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1 Data sources and ontologies

The training dataset of variants contains 14,197 (10,401 deletions, 3,796 duplications) pathogenic

or likely pathogenic structural variants and 4,477 variants associated with one or more diseases

(3,737 deletions, 586 duplications), as well as 25,890 (13,742 deletions, 12,148 duplications)

benign or likely benign structural variants.

For each pathogenic structural variant, we defined variant–disease pairs with associated dis-

eases from Online Mendelian Inheritance in Men (OMIM) database [1]. There are 3,805

structural variants linked with one or more than one OMIM disease; if a variant is associ-

ated with n OMIM diseases, we generate n variant–disease pairs. As a result, we obtained

5,907 causative pathogenic variant–disease pairs. As negative training pairs we selected both

benign and pathogenic variants and associate them with a randomly selected disease; we in-

clude pathogenic variants in the negative training pairs to simulate the case where variants may

be pathogenic but not associated with the phenotypes observed in a patient (i.e., with a different

phenotypes). After this step we obtained 36,041 negative (not causative) variant–disease pairs .
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We downloaded phenotypes from the HPO database on 16 July 2020 and obtain 169,281 phe-

notype associations for 4,315 human genes. We downloaded phenotype associations from MGI

on 20 March 2020 and obtained 228,214 associations between 13,529 mouse genes and classes

in MP. We identify the human ortholog for mouse genes using the HMD HumanPhenotype.rpt

orthology file from MGI; the file contains 10,951 human orthologs for the 13,529 mouse genes

resulting in 168,550 associations between human genes and MP classes. We obtain the GO

annotations for human gene products from the GO Annotation database [2] on 20 March 2020

for 18,495 gene products with 495,719 annotations in total. We filtered out all the GO an-

notations with the evidence code indicating that the annotation was inferred from electronic

annotation (IEA), or no biological data is available (ND). We map the UniProt accessions of the

gene products to Entrez gene identifiers using the mappings provided by the Entrez database

[3], and obtain 17,786 genes which have GO annotations for their gene product resulting in

208,630 associations between genes and GO classes. For the anatomical location of gene ex-

pression, we downloaded the GTEx Tissue Expression Profiles from the Gene Expression Atlas

[4] which identifies gene expression across 53 tissues; 20,538 genes have an expression above

the 4.0 threshold which was previously determined to be useful for predicting disease associa-

tions [5] resulting in 585,765 associations between genes and UBERON classes. We represent

the tissues with their UBERON classes, excluding the tissues transformed skin fibroblast and

EBV-transformed lymphocyte as these are not found in UBERON. For the cell type, we down-

loaded single-cell RNAseq data from the Tabula Muris project [6] in which genes are annotated

with the CL. From this dataset, we obtain 6,559 human genes which have CL annotations, and

17,149 associations between genes and one or more classes from CL.

We use the combined PhenomeNET ontology [7] downloaded on 6 October, 2020, from the

AberOWL ontology repository, as our phenotype ontology. PhenomeNET combines the pheno-

types of human and other model organism as well as UBERON, GO and CL, and allows them

to be compared.
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2 Estimating variant pathogenicity by supervised prediction

2.1 Phenotype prediction model

We apply DL2Vec to generate the feature representation for the patient phenotypes and genes.

DL2Vec learns the “representation” for phenotypes and genes based on their annotations to

ontology classes. The inputs to DL2Vec are associations of entities with ontology classes and

the outputs are vectors (embeddings) of these entities. DL2Vec utilizes the axioms in ontologies

to construct a graph representing phenotypes and their interrelations. DeepSVP incorporates

biological background knowledge about the relation between phenotypes resulting from a loss

of function in mouse/human genes, gene functions as defined using the GO, as well as the

celltype and anatomical site of gene expression.

The phenotype model takes two vectors v1 and v2 as input, representing the embedding for the

patient’s phenotypes and the embedding for a gene, respectively. The embeddings are used as

input for two neural network models ν1 and ν2. We then calculate the inner product for ν1(v1)

and ν2(v2) and apply a sigmoid activation function to generate a prediction score, between the

embedding for the phenotypes v1, and gene v2. We use binary cross-entropy as a loss function

to train our model defined as:

Loss =− 1
N

N

∑
i=1

Yi · log(P(Yi))+(1−Yi) · log(1−P(Yi)) (1)

where N correspond to the number of training samples, Yi is the true value for sample i, and

P(Yi) is the predicted value for sample i.

Each neural network ν1 and ν2 consists of two hidden layers, in which the first layer with 256

units, and the second layer with 50 units. After each layer, we use dropout [8] with a rate of

20%, followed by a Leaky Rectified Linear Unit (LeakyReLU) [9] activation function. We use

the Adam optimizer [10] to optimize the model parameters. We develop five different models

using DL2Vec embeddings based on different feature types: functions of gene products (GO),

mouse model phenotypes (MP), human phenotype (HP), celltype (CL), and site of expression
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(UBERON). For each set of phenotypes (characterizing a disorder, or the clinical phenotypes

observed in an individual), and for each prediction model, we rank each gene based on the

DL2Vec prediction score, from smallest to highest, and represent the association between them

by their m-quantile in this distribution [11] (Figure 5 shows the distribution of the normalized

quantile scores). This normalization and ranking aims to make prediction scores comparable

across sets of phenotypes [12]. We use the quantile as one of the features of the combined

prediction models.

2.2 Combined prediction model

The combined prediction model uses the variant features and the phenotype-based scores pro-

duced by the DL2Vec-based predictions; the model is an artificial deep neural network model

that uses genomic features derived from a variant as input together with the prediction score

generated from the phenotype prediction model. We trained a separate model for each ontology

dataset and aggregation type, either the maximum or average features scores for the genes within

the variant region. The features used by the combined model are listed in the Supplementary

Table 2.

Given a structural variant τ affecting regions that contain genes G1, ...,Gn, we obtain the phe-

notype prediction score φ(Gi) for the genes G1, ...,Gn using each of the phenotype-based pre-

diction models. We transform these scores into a feature for the variant τ using either the

maximum or average of all the gene scores, i.e., either φmax(τ) = max1≤i≤n φ(Gi) or φavg(τ) =

1
n ∑

n
i=1 φ(Gi). We normalize all the features using z-score normalization, in which the values

for and feature F are scaled based on the mean, and standard deviation of F . The value vi of F

is normalized to v́i by v́i =
vi−µF

σF
where v́i is z-score normalized one values, vi is the i-th value

for the feature A, µF is the mean, and σF the standard deviation, for feature F . We use the same

mean and standard deviation to normalize the testing set.

We use 22 features for variants (8 features for the variant and 9 derived from the genes overlap-

ping the variant) as well as 5 features from ontology embeddings. Some features are missing

for some variants; to account for missing values, we use imputation. We imputed missing val-
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Figure 1: Workflow for DeepSVP training. (a) Generate the graph using the ontology anno-
tations. (b) Generate the embeddings after generating the walks on the graph, then run the
DL2vec prediction model to rank the genes for every disease using the OMIM disease and
genes embeddings. (c) Training the combined model, by first Collecting the genomic features
derived from the training data and the DL2vec prediction score for the genes within the variants
and the associated diseases. Abbreviations: G: Genes, D: Disease, F: Features, P: Phenotypic
score, VCF: Variant Call Format.

ues by assigning them a zero value and additionally created indicator variables with a value

set to 1 if the corresponding variant is missing and 0 otherwise. We use one-hot encoding to

represent the categorical features with an “undefined” category for missing categorical annota-

tions. We provide an analysis of feature importance and the correlation between features in the

Supplementary Materials Section 3.1.
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Figure 2: Workflow for DeepSVP inference. (a) Update the graph using the patient phenotypes
by adding a node for the patient and edges to the set of phenotypes observed in the patient. (b)
Update the embeddings after generating the walks on the updated graph starting by the patient
node, then run the DL2vec prediction model to rank the genes for the patient phenotypes using
the patient and genes embeddings. (c) Collect the genomic features derived from the patient
VCF and rank the variants using the DeepSVP combined prediction model, the rank determines
how likely the variant is causative of the phenotypes observed in the patient. Abbreviations: G:
Genes, P: Patient, F: Features, P: Phenotypic score.
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Figure 3: Workflow diagram of the model’s training using nested Cross-validation

2.3 Training and testing

We tuned for the following set of hyperparameters for the model: learning-rate r∈ [1×10−6,1×

10−2] with logarithmic transformation, and dropout r ∈ [0.1,0.5]; number of layers l ∈ [2,6],

and the number of nodes for each of the dense layers n ∈ [50,512]; activation functions a ∈

{relu,sigmoid,selu} between the layers. Following our experiments, the optimal parameters

for each model are summarize in Table 1. We used a nested 5× 2 fold cross validation for

training (Figure 3).

Learning rate Dense layers Dense nodes dropout Activation

DeepSVP models
using maximum score

GO 0.0006 6 50 0.1000

Relu

MP 0.0002 3 146 0.1555
HP 0.0007 3 347 0.1000
CL 0.0001 2 212 0.1000

UBERON 0.0003 5 212 0.2033
Union 0.0002 6 120 0.1000

DeepSVP models
using average score

GO 0.0023 4 344 0.3327
MP 0.0100 4 484 0.1000
HP 0.0001 5 320 0.1498
CL 0.0015 6 201 0.1000

UBERON 0.0100 4 512 0.1000
Union 0.0002 3 512 0.1110

Table 1: Optimized models parameters values
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3 Variant-based features

We use AnnotSV v2.3 [13], which uses data from multiple external databases to annotate and

rank SVs based on the overlapping regions of the variants with known pathogenic variants

in dbVar [14], the Database of Genomic Variants (DGV) [15], and disease-associated genes

from OMIM. For each variant, AnnotSV generates annotations based on the variant length and

the genes with which the variant overlaps (choosing among Refseq [16] gene annotations).

Furthermore, AnnotSV reports the list of promoters with which the variant overlaps. From the

annotations provided by AnnotSV, we use the variant length, variant type, GC content around

the variant’s breakpoints (GCcontent left, GCcontent right), and the number of promoters and

genes affected by the variant as features.

We further use AnnotSV to obtain information about genes with which a structural variant

overlaps: the length of the Coding DNA Sequence (CDS), transcript length (tx length), haploin-

sufficiency ranks collected from the Deciphering Developmental Disorders (DDD) study [17],

haploinsufficiency (HI DDDpercent) and triplosensitivity estimates from ClinGen [18], gene

intolerance annotations from ExAC [19] including six annotations for synonymous variants

(synZExAC), missense variants (misZExAC), loss of function variants (pLIExAC), deletion

(delZExAC), duplications (dupZExAC), and CNV intolerance (cnvZExAC). Table 2 summa-

rizes all the features used in our predictive model.

While not used as a feature of our prediction model, we also use AnnotSV to identify the

allele frequency of variants using the 1,000 genomes allele frequency [20] and allele frequency

from gnomAD [21]. We use this information to filter out common variants before applying our

prediction.

3.1 Correlation between features

To test the redundancy of different scores of structural variants corresponding to the suscep-

tibility of the phenotypes for the disease, we analyze the features by evaluating the pairwise

correlation between them (Figure 4). According to their correlation coefficients, the features
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were broadly clustered into four major groups using the maximum and average score. As ex-

pected, measures of the structure of variants such as SV length and the number of genes or

promoters were highly correlated. We further assess the importance of the features using two

methods; the first using Extremely Randomized Trees ensemble learning Classifier (Extra Trees

Classifier) (Figure 6), and the second using the Shapiro-Wilk algorithm [22] (Figure 7). Both

methods explore the linear relationships across features; Extra Trees Classifier aggregates the

results of multiple decision trees and outputs the ranked features based on the information gain,

while Shapiro-Wilk assesses the normality of the distribution of examples with respect to the

feature. We noticed that the features rank using both methods are similar; however, both do not

capture potential nonlinear relationships among features, so we included all the ranked features

in our model.

Figure 4: Correlation between the combined model features generated with corrplot package
(version 0.84) in R, using corrplot function. 22 features of 42,202 SVs, (8 features for the
variant, and 14 derived from the genes overlapping the variant) were obtained from the disease
phenotypes and AnnotSV using various databases. The pairwise correlation was computed on
all the features. Figure A shows results using the maximum score, and Figure B the average
score. The features are ordered, and different clusters are highlighted based on the hierarchical
clustering. Significant correlations (P < 0.05) are indicated by a letter ‘s’ in the lower trian-
gle. The color and size of circles represent the correlation strength (correlation coefficient).
Statistical significance is indicated with asterisks (∗P <0.05;∗∗P <0.01;∗∗∗P <0.001).
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Feature Description

Structural Variant (SV)

SV length Length of SV.

SV type Type of the SV (DEL, DUP) Categorical features.

GCcontent left* Breakpoints annotations, GC content around the left SV breakpoint (± 100bp).

GCcontent right* Breakpoints annotations, GC content around the right SV breakpoint (± 100bp).

Number of genes* Number of genes within the SVs.

Number of promoters* Number of promoters within the SVs.

HI CGscore HaploInsufficiency Score (categorical features).

TriS CGscore TriploSensitivity Score (categorical feature).

Genes-based annotations

DL2vec Score* Predict associations between genes and sets of phenotypes different ontolgies (GO, HP, CL, MP, and UBERON).

CDS length* Length of the CoDing Sequence (CDS) (bp) overlapping with the SV.

tx length* Length of transcript (bp) overlapping with the SV.

synZ ExAC* Gene intolerance to synonymous variation.

misZ AxAC* Gene intolerance to missense variation.

pLI ExAC* The probability that a gene is intolerant to a loss of function variation.

dupZ ExAC* Gene duplication intolerance.

delZ ExAC* Gene deletion intolerance.

cnvZ ExAC* Gne CNV intolerance.

HI DDDpercent* Haploinsufficiency ranks, where in a single functional copy of a gene is insufficient to maintain normal function.

Table 2: Annotation features for model training and prediction. An asterisk (*) indicates that a
boolean indicator variable was created in order to handle undefined values for that feature.
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Figure 5: Distribution of the phenotype features, (a) using the maximum features scores, and
(b) using the average score.
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Aggregation method for
genes within CNV

DeepSVP Models F1-Score ROCAUC PRAUC DOR

Maximum score

GO 0.8245 (± 0.0211) 0.9090 (± 0.0120) 0.9103 (± 0.0080) 26.1573 (± 5.5995)

MP 0.8273 (± 0.0180) 0.9122 (± 0.0128) 0.9160 (± 0.0102) 26.9852 (± 6.2736)

HP 0.8748 (± 0.0576) 0.9509 (± 0.0277) 0.9540 (± 0.0260) 85.3049 (± 50.2101)

CL 0.8093 (± 0.0486) 0.9031 (± 0.0326) 0.9042 (± 0.0316) 24.3906 (± 11.8240)

UBERON 0.7937 (± 0.0523) 0.8936 (± 0.0241) 0.8959 (± 0.0256) 19.8162 (± 7.5107)

Union 0.8822 (± 0.0234) 0.9509 (± 0.0154) 0.9552 (± 0.0119) 74.3240 (± 23.1871)

Average score

GO 0.8241 (± 0.0281) 0.9112 (± 0.0140) 0.9138 (± 0.0099) 27.2239 (± 6.4774)

MP 0.8372 (± 0.0299) 0.9259 (± 0.0155) 0.9266 (± 0.0154) 38.1741 (± 12.3755)

HP 0.8628 (± 0.0267) 0.9400 (± 0.0164) 0.9443 (± 0.0138) 53.2996 (± 21.4353)

CL 0.8327 (± 0.0489) 0.9184 (± 0.0302) 0.9183 (± 0.0318) 31.0700 (± 12.8467)

UBERON 0.8258 (± 0.0308) 0.9084 (± 0.0286) 0.9071 (± 0.0310) 28.4376 (± 10.9040)

Union 0.9142 (± 0.0218) 0.9693 (± 0.0129) 0.9700 (± 0.0122) 144.0755 (± 67.6037)

Table 3: Summary of the evaluation for predicting causative variants in our testing data set using
nested 5 folds cross-validation. We reported the mean for the different evaluation metrics along
with the standard deviation.
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Figure 6: Feature importance using ensemble learning technique Extremely Randomized Trees
Classifier (Extra Trees Classifier) that aggregates the results of multiple decision trees and out-
put the ranked features based on the information gain.
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Figure 7: A one-dimensional ranking of features utilizing the Shapiro-Wilk algorithm generated
using Yellowbrick Python package (version 1.0). The Shapiro algorithm takes into account a
single feature at a time to assess the normality of the distribution of instances with respect to the
feature. A barplot showing the relative ranks of each feature (A) using the maximum features
scores, and (B) using the average score.
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Recall@1 Recall@10 Recall@30 ROCAUC PRAUC

DeepSVP models
using average score

GO 451 (0.3001) 628 (0.4178) 787 (0.5236) 0.9650 0.3441

MP 633 (0.4212) 1023 (0.6806) 1232 (0.8197) 0.9851 0.5099

HP 515 (0.3426) 941 (0.6261) 1188 (0.7904) 0.9837 0.4347

CL 137 (0.0912) 543 (0.3613) 885 (0.5888) 0.9742 0.1657

UBERON 234 (0.1557) 600 (0.3992) 1106 (0.7359) 0.9758 0.2280

Union 679 (0.4518) 1060 (0.7053) 1250 (0.8317) 0.9859 0.5441

DeepSVP models
using maximum score

GO 328 (0.2182) 521 (0.3466) 726 (0.4830) 0.9557 0.2678

MP 237 (0.1577) 626 (0.4165) 878 (0.5842) 0.9602 0.2461

HP 410 (0.2728) 1040 (0.6919) 1340 (0.8916) 0.9936 0.4111

CL 275 (0.1830) 823 (0.5476) 1146 (0.7625) 0.9801 0.2575

UBERON 247 (0.1643) 648 (0.4311) 1055 (0.7019) 0.9737 0.2377

Union 321 (0.2136) 953 (0.6341) 1130 (0.7518) 0.9758 0.3474

SV pathogenicity
prediction/ranking

StrVCTVRE 72 (0.0479) 223 (0.1484) 405 (0.2695) 0.9178 0.0952

CADD-SV 38 (0.0253) 620 (0.4125) 1020 (0.6786) 0.9816 0.1262

AnnotSV 19 (0.0126) 229 (0.1524) 700 (0.4657) 0.9605 0.2203

Table 4: Summary of the evaluation for predicting causative variants in the synthetic whole-
genome benchmark dataset derived from dbVar, using 90% of the phenotypes. AnnotSV are
computed based on ranking variants from “pathogenic” to“benign”. We break the ties uniformly
for all the methods randomly and report the absolute number of variants recovered at each
rank together with the recall, as well as areas under the ROC curve (using micro-averages
per synthetic genome) and precision-recall curve. Best performing results (using maximum or
average score) for each measure are indicated in bold.
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Recall@1 Recall@10 Recall@30 ROCAUC PRAUC

DeepSVP models
using average score

GO 435 (0.2894) 619 (0.4118) 799 (0.5316) 0.9643 0.3320

MP 639 (0.4251) 1047 (0.6966) 1226 (0.8157) 0.9850 0.5153

HP 529 (0.3520) 962 (0.6401) 1200 (0.7984) 0.9816 0.4445

CL 157 (0.1045) 543 (0.3613) 882 (0.5868) 0.9739 0.1758

UBERON 241 (0.1603) 602 (0.4005) 1102 (0.7332) 0.9756 0.2315

Union 676 (0.4498) 1056 (0.7026) 1250 (0.8317) 0.9859 0.5428

DeepSVP models
using maximum score

GO 330 (0.2196) 520 (0.3460) 716 (0.4764) 0.9555 0.2688

MP 233 (0.1550) 639 (0.4251) 884 (0.5882) 0.9607 0.2487

HP 431 (0.2868) 1059 (0.7046) 1338 (0.8902) 0.9936 0.4283

CL 273 (0.1816) 829 (0.5516) 1151 (0.7658) 0.9800 0.2568

UBERON 242 (0.1610) 645 (0.4291) 1062 (0.7066) 0.9735 0.2342

Union 323 (0.2149) 953 (0.6341) 1128 (0.7505) 0.9756 0.3476

SV pathogenicity
prediction/ranking

StrVCTVRE 72 (0.0479) 223 (0.1484) 405 (0.2695) 0.9178 0.0952

CADD-SV 38 (0.0253) 620 (0.4125) 1020 (0.6786) 0.9816 0.1262

AnnotSV 19 (0.0126) 229 (0.1524) 700 (0.4657) 0.9605 0.2203

Table 5: Summary of the evaluation for predicting causative variants in the synthetic whole-
genome benchmark dataset derived from dbVar, using 80% of the phenotypes. AnnotSV are
computed based on ranking variants from “pathogenic” to“benign”. We break the ties uniformly
for all the methods randomly and report the absolute number of variants recovered at each
rank together with the recall, as well as areas under the ROC curve (using micro-averages
per synthetic genome) and precision-recall curve. Best performing results (using maximum or
average score) for each measure are indicated in bold.
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Recall@1 Recall@10 Recall@30 ROCAUC PRAUC

DeepSVP models
using average score

GO 458 (0.3047) 628 (0.4178) 792 (0.5269) 0.9643 0.3453

MP 647 (0.4305) 1029 (0.6846) 1223 (0.8137) 0.9848 0.5180

HP 529 (0.3520) 942 (0.6267) 1204 (0.8011) 0.9803 0.4433

CL 158 (0.1051) 543 (0.3613) 885 (0.5888) 0.9742 0.1748

UBERON 245 (0.1630) 599 (0.3985) 1103 (0.7339) 0.9759 0.2338

Union 676 (0.4498) 1058 (0.7039) 1244 (0.8277) 0.9858 0.5429

DeepSVP models
using maximum score

GO 335 (0.2229) 531 (0.3533) 713 (0.4744) 0.9550 0.2730

MP 243 (0.1617) 631 (0.4198) 882 (0.5868) 0.9597 0.2519

HP 471 (0.3134) 1045 (0.6953) 1331 (0.8856) 0.9930 0.4389

CL 273 (0.1816) 822 (0.5469) 1140 (0.7585) 0.9801 0.2565

UBERON 245 (0.1630) 651 (0.4331) 1049 (0.6979) 0.9733 0.2362

Union 325 (0.2162) 947 (0.6301) 1128 (0.7505) 0.9754 0.3480

SV pathogenicity
prediction/ranking

StrVCTVRE 72 (0.0479) 223 (0.1484) 405 (0.2695) 0.9178 0.0952

CADD-SV 38 (0.0253) 620 (0.4125) 1020 (0.6786) 0.9816 0.1262

AnnotSV 19 (0.0126) 229 (0.1524) 700 (0.4657) 0.9605 0.2203

Table 6: Summary of the evaluation for predicting causative variants in the synthetic whole-
genome benchmark dataset derived from dbVar, using 70% of the phenotypes. AnnotSV are
computed based on ranking variants from “pathogenic” to “benign”. We break the ties uni-
formly for all the methods randomly and report the absolute number of variants recovered at
each rank together with the recall, as well as areas under the ROC curve (using micro-averages
per synthetic genome) and precision-recall curve. Best performing results (using maximum or
average score) for each measure are indicated in bold.
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Recall@1 Recall@10 Recall@30 ROCAUC PRAUC

DeepSVP models

using average score

GO 458 (0.3047) 630 (0.4192) 788 (0.5243) 0.9644 0.3461

MP 644 (0.4285) 1026 (0.6826) 1223 (0.8137) 0.9850 0.5158

HP 519 (0.3453) 942 (0.6267) 1179 (0.7844) 0.9792 0.4335

CL 137 (0.0912) 534 (0.3553) 878 (0.5842) 0.9742 0.1651

UBERON 238 (0.1583) 600 (0.3992) 1107 (0.7365) 0.9755 0.2309

Union 678 (0.4511) 1062 (0.7066) 1256 (0.8357) 0.9858 0.5438

DeepSVP models

using maximum score

GO 324 (0.2156) 532 (0.3540) 719 (0.4784) 0.9550 0.2682

MP 227 (0.1510) 629 (0.4185) 880 (0.5855) 0.9598 0.2461

HP 407 (0.2708) 1008 (0.6707) 1313 (0.8736) 0.9926 0.4040

CL 272 (0.1810) 817 (0.5436) 1144 (0.7611) 0.9801 0.2563

UBERON 254 (0.1690) 652 (0.4338) 1059 (0.7046) 0.9734 0.2401

Union 323 (0.2149) 945 (0.6287) 1132 (0.7532) 0.9755 0.3480

SV pathogenicity

prediction/ranking

StrVCTVRE 72 (0.0479) 223 (0.1484) 405 (0.2695) 0.9178 0.0952

CADD-SV 38 (0.0253) 620 (0.4125) 1020 (0.6786) 0.9816 0.1262

AnnotSV 19 (0.0126) 229 (0.1524) 700 (0.4657) 0.9605 0.2203

Table 7: Summary of the evaluation for predicting causative variants in the synthetic whole-
genome benchmark dataset derived from dbVar, using 50% of the phenotypes. AnnotSV are
computed based on ranking variants from “pathogenic” to“benign”. We break the ties uniformly
for all the methods randomly and report the absolute number of variants recovered at each
rank together with the recall, as well as areas under the ROC curve (using micro-averages
per synthetic genome) and precision-recall curve. Best performing results (using maximum or
average score) for each measure are indicated in bold.
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Rank using maximum scores Rank using the average score
DeepSVP (GO) 9 9
DeepSV (MP) 8 9
DeepSVP (HP) 1 1
DeepSVP (CL) 7 27

DeepSVP (UBERON) 6 35
DeepSVP (Union) 1 4

StrVCTVRE 4
CADD-SV 4
AnnotSV 5

Table 8: Ranking of disease-associated variant in a Saudi family using different DeepSVP mod-
els, and other methods. The ranks of the DeepSVP models are determined based on ranking
a total of 47 variants. StrVCTVRE ranks only 6 out of 47 variants. AnnotSV predicted 11
variants as pathogenic out of 47 variants.

4 Structural variant calling

We prepared 150-bp paired-end libraries using the TruSeq Nano DNA Sample Preparation kit

(Illumina, USA). Sequencing was performed using an Illumina HiSeq 4000 at the Bioscience

core laboratory, KAUST, with approximately 30X coverage. Following sequencing, we aligned

reads to human genome build hg38 using the BWA MEM algorithm [23] and following the

GATK standard workflows. We trim adapters using Trimmomatic (version 0.38), use BWA

(version 0.7.17) for alignment, and samtools (version 1.8) [24] to remove duplicates and sort

bam files. We use Manta (version 1.6) [25] to call structural variants. In total, we identified

8,723, 9,003, 9,608, 7,631, and 8,367 variants for the mother, father, first affected, second

affected, and unaffected, respectively. We assume an autosomal recessive mode of inheritance

or de novo variants, and use the pedigree to filter variants. We further filter common variants

(minor allele frequency greater than 0.01) using gnomAD (version 2.1.1) [21] and the SVs from

the 1000 genomes project. After filtering by pedigree, 148 structural variants remain; removing

common variants reduced the number of variants to 47. We use the DeepSVP combined model

with maximum as aggregation operation for the genes within the variant to prioritize disease-

associated SVs.
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