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Fig. S1. The cell development stages and gene expression patterns over monkey cortical
development. (A-D) Expression patterns of neural progenitor markers (PAX6, SOX1,
EOMES and Z0-1) and the differentiated neuron markers (NEUROD2, SATB2, FOXP2,
CUX1 and BRNZ2) in monkey primary somatosensory cortex across four different cortical
development stages (E29 (A), E36 (B), E49(C), E72(D)). (E-G) Microphotographs of the

coronal transects of mouse visual cortex immunostained with PAX6, SOX1, EOMES, Z0O-1,



NEUROD?2, FOXP2, CUX1 and BRN2 from E9.5 to E14.5: E9.5(E), E12.5 (F) and E14.5
(G). Scale bars: A, E, 50um; others, 100um. NEPC, neuroepithelium cells; VZ, ventricular
zone; SVZ, subventricular zone; CP, cortical plate; OSVZ, outer SVZ; ISVZ, inner SVZ. Blue:

DAPI, nuclear staining.
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Fig. S2. Spatiotemporal distribution differences of BRN2 in mouse and monkey cortex,

relative to Figure 1. (A) Schematic illustrating shows methods of section and dissection of the



monkey brain. (B) Dynamic expressions of BRN2 and PAX6 over monkey fetal cortical
development, showing that BRN2 was initially expressed in lateral NEPCs at embryonic day
30 (E30), gradually extended along the VZ and spread across the entire cortex at E72. NEPCs,
neuroepithelial cells; ISVZ, inner SVZ; OSVZ, outer SVZ; CP, cortical plate. (C) Diagram of
dynamic BRN2 expression (green) over monkey fetal cortical development. (D) Brn2 and
Pax6 expression in the E9.5 (D’), E12.5 (D) and E14.5 (D”’) mouse cortex, respectively. (E)
Schedule of neural differentiation from ESCs induced by the bFGF condition. (F)
Representative images of SOX1, PAX6 and BRN2 expressions in differentiated cells from
monkey ESCs in the presence of bFGF. (G) Quantification of SOX1+, PAX6+ and BRN2+
cells during neural induction of monkey ESCs in the presence of bFGF. Data were presented
as mean =SEM (n=5). (H) Representative images of SOX1, PAX6 and BRN2 expressions in
differentiated cells from mouse ESCs in the presence of bFGF. (1) Dynamics of SOX1%,
PAX6* and BRN2" cells during the neural induction of mouse ESCs in the presence of bFGF.
Data were represented as mean =SEM (n=5). pdD2: Day 2 post-differentiation. Scale bars:

100 pum. Blue: DAPI, nuclear staining.
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Fig. S3. Genotype identifications of gene-editing embryos and fetuses using a CRISPR-

Cas9 system, relative to Fig. 2. (A) AGE (agarose gel electrophoresis) of the PCR products

from BRN2 gene-editing and wild-type embryos. Red and blue asterisks indicate mutant

embryos with indels and large deletion, respectively. Wild-type (BRN2+/+), embryos without

RNP treated; (B, C) Sanger sequencing results of all examined embryos (B) and mutant

fetuses (C). The wild-type fetus (123044) was used as the control. The red arrows indicate the

location of Cas9-induced double-strand breaks. Bold black bases show the PAM (protospacer

adjacent motif) sites. Dotted lines represent the omitted sequence. Red words show the

inverted sequence after gene editing. The targeting sequences of SgRNA-A, sgRNA-B and

SgRNA-C were labeled as orange, blue and green, respectively.
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Fig. S4. The transcriptome of single cells from BRN2-KO (BRN2-/-) and WT (BRN2+/+)

telencephalon. (A) Immunostaining of SOX1, SOX2 (a), PAX6 (b), PVI and KI67 (c), in the



BRN2+/+ and BRN2-/- developing telencephalon at E36. Quantification of the thickness of VZ
in BRN2-/- and BRN2+/+ cortex (b). Data were presented as mean=SEM, n = 4 representative
images. Quantification of the number of KI67+ cells in VZ (mean =SEM; n = 6 slices, >100
cells counted for each group). P>0.05, no significant difference was found. Scale bars: 100um.
(B) Immunostainings of intermediate progenitor markers EOMES, and cortical neuron markers
(NEUROD?2 and SATB2) in the BRN2+/+ and BRN2-/- developing telencephalon at E49. The
ratios of EOMES+ and SATB2+ cells were quantified. Data were presented as mean £=SEM;
n=8 representative images, >500 cells counted per group. * p<0.05, no significance in BRN2-/-
and BRN2+/+ cortex. (C) Immunostaining of HOPX in the developing cortical germinal zone
across different development stages. Scale bars: 100um. (D) The table summarizing the
information of single cells for all samples in the study. RG, radial glia; IP, intermediate
progenitor. WT, wild-type (BRN2+/+) monkey fetus; KO, Knockout (BRN2-/-) monkey fetus.
E29, embryonic day 29. (E) UMAP analysis of single cells from the two E29 donors,
respectively. (F) Quantification of the cell proportions of 22 clusters reveal no significant
difference in cell type compositions between the two E29 donors. (G) UMAP plots of single
cells from the three BRN2+/+ and three BRN2-/- samples, respectively. (H) The UMAP plots
from each stage. (1) Identification of cell types using canonical markers on the UMAP plots

generated from (G).
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Fig. S5. BRN2 deficiency results in decreased expansion and precocious differentiation
of radial glial cells (RGCs) in ventricular zone (A) Subclustering of all integrated RGC, IP
and EXN single cells from BRN2+/+ and BRN2-/- samples across three different
developmental stages, respectively. (B) Differentially expressed genes among 13 clusters
from BRN2+/+ and BRN2-/- samples. Please see Table S3. Representative genes from each
cluster were shown on the right panel. (C) UMAP visualization of the cell trajectories,
colored by inferred pseudo time, of BRN2+/+ and BRN2-/- samples across three different
stages. (D-H) UMAP plots of HOPX (D), HES1 (E), SOX2 (F), TBR1 (G), SATB2 (H),
expressions in the BRN2+/+ and BRN2-/- cortical cells across three different stages,
respectively. (a-d) The magnification pictures of TBR1 positive cells in G and STAB2
positive cells in H. Numbers in red indicate the ratios of positive cells versus the total cell

numbers, normalized expression value > 1. Blue: DAPI, nuclear staining.
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Fig. S6. BRN2 deletion results in abnormal development of interneurons in the
ganglionic eminences (GEs). (A) Expressions of BRN2 and COUP Il (NR2F2) in the E49
fetal telencephalon, showing that BRN2 is enriched in caudal GE (CGE). PSB, pallial-
subpallial boundary. (B-D) The same region sections were used to perform comparison

analysis between BRN2+/+ and BRN2-/- telencephalon. (B, C) HE staining of BRN2-WT



(BRN2+/+) and BRN2-KO (BRN2-/-) telencephalon, respectively. Regionalization of LGE
(lateral GE) and MGE (medial GE) was difficult to distinguish in the BRN2-/- monkey. (D)
Expression of COUP Il and NKX2.1 in the BRN2+/+ and BRN2-/- telencephalon. BRN2-
mutation markedly upregulated COUPII and NKX2.1 expression in the BRN2-/- monkey
CGE. (E) Dot plots of some known markers in 10 major clusters from BRN2+/+ and BRN2-/-
telencephalon single cells. The left panel showed single cells of embryonic day 36 (E36)
telencephalon. The right panel showed single cells of E49 telencephalon. (F) Differentially
expressed genes specific for each cluster (also see Table S4). Representative genes were
shown on the right panel. (G) Comparisons of cell proportions of 10 clusters between
BRN2+/+ and BRN2-/- samples at different developmental stages. (H) UMAP visualization of
cell trajectories of the BRN2+/+ and BRN2-/- samples, colored by inferred pseudo time. (1)
The expression profiles of markers (HES1, FAM107A, HOPX and SOX2) along with the
trajectories of BRN2+/+ and BRN2-/- cells in (H). Numbers in red indicate the ratios of
positive cells (hormalized expression value > 1) versus the total cell numbers. All images of
immunofluorescence were from coronal sections of telencephalon. Scale bars: 500 um. Blue:

DAPI, nuclear staining.
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Fig. S7. BRN2 loss promotes interneuron differentiation. (A) Expression of NR2F1 as an
MGE marker in the WT (BRN2+/+) and BRN2-/- (knockout) ganglionic eminence (GE) cells.
(B) Expressions of NKX2-1, SOX6, LHX6 and SATB1 in the BRN2+/+ and BRN2-/- GE cells,
showing that these genes were dramatically upregulated in BRN2-/- cells. (C) Expressions of
DLX1, DLX2, SP9 and DLX5 in the BRN2+/+ and BRN2-/- GE cells, showing that these genes
exhibited dramatic upregulations in BRN2-/- cells. (D) Expressions of NR2F2, NFIB and
API1S2 as CGE markers in the BRN2+/+ and BRN2-/- GE cells, showing that these genes were
dramatically activated in BRN2-/- cells. (E) Differentiation and migration of calretinin (CR)
interneurons in the BRN2+/+ and BRN2-/- GEs, respectively. The white dotted line

arrowheads indicate the orientations of CR interneuron migration. The same region sections



were used to perform comparison analysis between BRN2+/+ and BRN2-/- telencephalon.
Numbers in red indicate the ratios of positive cells (normalized expression value > 1) versus
the total cell numbers. PSB, pallial-subpallial boundary; VZ, ventricular zone; LGE, lateral

GE; MGE, medial GE; CGE, caudal GE. Scale bars: 500 um. Blue: DAPI, nuclear staining.
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Fig. S8. BRN2 deletion disrupts the development of human ESC-derived cortical
organoids, related to Figure 5. (A) Dynamic expressions of PAX6, SOX1 and BRN2 during
the course of human ESC differentiation into neuroectoderm in the bFGF condition. The right
panel showed quantification of BRN2, SOX1 and PAX6 positive cells during the course of
neural differentiation from human ESCs in the bFGF condition. Data were presented as mean
+SEM (n=3). (B) Immunostainings of the neuro-bodies at pdD6 with SOX2, NESTIN, SOX1
and BRN2. No obvious difference of SOX2, NESTIN and SOX1 expression was observed in
the differentiated neuro-bodies from BRN2-/- and BRN2+/+ ESCs, implying that BRN2
deletion did not affect the generation of neuroepithelium cells. The neuro-bodies were
subsequently conducted adherent culture (C) and suspension culture (D), respectively. (C) For
adherent culture, neuro-bodies were digested into single cells for extensive expansion. Cells

at passage 15 were immunostained with N-CADHERIN, Z0O-1, SOX2, NESTIN and PAX®6.



Most of BRN2-/- cells lost the neural progenitor identity whereas BRN2+/+ cells still
maintained the neuroepithelium identity. (D) For suspension culture, the neuro-bodies were
continuously cultured for 14 or 34 days to generate cortical organoids. The corticalex
organoids were immunostained with SOX2, NESTIN, PAX6, VIMENTIN, BRN2 and DCX
between BRN2-/- and BRN2+/+ ESCs at pdD20 and pdD40. Immounstaing data showed that
BRN2 loss disrupts the development of human ESC-derived cortex organoids by losing the
neuroepithelium identity and promoting the neuron precious differentiation. Scale bars:

100pm. Blue: DAPI, nuclear staining.
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Fig. S9. The Chip-Seq data of BRN2 in human cortical cells and NESCs, related to Fig 6. (A)
Representative data for CUT&Tag chromatin profiling of BRN2, IgG and H3K4me3 inhuman
ESC-derived NESC. (B) Gene plots showing BRN2, H3K4me3, and IgG (the control) density at
the SOX2 promoter in human ESC-derived NESCs. (C) Gene plots showing BRN2, H3K4me3,
and IgG (the control) density at the STAT3 promoter in human ESC-derived NESCs. (D) The
phylogenetic tree and sequence alignment of BRN2 across different species indicate that BRN2 is

evolutionarily conserved.



Supplemental Tables
Table S1. The off-target information of BRN2-/- fetal monkeys, Relative to Fig. 2
(S1-1) and (S1-2) show the potential off-target sites list of SgRNA-A and sgRNA-C

obtained from http://www.rgenome.net/cas-offinder/ at the condition that mismatch

number equal to or less than 3 and DNA/RNA bulge Size equal to or less than 2. (S1-
3) and (S1-4) show the selected 20 potential off-target sites for testing; (S1-5) PCR
primers information and sequencing results of the 20 off--target sites listed in (S1-3)

and (S1-4).

Table S2. Information of single-cell RNA-seq used in this study, relative to
supplemental Fig. 4.

(S2-1) Differentially expressed genes of 22 clusters in E29 samples (Relative to
supplemental Fig. 4B)

(S2-2) Cell proportions and identities of 22 clusters in E29 samples (Relative to
supplemental Fig. 4C)

(S2-3) Differentially expressed genes of 24 clusters in integrated data from BRN2+/+
and BRN2-/- telencephalons across three stages (Relative to supplemental Fig. 4D)
(S2-4) Cell proportions and identities of 24 clusters in integrated data from BRN2+/+

and BRN2-/- telencephalons across three stages (Relative to supplemental Fig. 4D)

Table S3. Differentially expressed genes of cortical cells, relative to Figure 3.


http://www.rgenome.net/cas-offinder/

(S3-1) Differentially expressed genes were used to identify 13 clusters of RGs and
excitatory neurons (Relative to Fig. 3E)

(S3-2) Cell proportions and identities of 13 clusters (Relative to Fig. 3H)

(S3-3) Specifically expressed genes used in the heatmap of 13 clusters in
supplemental Fig. 5E

(S3-4) The upregulated and downregulated genes in BRN2-/- cortical cells, compared
to BRN2+/+ cortical cells at E29 (Relative to Fig. 3J)

(S3-5) The upregulated and downregulated genes in BRN2-/- cortical cells, compared
to BRN2+/+cortical cells at E36. (Relative to Fig. 3J)

(S3-6) The upregulated and downregulated genes in BRN2-/- cortical cells, compared
to BRN2+/+ cortical cells at E49 (Relative to Fig. 3J)

(S3-7) The upregulated and downregulated transcription factors in BRN2-/- cells,
compared to BRN2+/+ cells at different stages (Relative to Fig. 3J)

(S3-8) Gene Ontology terms of upregulated and downregulated genes in BRN2-/-
cells, compared to BRN2+/+ cells at E29, E36 and E49 (Relative to Fig. 3J)

(S3-9) KEGG pathways of upregulated and downregulated genes in BRN2-/- cells,

compared to BRN2+/+ cells at E29, E36 and E49 (Relative to Fig. 3J)

Table S4. Differentially expressed genes in BRN2-/- interneurons, compared to
BRN2+/+ interneurons, relative to Figure 4 and S6.
(S4-1) Differentially expressed genes were used to identify 10 clusters of interneuron

progenitors (iNPs) and interneurons (Relative to Fig. 4)



(S4-2) Specifically expressed genes used in the heatmap of 10 clusters (Relative to
supplemental Fig. 6G)

(S4-3) Cell proportions of 10 clusters in iINPs and interneurons (Relative to
supplemental Fig. 6H)

(S4-4) Comparison of the upregulated and downregulated genes in BRN2-/- and
BRN2+/+ iNPs and interneurons at E36 and E49 (Relative to Fig. 4E)

(S5-5) The upregulated and downregulated transcription factors in BRN2-/- iNPs and
interneurons, compared to BRN2+/+ iNPs and interneurons at different stages
(Relative to Fig. 4E)

(S4-6) Gene Ontology terms of upregulated and downregulated genes in BRN2-/-
iNPs and interneurons at E36 and E49 (Relative to Fig. 4E)

(S4-7) KEGG pathways of upregulated and downregulated genes in BRN2-/- iNPs and

interneurons at E36 and E49 at E36 and E49 (Relative to Fig. 4E)

Table S5. ChIP-Seq bound regions called for BRN2 and H3K4ME3 in NESCs,

related to Fig. 6C.
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