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Supplementary Methods Analyzed Cohorts

1 ANALYZED COHORTS

In this study 533 whole genome (WGS) and whole exome sequenced (WES) pretreatment samples were ana-
lyzed from three urothelial bladder tumor cohorts (Supp. Table 1). Patients in the DFCI/MSKCC and Philadel-
phia cohorts received neoadjuvant cisplatin-based chemotherapy (NACC) and had available pre-chemotherapy
tumor tissue.

’ Cohort \ Sequencing type \ Number of samples \ Tissue source \ Type \ Therapy ‘
TCGA WGS 23 FF MIBC H
TCGA WES 412 FF MIBC H

DFCI/MSKCC WES 50 FF MIBC | NACC
Philadelphia WES 48 FFPE MIBC | NACC

Supp. Table 1: Summary of the analyzed WGS and WES cohorts. Abbreviations: FF - fresh frozen; FFPE
- formalin-fixed paraffin-embedded; MIBC - muscle-invasive bladder cancer; NACC - neoadjuvant cisplatin-
based chemotherapy; H - heterogeneous therapy.

11 TCGA BLCA WGS

The WGS normal and tumor bam files were downloaded from the ICGC data portal (https://dcc.icgc.org/).

1.2 TCGA BLCA WES

The WES normal and tumor bam files, as well as the vcf files generated by MuTect2, were downloaded from the
TCGA data portal (https://portal.gdc.cancer.gov/).

1.3 DFCI/MSKCC WES

The normal and tumor bam files were downloaded from The database of Genotypes and Phenotypes (dbGaP)
upon request using the phs000771.v2.p1 accession code (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000771.v2.p1).

1.4 PuaiLADELPHIA WES

The normal and tumor bam files were downloaded from The database of Genotypes and Phenotypes (dbGaP)
upon request using the phs000771.v2.p1 accession code (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000771.v2.p1). Tumor samples in this cohort are derived from formalin-fixed paraffin-
embedded (FFPE) tissues.
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2 COVERAGE

In order to determine the average coverage of the WGS and WES bam files in each cohort samtools [22] was
used. The average coverage (D) in a given cohort was calculated as follows

D Ly 1 Md 2.1
uvg—ﬁizzlﬂjg ijs (2.1)

where d;; is the depth at the jth position within an exonic region of the genome of the ith sample, M is the
number of exonic positions examined in the genome, and N is the number of samples in a given cohort. The
average coverage of the analyzed WGS and WES samples from the TCGA BLCA cohort and the average coverage
of the WES samples from the DFCI/MSKCC and Philadelphia cohorts were shown in Supp. Fig. 1 and Supp.
Fig. 2, respectively.

( )

A TCGA BLCA WGS Coverage

Average coverage: 43
60

'S
o

Coverage

2

=]

o

Patients (n = 23)

B TCGA BLCA WES Coverage

Average coverage: 72
200~

150~

Coverage
=
f=3
(=]

Patients (n = 412)

Supp. Fig. 1: TCGA BLCA WGS and WES cohorts. The average coverage of the analyzed samples in the
TCGA BLCA WGS (A) and TCGA BLCA WES (B) cohorts.
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Supp. Fig. 2: DFCI/MSKCC and Philadelphia BLCA WES cohorts. The average coverage of samples in the
DFCI/MSKCC (A) and Philadelphia (B) BLCA WES cohorts.
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3 MUTATION AND COPY NUMBER CALLING

3.1 GENOTYPING

Genotypes were determined according to the following scheme:

¢ germline variants were called via GATK [14] (version 3.8) HaplotypeCaller in key DNA damage response
(DDR) genes (specifically focusing on HR-related genes) in WES and WGS samples,

* somatic point mutations and indels were called with GATK (version 3.8) MuTect2 in WGS samples; whole
exome vcf files generated by MuTect2 were downloaded from the TCGA data portal.

The high fidelity of the reported germline and somatic variants was ensured by the application of additional
hard filters (Supp. Table 2 and Supp. Table 3) in addition to the tools’ default filters (FILTER == "PASS").

| Cohort | TCGA WGS | TCGA WES | DFCI WES | MSKCC WES | Philadelphia WES |

MQ > 50 > 50 > 30 > 30 > 30
QUAL > 20 > 20 > 10 > 10 > 10
DP >15 >15 >15 > 15 > 10

Supp. Table 2: Additional germline mutation filtering parameters applied in the cohorts.

y Cohort | TCGA WGS | TCGA WES | DFCI WES | MSKCC WES
TLOD >6 >6 >6 >6
NLOD >3 >3 >4 >4

NORMAL.DEPTH >15 > 10 >10 > 10
TUMOR.DEPTH > 20 > 10 >15 > 15
TUMOR.ALT >5 >5 >5 >5
NORMAL.ALT =0 =0 =0 =0

TUMOR.AF > 0.05 > 0.05 >0.03 >0.03

Supp. Table 3: Additional somatic mutation filtering parameters applied in the cohorts.

The pathogenicity of the variants was assessed by Intervar [23] (version 2.0.1) which classifies variants into
five categories: "Benign", "Likely Benign", "Uncertain significance", "Likely Pathogenic" and "Pathogenic". Mu-
tations in exonic regions that were not synonymous SNVs and classified as "Pathogenic" or "Likely Pathogenic"
were considered as deleterious. Variants with "Unknown Significance" were collected separately.

In the Philadelphia FFPE cohort somatic SNPs were identified by MuTect [10], with computational filtering
of artifacts introduced by DNA oxidation during sequencing or FFPE-based DNA extraction using a filter-based

method [11]. Damaging non-silent mutations in DDR genes were considered as deleterious.

3.2 Loss OF HETEROZYGOSITY
SEQUENZA

In order to estimate tumor cellularity and ploidy and to infer allele-specific copy number (ASCN) profiles
Sequenza [17] was used. The fitted models were in the ploidy range of [1, 7] and cellularity range of [0, 1].
When the predictions of a fitted model were significantly different from the expected ploidy and cellularity
values, an alternative solution was selected manually. If the copy numbers of either the A or B alleles dropped
to zero within the coordinates of a gene, then an LOH event was registered. The summary of estimated LOH
events in the

* DFCI/MSKCC WES cohort was shown in Supp. Fig. 5A;
¢ Philadelphia WES cohort was shown in Supp. Fig. 6A;
e TCGA WES cohort was presented in the top panel of Supp. Fig. 7.




Supplementary Methods Mutation and copy number calling

FACETS

The allele-specific copy number profiles of the samples with BRCA1 or BRCA2 pathogenic germline and/or
somatic mutation(s) were estimated using a second tool called FACETS [31]. It is an open-source software appli-
cable for next generation sequencing (NGS) data. The pipeline uses bam files as input files, and includes bam
file post-processing, joint segmentation of total- and allele-specific read counts, and integer copy number calls
corrected for tumor cellularity, ploidy and clonal heterogeneity.

The comparison of the cellularity values estimated by the two different methods showed a very strong
(Rpearson = 0.94) correlation (Supp. Fig. 3A). The comparison of Sequenza and FACETS ploidy estimates yielded
a moderate (Rpearson = 0.29) correlation coefficient (Supp. Fig. 3B). The CN profiles of BRCA1 and BRCA2 genes
estimated by Sequenza and FACETS were reassuringly similar to each other (Supp.Fig. 4), and the application of
the second method, FACETS, did not result in additional identification of BRCA1/2-deficient samples. Thus, the
CN calls estimated by Sequenza were used further in the analysis.
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Supp. Fig. 3: Correlation of cellularity (A) and ploidy (B) values estimated by FACETS (y axis) and Sequenza
(x axis).
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3.3 FINAL GENOTYPES

Genotyping was based on the presence of a pathogenic or likely pathogenic germline/somatic mutation and
whether a loss of heterozygosity event occurred in a given HR-related gene.

Wild type: no pathogenic or likely pathogenic germline or somatic mutation(s);

Wild type with LOH: no pathogenic or likely pathogenic germline or somatic mutation(s), but an LOH
event occurred;

Heterozygote mutant: a pathogenic or likely pathogenic germline or somatic mutation is present, but no
LOH;

Heterozygote mutant with LOH: a pathogenic or likely pathogenic germline or somatic mutation is present
and an LOH event occurred;

Homozygote mutant: an identical germline or somatic mutation is present in both alleles;

Compound heterozygote mutant: two different germline and/or somatic mutations are present in both
alleles.

Summary of the final genotype of the samples in the

DFCI/MSKCC WES cohort was shown in Supp. Fig. 5B;
Philadelphia WES cohort was shown in Supp. Fig. 6B;
TCGA WES cohort was presented in the bottom panel of Supp. Fig. 7.




BRCA1/2-DEFICIENT SAMPLES

TCGA BLCA

Patient ID Gene  Chr POS REF ALT  Origin ExonicFunc.refGene  Impact Genotype
TCGA-G2-AA3B BRCA1 17 43090981 G C somatic stopgain p Heterozygote mutant with LOH
TCGA-G2-A3VY BRCA2 13 32356472 C T  germline stopgain p Heterozygote mutant with LOH
TCGA-ZF-A9RF BRCA2 13 32339511 A AT  somatic frameshift insertion p Heterozygote mutant with LOH

BRCA2 13 32371076 C T somatic stopgain p
TCOAKEASWS  prea2 13 32398437 C G germline stopgain yus ~Compound heterozygote mutant
TCGA-XF-AAMX BRCA1 17 43067615 C T somatic nonsynonymous SNV~ VUS  Heterozygote mutant with LOH
TCGA-BT-A3PH BRCA1 17 43093817 C T somatic nonsynonymous SNV~ VUS  Heterozygote mutant with LOH
TCGA-BT-A20N BRCA2 13 32398437 C G  germline stopgain VUS  Heterozygote mutant with LOH
TCGA-4Z-AA7TW BRCA2 13 32337731 G A somatic nonsynonymous SNV~ VUS  Heterozygote mutant with LOH
TCGA-DK-AA6L BRCA2 13 32363466 G C somatic nonsynonymous SNV~ VUS  Heterozygote mutant with LOH
DFCI/MSKCC BLCA
MSKCC-0231 BRCA1 17 41209143 C A somatic stopgain p Heterozygote mutant with LOH
MSKCC-0445  BRCA2 13 o294 AG A line  frameshift deleti P C d het te mutant
3915099 TGG T 2 Sermline rameshift deletion ompound heterozygote mutan
DFCI-32 BRCA2 13 32972413 G A somatic nonsynonymous SNV~ VUS  Heterozygote mutant with LOH
Philadelphia BLCA

HRA-009 BRCA1 17 41244946 C G germline  missense mutation D Heterozygote mutant with LOH

Supp. Table 4: The identified BRCA1/2-deficient samples in the three cohorts. Abbreviations: P - pathogenic variant, VUS - variant with uncertain
significance, D - damaging variant.
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ADDITIONAL HR-DEFICIENT SAMPLES

TCGA BLCA
Patient ID Gene  Chr POS REF ALT  Origin  ExonicFunc.refGene Impact Genotype
TCGA-ZF-AA58 BARD1 2 214781245 GTIT G  germline frameshift deletion P Heterozygote mutant with LOH
TCGA-4Z-AA7W  RBBP8 18 22993313 C T  germline stopgain p Heterozygote mutant with LOH
TCGA-CF-A1HS RBBP8 18 22993428 C A germline stopgain P Heterozygote mutant with LOH

Supp. Table 5: Samples with a pathogenic or likely pathogenic mutation and an LOH event in other HR genes across the three cohorts. Abbreviations:

P - pathogenic variant, VUS - variant with uncertain significance, D - damaging variant.
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DNA DAMAGE CHECKPOINT GENES

TCGA BLCA
. a3 . Heterozygote mutant Homozygote or

Gene Wild-type Wild-type with LOH Heterozygote mutant with LOH Compound heterozygote mutant
ATM 295 103 7 7 0

ATR 389 20 3 0 0
CHK2 311 98 2 0 1

RB1 258 107 14 33 0

TP53 122 161 21 107 1

DFCI/MSKCC BLCA

ATM 40 8 1 1 0

ATR 48 1 1 0 0
CHK2 43 7 0 0 0

RB1 33 12 3 2 0

TP53 22 10 12 6 0

Philadelphia BLCA

ATM 34 8 4 2 0

ATR 45 1 2 0 0
CHK2 40 6 1 1 0

RB1 29 15 4 0 0

TP53 22 4 13 9 0

Supp. Table 6: Frequency of pathogenic or likely pathogenic mutations in DNA damage checkpoint genes in the three cohorts.
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4 MUTATIONAL SIGNATURE EXTRACTION

4.1 SINGLE BASE SUBSTITUTION SIGNATURES

Single base substitution (SBS) signatures were extracted with the help of the deconstructSigs R package [29]
which determines the linear combination of pre-defined signatures [4] that most accurately reconstructs the
mutational profile of a single tumor sample.

The selected signatures, the linear combination of which could lead to the final mutational catalog, were con-
fined to those, that were reported to be present in bladder and breast carcinoma according to the Catalogue of
Somatic Mutations in Cancer (COSMIC) (https://cancer.sanger.ac.uk/signatures/signatures_v2/, BLCA:
Signature 1, 2, 5, 10, 13, BRCA: Signature 1, 2, 3, 5, 6, 8, 10, 13, 17, 18, 20, 26, 30). In addition, Signature 4 was
also extracted, because Signature 4 is associated with exposure to tobacco carcinogens [2] and it is well known
that smoking is a strong risk factor for bladder cancer [18].

After evaluation of a sample’s signature composition, its mutational catalog was reconstructed, and the
cosine of the angles between the 96-dimensional original and reconstructed vectors was calculated (cosine
similarity). In the cohorts, cosine similarities were high, mean cosine similarity > 0.92 (Supp. Table 7), between
the original and the reconstructed mutational profiles.

’ Cohort \ Mean cosine similarity ‘
TCGA WGS 0.99
TCGA WES 0.93
DFCI/MSKCC 0.92
Philadelphia WES 0.94

Supp. Table 7: Mean cosine similarity between original and reconstructed mutational catalogs in the analyzed
cohorts.

One sample from the DFCI/MSKCC cohort (DFCI-43) had an extremely low cosine similaritiy, probably due
to the low number of mutations after filtering, thus the results regarding this sample should not be considered
reliable. Furthermore, from the 412 TCGA BLCA WES samples 17 were excluded from the final set of samples
according to the following criteria:

¢ containing fewer than 50 somatic mutations after filtering;

* MSI samples identified by Bonneville et al. [7].

The extracted single base substitution signatures (COSMIC v2) from the

TCGA WGS cohort were shown in Supp. Fig. 8A;

DFCI/MSKCC WES cohort were plotted in Supp. Fig. 10A;

Philadelphia WES cohort were shown in Supp. Fig. 11A;

TCGA WES cohort were presented in Supp. Fig. 12.

The new version of single base substitution signatures (COSMIC v3; https://cancer.sanger.ac.uk/signatures/
sbs/) was also extracted and the distributions of the number of mutations attributed to a certain signature were
compared in regard of HR status. However, in order to calculate the HRDetect scores, the COSMIC v3 signatures
were not used, since the HRDetect model was trained using the COSMIC v2 signatures [12].

4.2 DOUBLET BASE SUBSTITUTION SIGNATURES

Doublet base substitution (DBS) signatures (11) were characterized by Alexandrov et al. [3] using methods based
on non-negative matrix factorization (NMF). The identified matrix of DBS signatures (P) was downloaded using
the link below.
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Supplementary Methods Mutational signature extraction

e Separate extraction of DBS signatures from all PCAWG whole genome samples together:
https://www.synapse.org/#!Synapse:syn12025148;

Doublet base substitutions in each sample were classified into a 78-dimesional DBS catalog (M) with the
help of the ICAMS R package [8]. The M and the P matrices were used in a non-negative least-squares problem
to estimate the matrix of exposures to mutational processes (E).

nllain |IPE; — Mi||2, subjectto E; >0, foralli=1,...,N 4.1)

where i is a given sample.
The extracted DBS signatures from the

TCGA WGS cohort were shown in Supp. Fig. 8B;
DFCI/MSKCC WES cohort were plotted in Supp. Fig. 10B;

Philadelphia WES cohort were shown in Supp. Fig. 11B;

TCGA WES cohort were presented in Supp. Fig. 13.

4.3 INDEL SIGNATURES

Similarly to doublet base substitution signatures, small insertion and deletion (ID) signatures (17) were also
characterized [3] and the identified matrix of ID signatures (P) was published.

* Separate extraction of ID signatures from all PCAWG whole genome samples together:
https://www.synapse.org/#!Synapse:syn12025148;

Insertions and deletions in each sample were classified into an 83-dimesional indel catalog (M) with the help
of the ICAMS R package [8]. The M and the P matrices were used in a non-negative least-squares problem to
estimate the matrix of exposures to mutational processes (E) (Supp. Eq. 4.1).

The extracted ID signatures from the

* TCGA WGS cohort were shown in Supp. Fig. 8C;

¢ DFCI/MSKCC WES cohort were plotted in Supp. Fig. 10C;
¢ Philadelphia WES cohort were shown in Supp. Fig. 11C;

¢ TCGA WES cohort were presented in Supp. Fig. 14.

4.4 CLASSIFICATION OF DELETIONS

It has been shown previously, that cancer cells exhibiting homologous recombination deficiency, have unique
characteristics in their indel profiles. Specimens with biallelic BRCA1/2 mutations have significantly more dele-
tions that are longer than 10 bp than BRCA1/2 wild-type tumors, and they also tend to have more deletions than
insertions [13]. It has also been found, that these deletions mostly arise due to the activity of the Microhomol-
ogy Mediated End Joining (MME]) or the Single Strand Annealing (SSA) DNA repair pathways, and thus the
relative ratio of microhomology-mediated deletions among them is significantly higher than in HR-competent
cases [36].

In general, deletions were classified into three groups: (1) complete repetitions; when the complete deleted
sequence is repeated after the deletion in the reference genome, (2) microhomology-mediated deletions; when
only the first n nucleotides of the deleted sequence is repeated after the deletion, and (3) unique deletions;
when the sequence following the deletion has no resemblance to the deleted series of nucleotides. However,
since the repetition of the first 1-2 nucleotides could occur by pure chance (with 0.25 and 0.0625 probabilities,
respectively, assuming that all 4 nucleotides can occur with the same probability), when investigating the effects
of the MME]J/SSA pathway, it is considered a good practice to work with the n > 3 microhomologies in WGS
and n > 2 microhomologies in WES samples.

The deletion profile (the relative ratio of the three deletion classes) of each sample in the
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Supplementary Methods Structural variant calling

TCGA WGS cohort was shown in Supp. Fig. 9A;

DFCI/MSKCC WES cohort was plotted in Supp. Fig. 10D;

Philadelphia WES cohort was shown in Supp. Fig. 11D;

TCGA WES cohort was presented in Supp. Fig. 15.

5 STRUCTURAL VARIANT CALLING

Structural variants (5Vs) were called using BRASS (version 6.0.0) (https://github.com/cancerit/BRASS). In the
analysis only those variants were taken into consideration, which were supported by at least 6 read pairs that
were successfully de novo assembled by velvet [38].

5.1 REARRANGEMENT SIGNATURES

The resulting structural variants in each sample were mapped to a 32-dimensional rearrangement signature
(RS) catalog described in breast cancer (M) [26]. The previously identified matrix of rearrangement signatures
(P) was downloaded from the following link

® https://static-content.springer.com/esm/art’3A10.1038%2Fnaturel17676/Medialbjects/41586_2016_
BFnaturel7676_MOESM47_ESM.zip

As previously, the M and the P matrices were used in a non-negative least-squares problem to estimate the
matrix of exposures to mutational processes (E) (Supp. Eq. 4.1).
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A Relative ratio of the deletion classes in each sample - TCGA BLCA WGS
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@ Online figure. Zoom in for details.
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Supplementary Methods Genomic scar scores

6 GENOMIC SCAR SCORES

Three independent DNA-based measures of genomic instability using single nucleotide polymorphism (SNP)
arrays were developed on the basis of

* homologous recombination deficiency (HRD)-associated loss of heterozygosity (HRD-LOH) [1],
¢ telomeric allelic imbalance (HRD-TAI) [6], and
¢ large-scale state transition (HRD-LST) [27].

The HRD-LOH score is the number of 15 Mb exceeding LOH regions that do not cover the whole chromo-
some [1]. The HRD-TALI score is defined as the number of allelic imbalances (Als) that extend to the telomeric
ends of a chromosome without crossing its centromere [6]. The HRD-LST score is the number of chromosomal
breaks between adjacent regions of at least 10 Mb with a distance between them not larger than 3 Mb [27].

All three individual scores were highly correlated with defects in BRCA1/2 and other HR pathway genes in
breast or ovarian cancer, and were associated with sensitivity to platinum agents [1] [6] [27] [34]. The aggregated
form of these three measures are often referred to as the HRD score [35] [34]. Although these genomic scar
scores were developed on SNP arrays our group has previously demonstrated their applicability using WES-
and WGS-derived CN profiles [33].

As it was described above, Sequenza was used to estimate the copy number profile of the samples in the
three bladder cancer cohorts. The three genomic scar scores were calculated for each sample with the help of
the scarHRD [33] R package and presented in Fig. 2 for the TCGA, in Supp. Fig 16 for the DFCI/MSKCC, and
in Supp. Fig. 17 for the Philadelphia BLCA WES cohorts. The comparison of the sum of the genomic scar scores
(= HRD score) of WES and WGS samples from the TCGA BLCA cohort showed a very strong (Rpezrson = 0.93)
correlation as it was shown in Supp. Fig 27.
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statistical significance. On the boxplots the midline represents the median, the two edges of the box repre-
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7 HRDETECT

A lasso logistic regression model, called HRDetect [12], was trained on 560 breast cancer WGS samples to
identify tumors that exhibit the signs of BRCA1/2 deficiency. The weights of the genomic features contributing
to the model were shown in Supp. Table 8.

’ Predictor \ Weight ‘
Proportion of deletions with microhomology | 2.398
Substitution signature 3 1.611
Rearrangement signature RS3 1.153
Rearrangement signature RS5 0.847
HRD index 0.667
Substitution signature 8 0.091
Intercept -3.364

Supp. Table 8: The weights of the HRDetect model [12]. The genomic feature called "HRD index" corresponds
to the "HRD-LOH score" term used here.

7.1 DATA TRANSFORMATION
In order to reduce right skewness of the data and to ensure that the distributions of the features more resemble
to Gaussian curves, the input variables (x;) were log-transformed, according to the following formula:
xi =In(x; +1). (7.1)

The constant shift was added to keep the x; = 0 values away from —oo.
The log-transformed data were standardized (each feature had a mean of 0 and a standard deviation of 1)
to make the variables comparable to one another.
1" xz/' —E [xz/ ]

i = o) (7.2)

7.2 HRDEeTECT WGS

The TCGA database contains only 23 WGS bladder cancer cases; therefore, we could not train a new logistic
regression model. Instead, we used the weights of the original HRDetect model to calculate the scores of the
WGS bladder cancer samples (Supp. Table 8).

7.3 HRDEeTECT WES

In order to calculate the HRDetect scores of the BLCA WES samples, an alternative HRDetect model was used
which was retrained on 560 artificially derived (from WGS samples) breast cancer WES samples [15].
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8 DNA METHYLATION AND RNA EXPRESSION ANALYSIS

TCGA BLCA WES

A systematic screen for hypermethylation of DDR genes in the TCGA dataset revealed that 39 DDR genes were
hypermethylted in 32 tumor types [25]. Interestingly, most exclusively and frequently methylated gene (37%)
in the TCGA BLCA cohort was RBBPS8 (encoding the protein CtIP) [25]. In addition, a significantly negative
correlation between RBBP8 methylation and RBBPS§ mRNA expression was only demonstrated for bladder
cancer [25].

CtIP is a major HR repair factor; it has a key role in DNA double-strand break (DSB) end resection. Fur-
thermore, it was shown that besides its fundamental role in DSB resection, CtIP is a critical regulator of DNA
replication fork integrity upon replication stress [28] [37].

DNA methylation data measured by the Illumina HumanMethylation450 platform were downloaded from
the Xena platform (https://tcga.xenahubs.net) [20]. Using the cpgCollapse function from the minfi R package
[5], promoter-associated CpG loci were divided into clusters with a default maximum gap of 500 bp and a
maximum cluster gap of 1500 bp. The mean B value of the loci within each cluster was calculated and used as a
single methylation estimate per cluster. In the TCGA BLCA cohort, methylation clusters of RBBP8 showed high
correlation (see Supp. Fig. 9), thus the mean methylation of the clusters was used to determine the methylation
status of RBBPS8 in a given sample (Supp. Eq. 8).

1M1 X
Biean = M X:l N X;Cijr (8.1)
=17 0=

where c;; is the methylation value at the ith CpG position within the jth CpG cluster, N is the number of CpG
loci in a given CpG cluster, and M is the number of CpG clusters in a given gene. Based on their methylation
status samples were divided into two groups using 0.5 as a cut-off value (Supp. Table 9).

Methylation data were not available for the DFCI/MSKCC and Philadelphia BLCA WES cohorts.

’ H Bmean < 0.5 ‘ Bimean > 0.5 ‘ Total ‘

HRDetect > 0.7 53 20 73
HRDetect < 0.7 268 54 322
Total 321 74 395
HRDscore > 42 61 26 87
HRDscore < 42 260 48 308
Total 321 74 395

Supp. Table 9: TCGA BLCA WES. Number of samples with low (Bean < 0.5) and high (Bean > 0.5) methyla-
tion values.

RNA expression data were downloaded from the Xena platform (https://gdc.xenahubs.net) [20]. The Frag-
ments Per Kilobase of transcript per Million mapped reads (FPKM) normalization method was used and the

data were then log-transformed according to the following formula

y = log, (FPKM +1). (8.2)
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Supp. Fig. 18: TCGA BLCA WES. The heatmap shows the mean methylation values of the CpG clusters within RBBPS in the 41 samples with
high HRD score (> 42) and HRDetect score (> 0.7).
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Supplementary Methods Survival analysis

9 SURVIVAL ANALYSIS

Survival analysis was carried out using the survival and survminer R packages. High CtIP methylation (>
0.5) was associated with better overall survival in the TCGA BLCA cohort (Supp. Fig. 19). HRDetect score or the
combination of HRDetect score and HRD score was not associated with better overall survival, although samples
with high HRD score (> 42) demonstrated a strong trend towards improved survival in the TCGA BLCA
cohort (Supp. Fig. 20). The estimated Kaplan-Meier curves of patients who received neoadjuvant cisplatin-
based chemotherapy were shown in Supp. Fig. 21 for the DFCI/MSKCC cohort and in Supp. Fig. 22 for the
Philadelphia cohort. In the DFCI/MSKCC cohort, patients with high HRDetect score (> 0.7) and patients with
either high HRDetect score (> 0.7) or HRD score (> 42) demonstrated significantly better survival compared
with patients having low HRDetect score and low HRDetect or low HRD score, respectively (Supp. Fig. 21).
In the Philadelphia cohort, no association with improved survival was observed (Supp. Fig. 22). P-values were
calculated using the log-rank test.
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Supp. Fig. 19: TCGA BLCA WES. High CtIP methylation (> 0.5) was associated with better overall sur-
vival. In order to see the effect of RBBP8 methylation on overall survival, BRCA1/2-deficient samples,
ERCC2 mutant samples and samples with high ERCC2mut score (> 0.7) were excluded from the plot.
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. HRDetect score (A) or the combinations of HRDetect score and HRD
score (C, D) was not associated with better overall survival, although samples with high HRD score (> 42)
(B) demonstrated a strong trend towards improved overall survival. ERCC2 mutant samples and samples
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Supp. Fig. 21: DFCI/MSKCC BLCA WES. Patients with high HRDetect score (> 0.7) (B) and patients with
either high HRDetect score (> 0.7) or HRD score (> 42) (D) demonstrated significantly better survival
compared with patients having low HRDetect score and low HRDetect or low HRD score, respectively.
ERCC2 mutant samples were excluded from the plots.
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Supp. Fig. 22: Philadelphia BLCA WES. No association was observed between (A) high HRD score (> 42),
or (B) high HRDetect score (> 0.7), or (C-D) the combinations of the two measures and improved overall
survival. ERCC2 mutant samples were excluded from the plots.
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10 BLCA CELL LINE DATA

10.1 HRDsCcORE

The CCLE mutation and CN calls [9] [24] and ABSOLUTE copy number analysis results [19] were downloaded
from the DepMap (https://depmap.org/portal/download/) portal and the scarHRD [33] R package was used

to calculate the HRD score of BLCA cell lines.
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HRD scores, CCLE BLCA cell lines
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Supp. Fig. 23: HRD score of BLCA cell lines. From the 23 BLCA cell lines 6 had an HRD score > 42.

Broad ID ACH-000753
Cell line name JMSU1
Hugo symbol PALB2?
NCBI build 37
Genome change | g.chr16:23646980_23646981insT
Codon change c.(886-888)atgfs
Protein change p-M296fs
Is deleterious Yes
Is LOH Yes

Supp. Table 10: We found a deleterious PALB2 mutation accompanied by LOH in JMSU1 metastatic BLCA cell
line which had a high HRD score (> 42).
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10.2 OLAPARIB SENSITIVITY

The PharmacoGx [32] R package was used to download and analyze CTRPv2 (Cancer Therapeutics Response
Portal version 2) cell line sensitivity data [30].
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Supp. Fig. 24: Olaparib sensitivity data of BLCA cell lines from the CTRPv2 database. A. BLCA cell lines
with a high HRD score (> 42) had significantly lower ICs, values for olaparib compared to BLCA cell lines
with a low HRD score (< 42). The only exception was the cell line called VMCUB1, which had a high ICsg
value for olaparib in the CTRPv2 data set. However, we think that it was due an incorrect fitting of the
dose-response curve. Supporting this suspicion, we checked the ICsy value of VMCUBI for olaparib in the
GDSC1 and GDSC2 data sets and in there the values were fallen into the sensitive range. Two additional
cell lines (BC3C and HT1376) had an infinite recomputed ICsg value in the CTRPv2 data set. The published
ICs¢ values for the HT1376 cell line were inconsistent between the GDSC1 and GDSC2 data sets. The y
axis shows the logarithm with base 10 of ICsj values. B. Based on the dose-response curves, cell lines were
divided into two categories: "sensitive" - showing at least 50% growth inhibition in the tested dose range,
and "not_sensitive" - when this value was not reached within the tested dose range. In the sensitive group
the HRD score was significantly higher compared to the nonsensitive group. On the boxplots the midline
represents the median, the two edges of the box represent the lower and upper IQR, the upper whisker
= min(max(x), Q3 + 1.5 x IQR) and the lower whisker = max(min(x), Q1 — 1.5 x IQR). P-values were
calculated by the Wilcoxon rank-sum test.
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10.3 RBBP8 EXPRESSION AND METHYLATION

The CCLE RNAseq gene expression data [19] were downloaded from the DepMap (https://depmap.org/
portal/download/) portal. CCLE DNA methylation raw data measured by the Illumina HumanMethylation450
platform [21] were downloaded from the GEO database [16] using the GSE68379 accession number. The minfi
R package was used for the analysis in a similar way described in Section 8.
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Supp. Fig. 25: BLCA cell lines RBBP8 expression and methylation analysis. A. BLCA cell lines derived form
primary tissue sites with high HRD score (> 42) showed a trend toward lower RBBPS§ mRNA expression
compared to the primary cell lines with low HRD score (< 42). The y axis shows the logarithm with base
2 of the RPKM (Reads Per Kilobase Million) normalized mRNA expression values. P-value was calculated
by the Wilcoxon rank-sum test. On the boxplots the midline represents the median, the two edges of
the box represent the lower and upper IQR, the upper whisker = min(max(x), Q3 4+ 1.5 x IQR) and the
lower whisker = max(min(x), Q1 — 1.5 X IQR). B. A moderate negative correlation (Rpgarson = —0.44) was
observed between RBBPS§ mRNA expression and RBBP8 promoter methylation. The x axis shows the DNA
methylation B values, and the y axis shows the logarithm with base 2 of the RPKM normalized mRNA
expression values.
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Supplementary Methods Additional supplementary figures

11 ADDITIONAL SUPPLEMENTARY FIGURES (TCGA BLCA)

A HRD scores, TCGA BLCA WES
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Supp. Fig. 26: TCGA BLCA WES. HRD (A) and HRDetect (B) scores of the samples. In addition to the
identified HR-deficient samples, BRCA1/2 variants with uncertain significance with accompanying LOH

were colored as well. P-values were calculated by the Fisher exact test.
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A HRD scores, TCGA BLCA WGS
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Supp. Fig. 27: TCGA BLCA WGS and WES correlation. A: HRD score of the samples broken down into
components. B: Correlation of HRD score calculated using the WGS and the corresponding WES samples
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from the TCGA BLCA cohort (Rpegrson = 0.93).
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Supp. Fig. 28: TCGA BLCA WES. Signatures significantly elevated in BRCA1/2-deficient samples in the
TCGA BLCA WES cohort: SBS3 (COSMIC v3). On the boxplots the midline represents the median, the
two edges of the box represent the lower and upper interquartile range (IQR), the upper whisker =
min(max(x), Q3 + 1.5 x IQR) and the lower whisker = max(min(x), Q1 — 1.5 x IQR). ERCC2 mutant
samples or samples with high ERCC2mut score (> 0.7) were excluded from the plots (n = 355). P-values
were calculated by the Wilcoxon rank-sum test and no mathematical correction was applied for multiple
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12 SIGNATURES ASSOCIATED WITH BRCA1/2 DEFICIENCY
(DFCI/MSKCC AND PHILADELPHIA BLCA)

~
A DFCI/MSKCC BLCA WES (n=41) B DFCI/MSKCC BLCA WES (n=41)
1 0.15 800 0.0085
8 500 E
% § 400
BRCA1/2-deficient BRCA1/2-intact BRCA1/2-deficient BRCA1/2-intact
C DFCI/MSKCC BLCA WES (n=41) D DFCI/MSKCC BLCA WES (n=41)
@ 0.058 0.037
:‘; 20 ¢ "é 5 ..
BRCA1/2-deficient BRCA1/2-intact BRCA1/2-deficient BRCA1/2-intact
E Dprcy/mskec BLca WES (n=41)
0.45
5 6
0
BRCA1/2-deficient BRCA1/2-intact
Supp. Fig. 29: DFCI/MSKCC BLCA WES. Distribution of signatures associated with BRCA1/2 deficiency
in the DFCI/MSKCC BLCA WES cohort: signature 3 (COSMIC v2) (A), SBS3 (COSMIC v3) (B), number of
large deletions (> 10bp) (C), number of microhomologies (> 2 bp) (D), and ID6 (D). On the boxplots the
midline represents the median, the two edges of the box represent the lower and upper IQR, the upper
whisker = min(max(x), Q3 + 1.5 x IQR) and the lower whisker = max(min(x), Q1 — 1.5 x IQR). ERCC2
mutant samples were excluded from the plots (n = 41). P-values were calculated by the Wilcoxon rank-sum
test and no mathematical correction was applied for multiple comparisons.
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Supp. Fig. 30: Philadelphia BLCA WES. Distribution of signatures associated with BRCA1/2 deficiency
in the Philadelphia BLCA WES cohort: signature 3 (COSMIC v2) (A), SBS3 (COSMIC v3) (B), number of
large deletions (> 10bp) (C), number of microhomologies (> 2 bp) (D), and ID6 (D). On the boxplots the
midline represents the median, the two edges of the box represent the lower and upper IQR, the upper
whisker = min(max(x), Q3 + 1.5 x IQR) and the lower whisker = max(min(x), Q1 — 1.5 x IQR). ERCC2
mutant samples were excluded from the plots (n = 38). P-values were calculated by the Wilcoxon rank-sum
test and no mathematical correction was applied for multiple comparisons.
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13 HRD scorE AND HRDETECT CORRELATION
(DFCI/MSKCC AND PHILADELPHIA BLCA)

Moderate correlations were observed between HRD scores and HRDetect scores in all three cohorts (TCGA: Fig.
4A, DECI/MSKCC: 31A, Philadelphia: 31C). The number of samples in each cohort with an HRD score > 42 and
an HRDetect score > 0.7 was presented by Venn-diagrams (TCGA: Fig. 4B, DFCI/MSKCC: 31B, Philadelphia:
31D).
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Supp. Fig. 31: DFCI/MSKCC and Philadelphia BLCA WES. A. Comparison of HRD and HRDetect scores
of the samples showed a moderate correlation, Rpearson = 0.43, in the DFCI/MSKCC BLCA WES cohort.
B. As it is visualized by a Venn-diagram, 4 samples had an HRD score > 42 and an HRDetect score > 0.7,
including the BRCA1-deficient and the BRCA2-deficient samples. C. Comparison of HRD and HRDetect
scores of the samples showed a moderate correlation, Rpesrson = 0.64, in the Philadelphia BLCA WES
cohort. D. As it is visualized by a Venn-diagram, 9 samples had an HRD score > 42 and an HRDetect
score > 0.7, including the BRCA1-deficient sample.
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