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Supplementary Materials

Application of ComBat

Note from the Methods section of the paper that we have assumed that the standardized data Zic(u) ∼

N(γic, δ
2
ic) with the following priors on the batch effects:

γic ∼ N(γc, τ
2
c ), δ2ic ∼ IG(ωc, βc)

Recall that i denotes the slide from which the data was collected, c denotes the marker of interest, and

u defines the unit of measuring intensity, which for this study is the median quantified marker intensity

of the segmented cell. Note also that we defined Uic =
∑

ic u, or the number of quantified cells present

on a particular slide i for a given channel c.

Posterior Derivation for γic

Using the empirical Bayes methodology, we must derive the posterior mean estimator of γic to utilize in

the ComBat model. Hence:
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Which after we complete the square, we see this is posterior follows the Normal distribution with the

following expectation:

E
[
γic|Zic(u), δ2ic

]
=
τ2c
∑

u Zic(u) + δ2icγc
Uicτ2c + δ2ic

To derive an estimator of the batch effect parameter, we must define the following estimators of the

hyperparameters:

γ̄c =
1

Uic

∑
i

γ̂ic and, τ̄2c =
1

Uic − 1

∑
i

(γ̂ic − γ̄c)2

Hence we now derive the following estimator of γic:

γ∗ic =
τ̄2cUicγ̂ic + δ2∗ic γ̄c
Uicτ̄2c + δ2∗ic
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Posterior Derivation for δ2ic

We employ the same methodology to derive the posterior mean estimator of δ2ic:
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Which we note is an Inverse Gamma distribution with the following expectation:

E
[
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(
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To derive an estimator of the batch effect parameter, we must define the following estimators:

δ̂2ic =
1

Uic − 1

∑
u

(Zic(u)− γ̂ic)2

We then calculate the sample mean of the δ̂2ic, M̄c and S̄2
c and set these equal to the moments of an

Inverse Gamma distribution to yield the following estimators:

ω̄c =
M̄c + 2S̄2

c

S̄2
c

and, β̄c =
M̄3

c + M̄cS̄
2
c
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c

Hence we now derive the following estimator of δ2ic:

δ2∗ic =
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CD3 and CD8 Density Plots

Supplementary Figure 1: Visual comparison of CD3D marker densities for each transfor-

mation method

Density plots for the median cell intensity of the marker CD3D, where each color represents a different

slide in the dataset. Each row is aligned with the scale transformations present in Table 1, where each

column also matches with the normalization algorithms in Table 1. The ticks on the x-axis represent

the Otsu thresholds for each slide for that transformed data, where the color again corresponds to the

slide (such that the colors are one-to-one between threshold and density plot). Anderson-Darling test

statistics for the marker CD3D are presented for each method in the top right corner.
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Supplementary Figure 2: Visual comparison of CD8 marker densities for each transforma-

tion method

Density plots for the median cell intensity of the marker CD8, where each color represents a different

slide in the dataset. Each row is aligned with the scale transformations present in Table 1, where each

column also matches with the normalization algorithms in Table 1. The ticks on the x-axis represent

the Otsu thresholds for each slide for that transformed data, where the color again corresponds to the

slide (such that the colors are one-to-one between threshold and density plot). Anderson-Darling test

statistics for the marker CD8 are presented for each method in the top right corner.

Preservation of Cell Proportions

To measure the preservation of biological signal for each transformation method, we first quantified cell

proportions in various tissue classes using Otsu thresholds. This method uses the manual labels for CD3-

and CD8-positive cells to calculate the proportion of positive cells within each level of the data (e.g.
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slide identifier, slide region). This metric visualizes the change in baseline cell proportions of CD3- and

CD8-positive cells for each transformation algorithm implemented using raincloud plots to compare the

distribution, box plot, and densities of marker positive cells.

We compared CD3 and CD8 cell proportions within epithelium and stroma using the proportions es-

timated by Otsu thresholding after each normalization method to quantify the preservation of biological

signal for each method, as compared to those estimated using the manual labels (Supplementary Figure

3). For both CD3 and CD8, we see that the log10 scale does not replicate the cell proportions from

the manual labels, while the mean division log10 performs well in both markers across normalization

algorithms (again excluding the unnormalized mean division log10 for CD8). Per this metric in both CD3

and CD8, and re-affirming prior evaluation, the mean division method and the mean division log10 with

functional data registration maintain the cell proportions most closely. This again points to the ability of

these methods to robustly maintain biological signal in the unadjusted data while removing slide-to-slide

variation.
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Supplementary Figure 3: Comparison of cell proportions for each transformation method

A comparison of estimated proportions for the manually labeled cells for CD3 and CD8 (A) to the

proportions of (B) CD3 and (C) CD8 for each normalization methods. Positive cells for the normalization

methods are determined by Otsu thresholding across all slides. Methods that maintain similar estimates

to the manual labels are considered more accurate.

7



Additional Transformations

In this section we present multiple transformations and normalization techniques that are not included

in the main text. These include the following (using the same notation as Table 1):

• “ log10 then mean division ”: log10(y+1)
mean(log10(y+1))

• “ log10 then mean subtract ”: log10(y + 1)−mean(log10(y + 1))

• “ log10 Z-transformation ”: log10(y+1)−mean(log10(y+1))
SD(log10(y+1))

Here we recreate the figures and results from the main text to demonstrate the efficacy of some of these

transformations. For clarity, we also include the raw, unadjusted data (“None ; None”) and the best

performing method, the mean division method, for comparison. In summary, we see that across the

evaluation framework we introduce, none of these methods surpasses the mean division method in terms

of reducing slide-to-slide variation or maintaining biological signal.

Method

Mean

AD Test

Statistic

Mean Otsu

Discordance

Score

Adj. Rand

Index

(Slide ID)

Mean

Variance

Proportion

(Slide ID)

None; None 275.019 0.085 0.033 0.138

Mean division ; None 138.774 0.041 0.007 0.000

log10 then mean division ; None 212.030 0.141 0.066 0.000

log10 then mean subtract ; None ; None 137.474 0.088 0.052 0.000

log10 Z-transformation ; None ; None 131.621 0.068 0.014 0.000

Supplementary Table 1: Quantitative metrics comparing additional transformations

Results from the k-samples Anderson-Darling test statistic, the Otsu discordance score, and the variance

proportion at the slide level from the random effects modeling, all averaged across marker channels, as

well as the adjusted Rand index for the slide identifiers comparing the raw data to the normalized data.
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Supplementary Figure 4: Visual comparison of vimentin marker densities for each additional

transformation

Recreation of Figure 1: Density plots for the median cell intensity of the marker vimentin, where each

color represents a different slide in the dataset. Each row is aligned with the scale transformations present

in Table 1, where each column also matches with the normalization algorithms in Table 1. The ticks

on the x-axis represent the Otsu thresholds for each slide for that transformed data, where the color

again corresponds to the slide (such that the colors are one-to-one between threshold and density plot).

Anderson-Darling test statistics for the marker vimentin are presented for each method in the top right

corner.
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Supplementary Figure 5: Otsu discordance scores for each additional transformation

Recreation of Figure 2A: Otsu thresholds were calculated at the slide-level for each marker and compared

to a global Otsu threshold for each marker to calculate a discordance score to compare transformation

methods. The mean difference of the slide-level Otsu thresholds and the global Otsu thresold is then

calculated for each marker, presented as a point for each of the 9 markers, with the white diamond

representing the mean discordance score across all markers for a given method. Given that this is a

discordance score, lower values indicate better agreement across slides.

Supplementary Figure 6: Otsu accuracy for each additional transformation

Recreation of Figure 2B: Otsu thresholds were calculated across slides for each marker to determine

marker positive cells, which were then compared to the manual labels for the markers CD3 and CD8

to determine the accuracy of defining a cell as marker positive. This is presented as the accuracy rate

of recapitulating the ground truth labels - given that this is a measurement of accuracy, higher

values indicate better agreement between the normalized data and labels.

10



Supplementary Figure 6: Proportion of variance present at slide-level in random effects

model for each additional transformation

Recreation of Figure 3: Scatter plots that denote the proportion of variance at the slide-level for

each normalization method for each of the marker channels in this dataset. Variance proportions were

calculated using a random effects model with a random intercept for slide – methods that perform well

should reduce the slide level variance. Note also that the top row indicates the results from the raw,

unadjusted data and the second row indicates results from the mean division method.
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Supplementary Figure 8: UMAP embedding of data for each additional transformation

(slide)

Recreation of Figure 4A: UMAP embedding of the transformed data with points colored by slide iden-

tifier.
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Supplementary Figure 8: UMAP embedding of data for each additional transformation

(tissue)

Recreation of Figure 4B: UMAP embedding of the transformed data with points colored by tissue

type.
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Dataset definition Marker

ACTININ Actinin

BCATENIN Beta Catenin

CD11B CD11b

CD20 CD20

CD3 CD3D

CD4 CD4

CD45 Protein tyrosine phosphatase, receptor type, C

CD68 CD68

CD8 CD8

CGA Chromogranin A

COLLAGEN Collagen

COX2 Cyclooxygenase-II

ERBB2 Erb-B2 Receptor Tyrosine Kinase 2

FOXP3 Forkhead Box P3

HLAA Human Leukocyte Antigen

LYSOZYME Lysozyme

MUC2 Mucin 2

NAKATPASE Na+/K+-ATPase

OLFM4 Olfactomedin 4

PANCK Pan-Cytokeratin

PCNA Proliferating Cell Nuclear Antigen

PEGFR phospho-Epidermal Growth Factor Receptor

PSTAT3 Phosphorylated Signal Transducer and Activator of Transcription

SMA α-Smooth Muscle Actin

SNA Spherical Nucleic Acid

SOX9 SRY-Box 9

VIMENTIN Vimentin

DAPI 4′,6-diamidino-2-phenylindole

CD45B CD45RB

GACTIN Globular Actin

PDL1 Programmed Death-Ligand 1

CDX2 Caudal-type Homeobox 2

MUC5AC Mucin 5AC

Supplementary Table 2: List of markers available in the dataset.
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