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Supplemental Fig. S1. Pearson’s correlation of ATAC-seq data across Amphimedon 
developmental stages Pearson’s correlation of normalised ATAC-seq counts is shown for all 
Amphimedon ATAC-seq libraries (n = 23 libraries) across developmental stages (n = 3, n = 3, 
n = 3, n = 3, n = 3, n = 2, n = 3, and n = 3 libraries for white, brown, cloud, spot, ring, late ring, 
larval and adult stages respectively). 
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Supplemental Fig. S2. Irreproducible Discovery Rate (IDR) of Amphimedon ATAC-seq 
libraries Pairwise IDR of Amphimedon ATAC-seq libraries of every developmental stage is 
shown. Overlapping peaks with IDR <= 10% are illustrated in black. 



 5 

 

 
 
Supplemental Fig. S3. Density of insert fragment size in Amphimedon ATAC-seq libraries 
Forward to reverse (FR) fragments are shown in red and reverse to forward (RF) fragments are 
shown in blue.  
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Supplemental Fig. S4. Distribution of Amphimedon ATAC-seq peaks in multiple genomic 
features by developmental stage Amphimedon developmental stages are indicated in 
chronological order (top to bottom), the colour code represents different genomic features. The 
TSS region was defined as -500 to 0 bp (A) and as ±500 bp (B). 
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Supplemental Fig. S5. Distribution of Amphimedon, worm, fruit fly, human and 
Capsaspora cis-regulatory regions into multiple genomic features Transcription start site 
(TSS) region was defined from -500 to 0 bp from the TSS (A), from -500 to 500 bp (B) and 
from -1000 to 1000 bp (C).  
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Supplemental Fig. S6. Little change to chromatin accessibility around the TSS with and 
without more variable samples Peaks were used only if at least 50% of bases overlapped 
across biological replicates. 
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Supplemental Fig. S7. KEGG functional categories of genes proximal to ATAC-seq peaks 
Mean number of ATAC-seq peaks proximal to Amphimedon genes grouped by KEGG 
functional categories. Proximity defined as ±500 bp from TSS. 
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Supplemental Fig. S8. Amphimedon de novo k-mers De novo 8-mers that demarcate each 
broad developmental stage in Amphimedon, denoted as early: 8-mer.e, mid: 8-mer.m,  late: 8-
mer.l. List of 8-mers and their significance levels are shown in Table S6. Similarity of 8-mers 
and JASPAR motifs is shown in Table S7. 
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Supplemental Fig. S9. Extreme gradient boosting machine (XGB) pipeline for the 
prediction of distal cis-regulatory regions against proximal cis-regulatory regions using 
known and de novo PMWs in Amphimedon data (A) Motif enrichment of Amphimedon distal 
and proximal cis-regulatory regions. Peak state is codified in a binary variable (distal cis-
regulatory regions = 1, proximal cis-regulatory regions = 0). (B) Selection of a balanced dataset 
of peaks (same number of distal and proximal cis-regulatory regions). (C) Splitting of data into 
‘training’ and ‘test’ datasets. (D) training of XGB model. (E) Prediction of peaks states with 
Amphimedon test dataset and datasets of other species. (F) Evaluation of prediction 
performance by assessing the variable importance (average gain and SHAP values) of motifs 
and by analyzing ROC curves. 
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Supplemental Fig. S10. TF families and classes of the most predictive motifs of 
Amphimedon distal ATAC-seq peaks compared to the JASPAR reference set Proportion 
of unique PWMs belonging to different TF families (A) and classes (B) among the top 50 most 
predictive motifs of Amphimedon distal cis-regulatory regions (selected based on the greatest 
difference in TF motif numbers between ATAC-seq peaks and genome-wide background 
peak). The proportions of PWMs of the same classes and families in JASPAR database are 
shown (n = 1646 PWMs in JASPAR database). HD-SINE and TALE-type homeo domain 
factors were enriched among the most predictive motifs of distal cis-regulatory regions (FDR 
= 0.009 and FDR = 0.04, respectively). 
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Supplemental Fig. S11. Width of cis-regulatory regions across species Width of cis-
regulatory regions is shown for Amphimedon, worm, fly, mouse, zebrafish and Capsapsora 
(black) along with the corresponding background sequences (grey).  
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Supplemental Fig. S12.  Receiver Operating Characteristic (ROC) curves and SHAP 
values of XGB models trained to distinguish distal cis-regulatory regions from 
background (A) ROC curves with 95% confidence intervals of the prediction of distal cis-
regulatory regions from background sequences in Amphimedon, worm, fly, mouse, zebrafish 
and Capsaspora using JASPAR motifs and Amphimedon 8-mers counts (n = 10 XGB models). 
(B) SHAP values of most important motifs and 8-mers for the prediction of distal cis-regulatory 
regions (selected based on SHAP values, n = 1 XGB model). The plot shows motif importance 
and effect. Motifs are ordered according to their importance. Each dot reflects the motif at a 
peak. Colours reflect the count of the motif and the SHAP value show the impact on the 
prediction. S.cer = S. cerevisiae, A. tha = A. thaliana, D. mel = D. melanogaster, A. que = A. 
queenslandica, Z. mays = Z. mays, and H. sap = H. sapiens. Metazoan and non-metazoan 
PWMs are indicated with back filled and black outlined circles, respectively. 
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Supplemental Fig. S13.  Receiver Operating Characteristic (ROC) curves and SHAP 
values of XGB models trained to distinguish proximal cis-regulatory regions from 
background (A) ROC curves with 95% confidence intervals of the prediction of proximal cis-
regulatory regions from background sequences in Amphimedon, worm, fly, mouse, zebrafish 
and Capsaspora using JASPAR motifs and Amphimedon 8-mers counts (n = 10 XGB models). 
(B) SHAP values of most important motifs and 8-mers for the prediction of proximal cis-
regulatory regions (selected based on SHAP values, n = 1 XGB model). The plot shows motif 
importance and effect. Motifs are ordered according to their importance. Each dot reflects the 
motif at a peak. Colours reflect the count of the motif and the SHAP value show the impact on 
the prediction. S.cer = S. cerevisiae, A. tha = A. thaliana, A. que = A. queenslandica, D. mel = 
D. melanogaster, H. sap = H. sapiens, Z. mays = Z. mays and M. mus = M. musculus. Metazoan 
and non-metazoan PWMs are indicated with back filled and black outlined circles, 
respectively. 
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Supplemental Fig. S14. Frequencies of motifs per peak for the top four most predictive 
motifs in Amphimedon distal regions JASPAR and 8-mers (black) and scrambled (grey) 
PWMs were used to identify motifs in Amphimedon distal ATAC-seq peaks and motif 
frequency per peak is shown. Counts were transformed by base 10 logarithm (log10(counts 
+1)). Bar plots were truncated to remove values with low frequency. 
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Supplemental Fig. S15. ROC curves of the prediction of distal cis-regulatory regions on 
PWMs counts normalised by peak width ROC curves of the prediction of distal cis-
regulatory regions with an XGB model trained on the frequencies of JASPAR motifs plus 
Amphimedon 8-mers. These counts were adjusted for peak width by dividing the motif counts 
by peak width (bp) and multiplying by 10,000.  
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Supplemental Fig. S16. dAUC values of most predictive motifs of Amphimedon distal cis-
regulatory regions dAUC values of highly predictive motifs and 8-mers of Amphimedon distal 
cis-regulatory regions (most predictive motifs shown in Fig 5F). Motifs were selected based 
on their SHAP values and their enrichment in cis-regulatory peak (Mann-Whitney U, FDR < 
0.05).  
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from proximal cis-regulatory regions. 
 
Supplemental Table S13. Enrichment of motifs in distal cis-regulatory regions and 
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Supplemental Table S15. Pearson’s correlation of average gain values across XGB models 
trained on known motifs and de novo Amphimedon 8-mers to distinguish Amphimedon distal 
cis-regulatory regions. 
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