificity is also
demonstrated in our analysis of the different cell-type-specific EGRET networks from the same Yoruba
individual. Second, message passing makes all edges (modified and unmodified) comparable, which al-
lows users to calculate higher-level network metrics (node degree, network clusters/communities, etc.)
which rely on this comparability. Third, message passing of £ with C' (gene-gene correlation matrix)

and P (PPI matrix) provides a slight improvement to the overall network structure (about a 1.5% in-
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crease AUC accuracy for predicting ChIP-seq binding in our particular example for GM12878). When

running the message passing step using the pandaR package, the following parameters were used:
remove.missing.ppi = TRUE, remove.missing.motif = TRUE, remove.missing.genes = TRUE. These

parameters ensure that the set of TFs is defined by those in the motif-gene prior, and that the set of genes

is defined as the intersection of those in the motif-gene prior and the gene expression matrix.

Note S6 Computational Requirements

EGRET can feasibly be run on thousands of individuals, provided the user has access a compute clus-
ter or cloud computing like AWS/Google Cloud. Table S3 shows computational requirements from the
GM12878 genotype benchmark run on a single m5n.12xlarge node (48 CPUs, 192 GiB memory) on AWS.
One can see that 6 cores were used, and peak memory was approximately 78 GiB. The job took around
1.25 hours. If one were to compute 1,000 EGRET networks of similar size, this would be expected to
take around 1.25 x 1,000 = 1, 250 hours. If one had access to 30 such nodes (a reasonable expectation -
the Longleaf cluster at UNC Chapel Hill contains 30 “big data nodes” which would meet these require-
ments) would on average bring the wall time down to 41.67 hours, (just over 1.5 days). Detailed outputs
from the time utility can be seen below.

Resource usage for pre-processing:

Output created: preprocess_finalEGRET_vl_timing.nb.html
Command being timed: "Rscript -e rmarkdown::render (’preprocess_finalEGRET_v1_timing.Rmd’)
User time (seconds): 8742.26
System time (seconds): 112.93
Percent of CPU this job got: 187%

Elapsed (wall clock) time (h:mm:ss or m:ss): 1:18:52
Average shared text size (kbytes): O

Average unshared data size (kbytes): O

Average stack size (kbytes): O

Average total size (kbytes): O

Maximum resident set size (kbytes): 25848184
Average resident set size (kbytes): 0

Major (requiring I/0) page faults: 169

Minor (reclaiming a frame) page faults: 44071704
Voluntary context switches: 78153

Involuntary context switches: 402945

Swaps: O

File system inputs: 60544472

File system outputs: 5482936

Socket messages sent: 0O

Socket messages received: 0
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Signals delivered: O
Page size (bytes): 4096
Exit status: 0

Resource usage for running EGRET:

Output created: timing_final_runEgret_gm12878_all(BiCModels.nb.html
Command being timed: "Rscript -e rmarkdown::render(’timing_final_runEgret_gm12878_allQBi(
User time (seconds): 19753.61
System time (seconds): 7355.42
Percent of CPU this job got: 604
Elapsed (wall clock) time (h:mm:ss or m:ss): 1:14:42
Average shared text size (kbytes): O
Average unshared data size (kbytes): O
Average stack size (kbytes): O
Average total size (kbytes): O
Maximum resident set size (kbytes): 77884748
Average resident set size (kbytes): O
Major (requiring I/0) page faults: 102
Minor (reclaiming a frame) page faults: 1145566516
Voluntary context switches: 19825
Involuntary context switches: 275841212
Swaps: O
File system inputs: 33080
File system outputs: 3574536
Socket messages sent: O
Socket messages received: O
Signals delivered: O
Page size (bytes): 4096
Exit status: O

Note S7 Comparison of EGRET networks from two cell line genotypes

Note S7.1 ChIP-seq regulatory network

ChIP-seq data from ReMap2018 for GM12878 and K562 ( , ) (hg19 reference genome)
was downloaded from http://pedagogix-tagc.univ-mrs.fr/remap/index.php?page=download

on 06/12/2020. This consisted of genomic ranges in BED format corresponding to the identified binding
positions of several transcription factors (110 TFs for GM12878 and 204 TFs for K562). From this ChIP-

seq data, TF binding sites within the promoter regions of genes were selected in the same manner as as

11
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the motif regions, described above. This resulted in two validation networks V, one for each cell line,
where

{ 1 if ChIP-seq range of TF ¢ overlaps with promoter region of gene j
ij =

0 otherwise

The subset of TFs for which ChIP-seq data was available in a given genotype (GM12878 or K562) were

then used for subsequent analysis involving comparison of EGRET networks with ChIP-seq networks.

Note S7.2 Improving prediction of TF binding

The top edges with the highest disruption scores d&’j}’ were selected from the EGRET GM12878 and K562
networks, using a selection of different dg) cutoffs to define the top set of edges (Tables S5 and S6).
Using the EGRET edge score as the predictor variable and the edges from the gold standard ChIP-seq
GRN V as the ground truth, we calculated performance metrics, namely the area under the receiver-
operator characteristic (AU-ROC) and the area under the precision-recall (AU-PR) curve for edges with
the top disruption scores d(gj) ; this was repeated for different thresholds of the edge disruption score.
To compare the EGRET edge weights with those from the genotype-agnostic network, we calculated the
significance between the differences of the AUCs using the Delong test for comparing AUCs (Tables S5
and 5S6). In both GM12878 and K562, the genotype-specific edges significantly improved the prediction
of TF binding on variant-impacted edges. An optimal threshold of dg(fj) > 0.35 was identified for the
isolation of variant impacted edges, as this was the threshold at which ChIP-seq TF binding predictions
improved significantly for both GM12878 and K562. AU-ROCs and AU-PRs were calculated using the

precrec ( , ) and pROC ( , ) R packages.

Note S7.3 Allele-specific expression

Allele-specific expression (ASE) data using the BiT-STARR-seq method in LCLs ( , )
was downloaded from https://genome.cshlp.org/content/suppl/2018/10/17/gr.237354.118.DC1/
Supplemental _Table_S1_.txt on 09/01/2020. This data contained all variants tested for an ASE associ-
ation, and these variants were mapped to TF motif regions in the promoter regions of genes, in the same
manner as described above. Each gene j was then assigned gene regulatory difference score RgG) defined

as:

(@) _ ™ R(E)
R; —ZRU.

This score agglomerates the edge regulatory difference scores per gene, providing a metric quantifying
the total extent to which a gene’s promoter region is differentially disrupted between the two cell lines.
We then used Fisher’s exact test to determine whether genes with a high regulatory difference score
R;G) between the two genotypes K562 and GM12878 were enriched for genes having a significant (FDR
< 0.1) ASE variant within a motif in their promoter region. “High” regulatory difference scores were

considered to be those in to top 10%.
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Note S7.4 Chromatin accessibility QTLs

Chromatin accessibility QTLs (caQTLs) determined in lymphoblastoid cell lines (LCLs) ( ,

) were downloaded from http://eqtl.uchicago.edu/yri_ipsc/cht_results_full LCL.txt on
09/08/2020 ( , ). This data set contained all variants tested for a caQTL association.
We mapped these variants to TF motif regions in the promoters of genes (described above in Note S2).
We again used the regulatory difference scores R;G) to test whether genes with a high regulatory dif-
ference score R§G) between the two genotypes K562 and GM12878 were enriched for genes having a
significant (FDR < 0.1) caQTL variant within a motif in their promoter region, using Fisher’s exact test

in a similar manner as described above.

Note S8 Sensitivity analysis

We investigated the sensitivity of EGRET to the two most variable parameters - the significance threshold
for the motif prior, and the significance threshold for the eQTLs. As can be seen in Figure S8, increas-
ing the stringency of the motif prior significance threshold negatively affects the accuracy of the global
network when validating against the gold-standard ChIP-seq network from GM12878. Thus, we do not
recommend decreasing the motif prior threshold below the default for FIMO, which is 1e-4. The eQTL
parameter is one which we feel can be more safely altered by the user depending on whether sensitivity
or specificity is of most importance (Figure 59). Decreasing the p-value cutoff (and thus increasing the
stringency of the threshold) has no impact on the accuracy of global network structure (Figure S9A),
but can provide some small increases in accuracy of the variant-disrupted edges (Figure S9B). However,

this is at the cost of significantly lowering the sample size of edited edges (Figure S9C).

Note S9 Population study of 119 individuals across 3 cell types

Note S9.1 Network Construction

Gene expression and eQTL data for a population of lymphoblastoid cell lines (LCL), induced pluripotent
stem cells (iPSCs) and cardiomyocytes (CMs) that were differentiated from the induced pluripotent
stem cells derived the study by Banovich et al. ( , ) and Li et al. ( , ),
as well as the corresponding genotypes of 119 Yoruba individuals were downloaded on 06/17/2020.
Expression data and eQTLs for LCLs, as well as eQTLs for iPSCs and iPSC-CMs were downloaded from
http://eqtl.uchicago.edu/ whereas gene expression data for iPSCs and CMs were obtained through
the Gene Expression Omnibus (GEO) from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE107654. For each cell type, significant eQTLs (p < 1 x 10~°) for genes where the SNP resided within
a TF motif within the promoter region of a gene ([-750,+250] around a TSS) were selected.

For each cell type, SNPs in the population of 119 Yoruba individuals that also were selected as eQTLs
in the respective cell type were then isolated, and QBiC was run on this set of SNPs, per cell type, as in
Note S3.
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LCL and iPSC expression data were already preprocessed through WASP and normalized by stan-
dardizing by gene and quantile normalizing by individual, a method developed and used in (

, ). The CM expression was not yet normalized, and we followed the process detailed in the
series matrix files from GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107654 in
order to process the CM expression data in the same manner. This involved scaling each gene by mean
centering and dividing by the standard deviation, followed by quantile-normalizing the individuals
using the normalize.quantiles function in the preprocessCore R package ( , ). QBiC
( , ) was then run on the eQTLs to predict the effect these SNPs had on the binding of
TFs using the full set of TF binding models in QBiC, and using hg19 as a reference genome.

EGRET was then run for each genotype in each cell type (a total of 119 x 3 = 357 EGRET runs). In
addition, message passing was performed using the co-expression network, PPI network, and the refer-
ence motif prior (which involves no genotype information) to construct a “genotype agnostic" baseline
GRN for each cell type. Message passing was performed using the pandaR R package ( , )
and run in parallel using GNU Parallel ( , )

Note S9.2 TF disruption scores

Edge disruption scores d;’j;) were calculated for each edge in each individual network for each cell type,
(TF)

and thresholded at a value of 0.35. Subsequently, a TF disruption score d;, ~ * was calculated for each TF

as
dTF) =N " (),
i —

A scaled TF disruption score dgF), for a TF within in an individual and cell type was then calculated
by subtracting the mean TF disruption score for that individual/cell type and dividing by the stan-
dard deviation. Disease-associated genes for coronary artery disease (CAD) and Crohn’s disease (CD)
were obtained from the GWAS catalog at https://www.ebi.ac.uk/gwas/api/search/downloads/full
on 06/30/2020 ( , ). See Tables 57 and S8 for a complete list of citations for the individ-

ual GWAS studies from which summary statistics were used.

Note S9.3 Differential modularity with ALPACA

For each individual, we used ALPACA ( , ) to compare the modularity of
the individual’s genotype-specific EGRET GRN with the baseline GRN, resulting in a score for each
node representing the contribution of that node to the differential modularity. These scores were then
quantile normalized per individual per cell type. Following that, scores were normalized by gene, first

by mean-centering and then by scaling to standard deviation of one.
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Note S9.4 Functional Enrichment
Note S9.4.1 Functional enrichment in genes with high DM scores in individual 18.

Gene ontology enrichment of genes ranked by differential modularity in individual 18 was performed
using GORILLA ( , ) on the web server available at http://cbl-gorilla.cs.technion.

ac.il/ using the “Single ranked list of genes” option and a p-value threshold of 1073.

Note S9.4.2 Functional enrichment in different communities in individual 18

Using the g:Profiler R package ( , ) we determined functional enrichment of terms
from GO biological process, KEGG and Reactome ontologies. Using the network communities derived
from ALPACA, we show that different communities exist within the EGRET network of an individual
18. These communities are enriched for different functional processes (Figures 519, 520, and 521). It is
interesting to note that CSRP1, the known smooth muscle associated with the bundling of actin filaments
that contributes to the high TF disruption score for ERG in individual 18 is located within community
2, which is enriched for cytoskeleton-related functions. This illustrates how that the global network
structure is useful to provide context for interpretation for where mutations and disrupted regulatory

edges reside.
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Figure S1: Diagram illustrating the process and datatypes required for EGRET network construc-
tion. EGRET begins with a reference motif prior representing the presence/absence of TF motifs in the
promoter regions of genes. This is then modified by the individual’s genetic mutations, penalizing motif-
gene edges in which there exists a variant within the TF motif for which the individual has the alternate
allele (A), the variant is an eQTL for the adjacent gene (/3) and the variant is predicted through QBiC to
disrupt TF binding at that location (¢). These prior edges are then penalized by the absolute value of the
product of the alternate allele count, the QBiC effect, and the eQTL beta value. Message passing then
integrates the co-expression network (C') and PPI network (P) with the EGRET prior (E), resulting in
a final genotype-specific GRN per individual (E*).
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Figure 52: eQTLs per gene/edge. (A) Distribution of number of eQTLs which fall within the promoter
regions of genes (i.e., fall within any TF motif within the promoter region of a given gene); (B) Distribu-
tion of number of eQTLs which fall within a particular TF’s motif within a particular gene’s promoter;
(C) Distribution of number of disruptive (significant negative QBiC effect - see Note S2) eQTLs which
fall within the promoter regions of genes (i.e. fall within at least one TF motif within the promoter re-
gion of a given gene); (D) Distribution of number of disruptive (significant negative QBiC effect - see

Note S2) eQTLs which fall within a particular TF’s motif within a particular gene’s promoter.
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Figure S4: Distribution of edge disruption scores dg(fj) for GM12878 and K562. (A) Violin plot of edge

disruption scores. (B) Boxplot of logo disruption scores.
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Figure S5: SLC16A9 region eQTLs. LocusZoom plot (Boughton et al., 2021) of GTEx LCL eQTLs in the
region of SLC16A9.
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Figure S6: PMS2CL region eQTLs. LocusZoom plot (Boughton et al.,, 2021) of GTEx LCL eQTLs in the
region of PMS2CL.
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Figure S7: Contribution of different data types to EGRET. Percentage improvement in the prediction of
the ChIP-seq regulatory network by the EGRET network E* in GM12878, compared to that of the baseline
network B*. Each bar represents the AUC-ROC improvement when using a different combination of
data types in the prior modification, for each SNP s with QBiC effect g, alternate allele count A and
eQTL beta value . Percentage improvement calculated as (AUCg- — AUCp-)/AUCp-
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Figure S8: Sensitivity analysis - motif calls. Accuracy of the global network structure, validated against

the gold-standard ChIP-seq network for GM12878, with different significance thresholds for the motif
prior.
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Figure S9: Sensitivity analysis - eQTLs.(A) Accuracy of the global EGRET network, validated against
the gold-standard ChIP-seq network for GM12878, with different significance thresholds for calling
eQTLs. (B) Accuracy of the variant disrupted edges, validated against the gold-standard ChIP-seq net-
work for GM12878, with different significance thresholds for calling eQTLs. (C) Number of disrupted
edges overlapping with ChIP-seq data at different eQTL thresholds. (*) See Note S2 for details on the
default GTEx approach for determining the p-value cutoff.
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Figure 510: Cell type eQTL overlap. Venn diagram indicating the overlap of eQTLs between LCL, iPSC
and CM cell types in the Banovich et al. dataset.
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Figure S12: GWAS SNP associated with CAD. Position of SNP rs2836633 which is associated with CAD

via a GWAS association.
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Gene expression for CSRP1 (ENSG00000159176.13)
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Figure S13: CSRP1 expression. TPM expression level of CSRP1 (ENSG00000159176) across all tissues
available in GTEx. Plot obtained from the GTEx portal (Lonsdale et al., 2013).
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Figure S14: Differential modularity scores. Distributions of scaled differential modularity (DM) scores

of genes in EGRET networks from 119 Yoruba individuals in three cell types.
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Figure S17: Hierarchy of GO terms enriched in the genes with highest DM scores in individual 18
(genotype NA18523) in LCLs, based on the mHG score test (Eden et al., 2009). Enrichment performed
using GORILLA (Eden et al., 2009). GO terms are colored according to the significance of the p-value.
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Figure S18: GO terms enriched in genes with high DM scores in individual 18, the individual with
the highest TF disruption score for ERG. Point size corresponds to the the number of high-DM genes

annotated with the corresponding GO term.
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Figure S19: Functional enrichment in community 1. Functional enrichment in community 1 of indi-
vidual 18’s EGRET network. Enrichment and visualization performed using the g:Profiler R package
(Raudvere et al., 2019).
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Figure 520: Functional enrichment in community 2. Functional enrichment in community 2 of indi-
vidual 18’s EGRET network. Enrichment and visualization performed using the g:Profiler R package
(Raudvere et al., 2019).
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Figure S21: Functional enrichment in community 3. Functional enrichment in community 3 of indi-
vidual 18’s EGRET network. Enrichment and visualization performed using the g:Profiler R package
(Raudvere et al., 2019).
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Figure 522: DM scores of CSRP1 for 119 individuals in Yoruba population. Point color intensity cor-
responds to the individual’s alternate allele dosage A for the SNP within the ERG binding motif, and

point size corresponds to the TF disruption dgF)/ score of ERG.
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Supplementary Tables

Table S1: Inputs to EGRET.

Name Symbol Source Notes
Reference motif prior M FIMO ( ,  TF motif locations called on a refer-
) motif calls ence genome.
eQTLs I5; GTEx ( ,  eQTLs from a public database can
) be used, it is not necessary for
eQTLs to be determined in the in-
vestigator’s specific study popula-
tion.
SNPs s Individual(s)  geno- Genotypes of the specific indi-
type(s) viduals for which the investigator
wishes to construct EGRET net-
works for. These are the variants
used to tailor the networks to a
specific individual.
Individual(s) x Investigator’s study in- This is the individual(s) for which
dividual/population genotype-specific EGRET networks
will be constructed.
QBiC predictions q QBiC ( , QBiC must be applied to the
) SNPs s from the individual(s) =
which overlap with eQTLs within
promoter-residing motifs.
PPI P StringDB ( , Protein-protein interactions from a
) public database.
Gene expression C GTEx ( , RNA-seq measurements across a

)

population are needed to estimate
co-expression relationships. C' does
not need to be estimated from indi-
viduals for which specific networks
are being constructed, it can be de-

rived from databases such as GTEx.
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Table S2: Thresholds: Different thresholds/thresholding strategies used during EGRET network con-

struction and analysis.

Description Metric Threshold

QBiC effects p-value 1x10~* for models trained on human PBMs; 1x 10720
models trained on non-human PBMs

GTEx eQTLs p-value Empirical p-value of the gene closest to the 0.05 FDR

Banovich et al. eQTLs p-value 1x107°

Motifs p-value 1x107%

Edge disruption scores dég.) 0.35 (see Note S6.2)

Allele-specific expression variants ~ FDR 0.1

caQTL variants FDR 0.1

TF disruption scores dgF) Define top 10% of TF disruption scores as “high.”
These are used as input in Fisher’s exact test enrich-
ment analysis.

ALPACA DM scores DM; No thresholding; genes were ranked by DM score
prior to GO enrichment using GOrilla which requires
only a ranked list.

ALPACA DM scores for CAD genes  DM,; CAD-gene DM scores in CMs within the top 10% are
considered “high”.

ALPACA DM scores for CD genes D M; CD-gene DM scores in LCLs within the top 10% are
considered “high”.

Regulatory difference score (genes) R; Define top 10% of regulatory difference scores as
“high.” These are used as input in Fisher’s exact test
enrichment analysis against ASE and caQTL variants.

Regulatory difference score (edges) R;; Define top 10% of regulatory difference scores for

edges as “high.” These are used as input in Fisher’s
exact test enrichment analysis against the differential
ChIP-seq network.

Table S3: Computational requirements: Statistics on computational requirements for running EGRET.

Metric

Pre-processing EGRET

Memory peak (Gb)

User time (s)

System time (s)

Wall time (h:mm:ss)

25.848184 77.884748
8742.26 19753.61
112.93 7355.42
1:18:52 1:14:42
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Table S4: Calculated outputs from EGRET.

Name

Symbol

Source/Formula

Notes

Egret prior

E

M - ZS ‘qsijASij/gSij|

EGRET prior E is the genotype-edited form
of M and is combined with C' and P during

message passing.

EGRET GRN

E*

Message passing

Genotype-specific EGRET GRN E* produced
by message passing of E, C, and P. A high
edge weight indicates a putative regulatory
relationship where as a low weight indicates

lack of a regulatory relationship.

Baseline GRN

B*

Message passing

Baseline GRN produced by message passing
of M, C,and P. A high edge weight indicates
a putative regulatory relationship where as a
low weight indicates lack of a regulatory rela-
tionship.

Edge

score

disruption

d(E)

Tij

dgj) = |E;U - B;'kj‘

Edge disruption scores measure the extent to
which a particular TF-gene regulatory rela-
tionship is disrupted by genetic variants in a
given individual. A high value of d;]f;) indi-
cates that the regulatory relationship between
TF i and gene j is likely disrupted by genetic

variants.

TF disruption score

JTF)

T4

TF disruption scores measure the extent to
which a particular TF’s binding sites in pro-
moters across the genome are disrupted by
genetic variants in a given individual. A high
value of dgF) indicates that the binding sites

of TF i are likely disrupted by genetic variants.

Gene  disruption

score

&

a9 =3

Tij

E3, — B}

Gene disruption scores measure extent to
which a particular gene’s promoter region is
disrupted by genetic variants in a given indi-
vidual. A high value of dgf) indicates that the
promoter region of gene j is likely disrupted

by genetic variants.

Edge

difference score

regulatory

E
R

E E E
R = [d7) — d

Edge regulatory difference scores compare
the edge disruption scores between two indi-
viduals, and thus measure the extent to which
a TF-gene relationship is differentially dis-
rupted by genetic variants between two indi-

viduals.
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Gene regulatory R§.G) ngG) =>, Rgf) Gene regulatory difference scores sum the

difference score edge regulatory difference scores per gene,
and thus measure the extent to which the pro-
moter region of a gene is differentially dis-
rupted by genetic variants when comparing
two individuals.

Differential modu- DM ALPACA ALPACA, when applied to compare an

larity score EGRET GRN E* with a baseline B*, cal-

culates a differential modularity score for

each gene. The DM score indicates the
contribution of that gene to the differential
modularity between the baseline and EGRET
GRNSs.

Table S5: Improvement in AUC-ROC for the prediction of the ChIP-seq regulatory network in GM12878
when using EGRET edge weights, over using baseline network edge-weights, for different cutoffs of d;(pi) .
Total number of negatives (N), total number of positives (P), improvement in the AUC-ROC as well as

the Delong p-value for the improvement are reported.

dgci) cutoff N P AUC improvement Delong p-value

0.1 226 133 -0.05 0.96
0.15 132 81 -0.07 0.95
0.2 90 76 -0.01 0.55
0.25 72 75 0.08 0.07
0.3 70 72 0.09 0.05
0.35 57 65 0.14 0.01
0.4 57 64 0.13 0.02
0.45 57 64 0.13 0.02
0.5 57 64 0.13 0.02
0.55 57 62 0.11 0.04
0.6 57 62 0.11 0.04
0.65 57 61 0.10 0.05
0.7 57 61 0.10 0.05
0.75 57 58 0.07 0.12
0.8 57 58 0.07 0.12
0.85 57 58 0.07 0.12
0.9 57 57 0.06 0.16
1 56 56 0.06 0.16
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Table S6: Improvement in AUC-ROC for the prediction of the ChIP-seq regulatory network in K562 when
using EGRET edge weights, over using baseline network edge-weights, for different cutoffs of dg(f?) Total
number of negatives (N), total number of positives (P), improvement in the AUC-ROC as well as the

Delong p-value for the improvement are reported.

dé’j}’ cutoff N P AUCimprovement Delong p-value

0.1 750 547 -0.01 0.88
0.15 408 283 -0.03 0.90
0.2 235 161 -0.05 0.93
0.25 149 127 -0.01 0.55
0.3 105 97 0.03 0.29
0.35 75 78 0.11 0.03
0.4 68 72 0.14 0.01
0.45 67 70 0.13 0.02
0.5 67 69 0.13 0.02
0.55 67 68 0.12 0.03
0.6 67 68 0.12 0.03
0.65 64 63 0.12 0.03
0.7 61 57 0.11 0.05
0.75 61 57 0.11 0.05
0.8 61 57 0.11 0.05
0.85 61 57 0.11 0.05
0.9 61 57 0.11 0.05
1 61 56 0.11 0.05
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Supplementary Table Attachments

Table S9: See supplementary file attachment Supplementary_Table_S9.txt

Table S10: See supplementary file attachment Supplementary_Table_S10.txt

Table S11: See supplementary file attachment Supplementary_Table_S11.txt
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