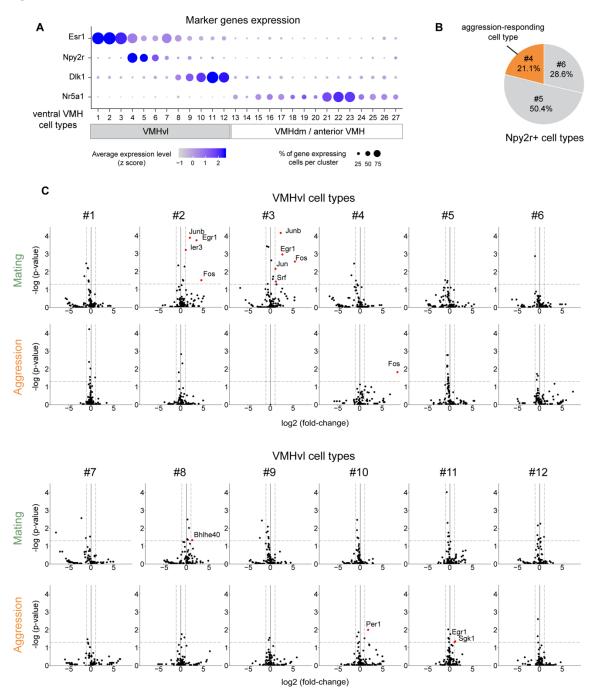

Supplemental information

Figure S1

Related to Figure 1.

Figure S1. Reversible switch of social behaviors in C57BL/6N female mice.

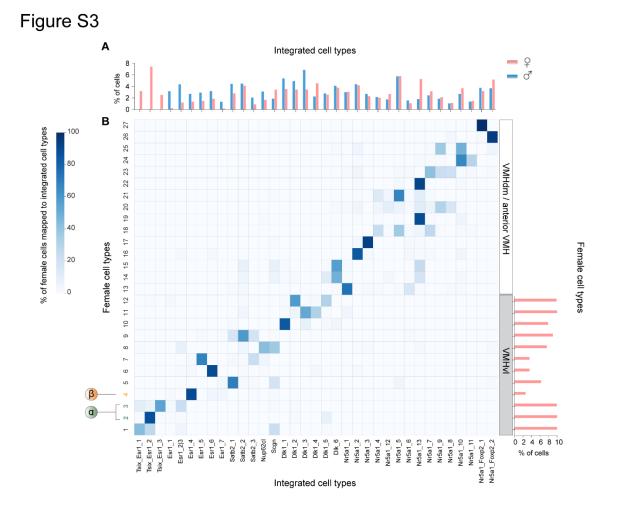
(A) Timeline and schematic of longitudinal behavioral tests. Parturition date counted as p0.


(B-C) Percentage of females exhibiting attack behavior towards (B) male intruder or (C) female intruder in virgin, lactating or post-lactating state.

(D) Percentage of females in virgin, lactating or post-lactating state exhibiting mounting behavior towards a female intruder.

(E-F) Duration of (E) ultrasonic vocalizations (USVs) emitted, or duration of (F) male-typical mounting behavior coupled with USVs by the same females, in the virgin, lactating and post-lactating states.

***p<0.001. Mean ± SEM.



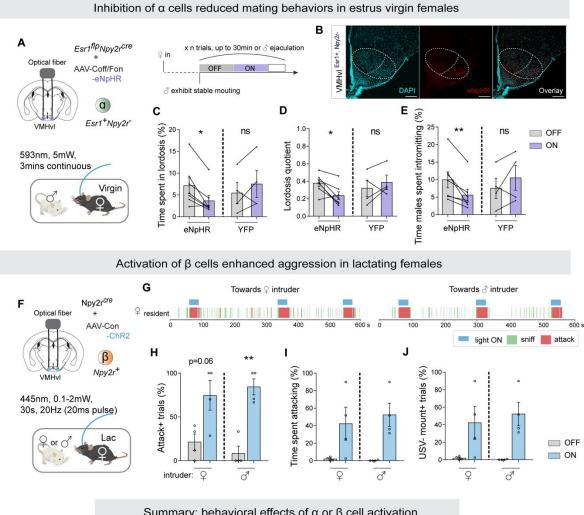
Related to Figure 1.

Figure S2. Additional information about female ventral VMH transcriptomic cell types.

(A) Expression level of marker genes for VMHvI and VMHdm / anterior VMH in 27 female ventral VMH cell types.

(B) Pie chart illustrating the percentage of different VMHvI transcriptomic cell types that express Npy2r. Only cluster #4 is activated (IEG induction) during aggression (orange sector).
(C) "Volcano plots" showing expression levels of all 139 IEGs in 12 VMHvI cell types from the following animals: lactating females exhibiting attacks vs. control, virgin females exhibiting lordosis vs. control. Colored dots indicate genes with expression fold change >2 (x axis cut-off) and P <0.05 (y axis cut-off; gray dashed lines).

Related to Figure 1.


Figure S3. Comparison between male and female ventral VMH transcriptomes.

(A) Cell number distributions of female (pink) and male (blue) integrated cell types in ventral VMH (previous published data-guided integration (Kim et al., 2019)).

(B) Left, percentage of female cells (from this study) mapped to integrated VMH cell types. Right, cell number distributions of female cells (from this study) in VMHvI. α : female mating-responding cells; β : female aggression-responding cells.

Figure S4

κ

behavioral effect			reproductive states of stimulated \bigcirc					
6	Rect	ral	virgin estrus	virgin diestrus	lactating			
~		8	lordosis ↑	lordosis ↑	attack ↓			
a	Inter	Ŷ	-	-	attack ↓			
β	encounter	3	lordosis ↓; attack ↑	attack ↑	attack ↑			
	Ð	Ŷ	attack ↑	attack ↑	attack ↑			

Summary: behavioral effects of α or β cell activation

Related to Figure 2 and 3.

Figure S4. Additional information for optogenetic perturbations for VMHvI α and β cells.

(A-E) Inhibition of α cells reduced mating behaviors in estrus virgin females.

(A) Strategy to inhibit VMHvl^{*Esr1+,Npy2r-*} cells (α) in virgin females by optogenetics and behavioral paradigm and illustration of stimulation scheme for one session.

(B) Representative eNpHR expression in VMHvI α cells. Scalebar, 200um.

(C) Fraction of time female spent in lordosis,

(D) lordosis quotient (lordosis time/male mounting or intromission time),

(E) fraction of time males spent intromitting during light ON or light OFF periods, in estrus intact (non-ovariectomized) ChR2/YFP-expressing females.

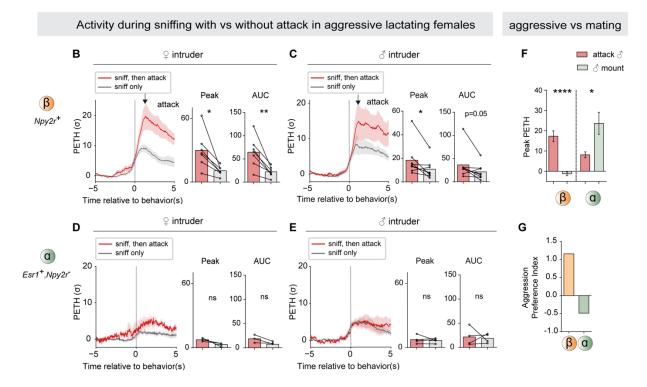
(F-I) Activation of β cells enhanced aggression in lactating females.

(F) Strategy to activate VMHvI^{Npy2r+} cells (β) in lactating females by optogenetics.

(G) Representative raster plots illustrating light-induced behaviors in lactating female towards female or male intruders.

(H) Fraction of trials where lactating female exhibited attack behavior.

(I) Fraction of time lactating female spent attacking during a trial.


(J) Fraction of trials where lactating females exhibited USV⁻ mounting behavior.

(K) Summary table for behavioral effects of α or β cell activation in females at different reproductive states. \uparrow evoke or enhance; \downarrow inhibit.

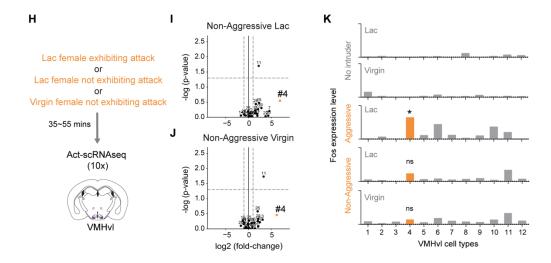
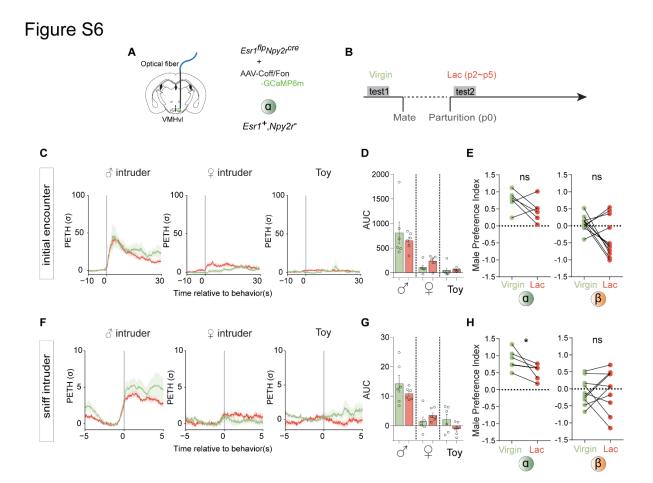

*p<0.05; **p<0.01; Mean ± SEM.

Figure S5

Transcriptomic cell type #4 was not activated in non-aggressive females during social interactions

Related to Figure 6.

Figure S5. VMHvI β cells are highly active in lactating females during aggressive interactions.


(A) Left, schematic illustrating fiber photometry recording in VMHvI β and α cells. Right, schematic illustrating behavioral test of aggressive behaviors in lactating females.

(B-C) Left, PETH of β cells activity aligned to onset of sniffing of (B) female or (C) male followed or not followed by attack. Right, quantification of PETH peak and area under the curve (AUC). (D-E) Left, PETH of α cells activity aligned to onset of sniffing of (D) female or (E) male followed or not followed by attack.

(F-G) Comparison of neural responses during aggression vs. mating behaviors. (F) PETH peak levels of VMHvI β and α cell activity at consummatory phase during aggressive or mating interactions with male intruder. (G) Aggression preference index = Peak PETH at (attack – mounted) / (attack + mounted).

(H-K) Act-seq results from aggressive vs. non-aggressive females following social interactions with female intruders. (H) Schematic of Act-seq protocol. (I-J) "Volcano plots" showing Fos expression levels in 27 VMH cell types from (I) lactating females not exhibiting attacks vs. control, (J) virgin females not exhibiting attack vs. control. Dashed lines: fold change = 2 (x axis cut-off) and P = 0.05 (y axis cut-off). (K) *Fos* expression levels in 12 VMHvl cell types from control lactating females, control virgin females (No intruder), lactating females exhibiting attacks (Aggressive), lactating and virgin females not exhibiting attack (Non-Aggressive). Orange colored: aggression-responding cluster #4 (See Figure 1F).

*p<0. 05; **p<0.01; ***p<0.001; ****p<0.0001; ns, no significance. Mean ± SEM.

Related to Figure 7.

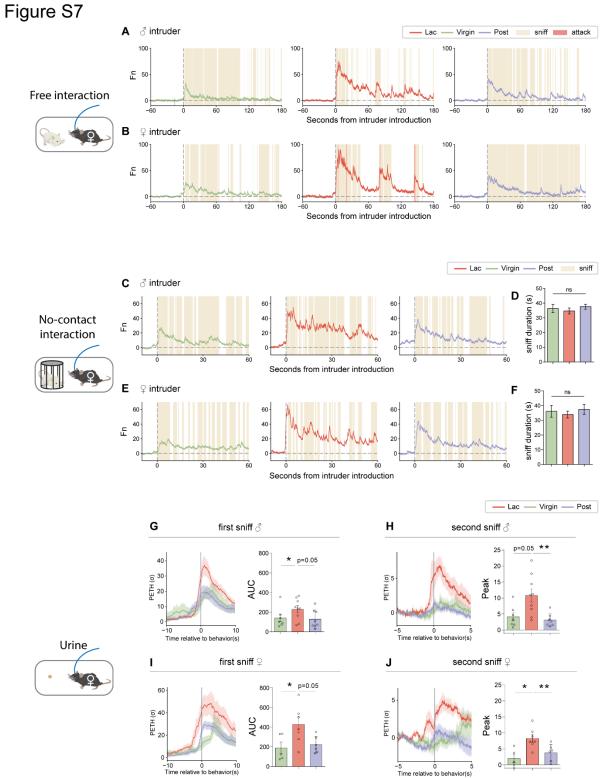
Figure S6. Activity of VMHvI α cells in social interaction is not state-dependent.

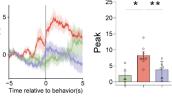
(A) Schematic illustrating fiber photometry recording of VMHvI α cells.

(B) Timeline representing the conducting of longitudinal behavioral tests and recording in the same individuals in virgin and lactating states. Parturition date was counted as p0.

(C) PETH of α cell activity in virgin and lactating state aligned to onset of initial encounters with male, female and toy.

(D) AUC represents timespan 0-30 seconds after initial encounters.


(E) Within-subject comparison of male preference index (MPI) between virgin and lactating state from α and β . MPI = AUC of initial encounter with (male – female) / (male + female).


(F) PETH of α cell activity in virgin and lactating state aligned to onset of sniffing of male, female and toy.

(G) AUC represents timespan 0-3 seconds after sniffing of intruders.

(H) Within-subject comparison of male preference index (MPI) between virgin and lactating state from α and β cells. MPI = AUC of sniffing of (male – female) / (male + female).

*p<0.05; ns, no significance. Mean ± SEM.

Related to Figure 7.

Figure S7. Response of VMHvI β cells to social cues depends on lactation state.

(A-B) Behavioral raster plots of representative normalized GCaMP6m trace from β cells during free-interaction with (A) male intruder and (B) female intruder. Corresponding to Figure S7C,E. Colored shading marks behavioral episodes.

(C,E) Behavioral raster plots of representative normalized GCaMP6m trace from β cells during no-contact-interaction with (C) male intruder and (E) female intruder. Corresponding to Figure S7G,J.

(D,F) Total sniff duration in the first minute of no-contact interaction in three lactation states.

(G-J) β cell responses to urine in three lactation states. (G,I) Left, PETH of β cells activity at first sniff of (G) male urine or (I) female urine. Right, AUC represents timespan 0-10 seconds from behavior onset. (H,J) Left, PETH of β cell activity at second sniff of (H) female urine or (J) male urine. Right, AUC represents timespan 0-3 seconds from behavior onset.

*p<0.05; **p<0.01. Mean ± SEM.

Supplemental Table 1

Related to STAR Methods section QUANTIFICATION AND STATISTICAL ANALYSIS.

Figure	Compared group	Test used	P value	n	Figure	Compared group	Test used	P value	n
1E	Lac attack vs Lac control	Wilcoxon Rank Sum	1	/	7F	Virgin vs Lac(highest value removed) Paired t test	0.002	6
1F	Virgin lordosis vs Virgin control	Wilcoxon Rank Sum	\	\	7F	Post vs Lac, AUC	Paired t test	0.0035	6
1G	Virgin control vs Lac control	Wilcoxon Rank Sum	١	\	7F	Post vs Lac(highest value removed)	Paired t test	0.0026	5
2D	ON vs OFF, Estrus	Wilcoxon Rank Sum	0.002	10	7K	Virgin vs Lac	Paired t test	0.0018	10
2D	ON vs OFF, Diestrus	Paired t test	0.0005	9	7K	Post vs Lac	Paired t test	0.0019	10
2E	ON vs OFF, Estrus	Paired t test	0.0006	10	7H	Virgin vs Lac	Wilcoxon Rank Sum	0.0002	14
2E	ON vs OFF, Diestrus	Wilcoxon Rank Sum	0.0078	9	7H	Post vs Lac	Paired t test	0.0002	12
2F	ON vs OFF, Estrus	Paired t test	< 0.0001	10	71	Virgin vs Lac, AUC	Two-way ANOVA	< 0.0001	10
2F	ON vs OFF, Diestrus	Paired t test	0.0007	9	71	Post vs Lac, AUC	Two-way ANOVA	< 0.0001	10
2G	ON vs OFF, Estrus	Paired t test	0.0006	10	71	Virgin vs Lac, peak	Two-way ANOVA	< 0.0001	10
2G	ON vs OFF, Diestrus	Wilcoxon Rank Sum	0.0078	9	71	Post vs Lac, peak	Two-way ANOVA	< 0.0001	10
2K	ON vs OFF	Paired t test	0.0021	5	7L	Virgin vs Lac, AUC	Two-way ANOVA	< 0.0001	10
2K	ON vs OFF, YFP	Paired t test	0.9204	5	7L	Post vs Lac, AUC	Two-way ANOVA	< 0.0001	10
3E	ON vs OFF	Paired t test	< 0.0001	6	7L	Virgin vs Lac, peak	Two-way ANOVA	<0.0001	10
3E	ON vs OFF. YFP	Paired t test	0.9123	5	7L	Post vs Lac, peak	Two-way ANOVA	<0.0001	10
3L	ON vs OFF, Female	Paired t test	<0.0001	5	S1E	Virgin vs Lac	Wilcoxon Rank Sum	0.001	11
3L	ON vs OFF, Male	Paired t test			S1E S1E		Wilcoxon Rank Sum	0.001	11
3L 3M			< 0.0001	5	STE S1F	Post vs Lac			
3M	ON vs OFF, Female	Paired t test	< 0.0001	5	S1F S1F	Virgin vs Lac	Wilcoxon Rank Sum	0.001	11 11
3IVI 3N	ON vs OFF, Male	Paired t test	0.0002	5		Post vs Lac	Wilcoxon Rank Sum	0.001	
	ON vs OFF, Female	Paired t test	0.0192	5	S2C	Lac attack vs Lac control	Wilcoxon Rank Sum	1	\
3N	ON vs OFF, Male	Paired t test	0.0067	5	S2C	Virgin lordosis vs Virgin control	Wilcoxon Rank Sum	١	1
4E	Male vs Female	Paired t test	0.0027	8	S4C	ON vs OFF, eNpHR	Wilcoxon Rank Sum	0.0313	7
4E	Male vs Toy	Wilcoxon Rank Sum	0.0078	8	S4C	ON vs OFF, YFP	Wilcoxon Rank Sum	0.375	4
4E	Female vs Toy	Wilcoxon Rank Sum	0.0781	8	S4D	ON vs OFF, eNpHR	Paired t test	0.0155	7
4H	Male vs Female	Paired t test	0.0025	8	S4D	ON vs OFF, YFP	Wilcoxon Rank Sum	0.625	4
4H	Male vs Toy	Paired t test	0.0013	8	S4E	ON vs OFF, eNpHR	Paired t test	0.007	7
4H	Female vs Toy	Paired t test	0.9927	8	S4E	ON vs OFF, YFP	Wilcoxon Rank Sum	0.5	4
4K	Male vs Female	Paired t test	0.0004	6	S4H	Female	Paired t test	0.0656	4
4K	Male vs water	Mann-Whitney U	0.0095	6,5	S4H	Male	Paired t test	0.0025	4
4K	Female vs water	Mann-Whitney U	0.019	6,5	S4I	Female	Paired t test	0.1237	4
4L	Male vs Female	Wilcoxon Rank Sum	0.7402	35	S4I	Male	Paired t test	0.0282	4
4L	Male vs water	Mann-Whitney U	< 0.0001	35,19	S4J	Female	Paired t test	0.4226	3
4L	Female vs water	Mann-Whitney U	< 0.0001	35,19	S4J	Male	Paired t test	0.3061	4
4F	Male vs Female	Wilcoxon Rank Sum	0.0537	11	S5B	Peak	Paired t test	0.0129	7
4F	Male vs Toy	Paired t test	0.0001	11	S5B	AUC	Paired t test	0.0048	7
4F	Female vs Tov	Paired t test	0.0002	11	S5C	Peak	Wilcoxon Rank Sum	0.0391	8
41	Male vs Female	Paired t test	0.8065	8	S5C	AUC	Wilcoxon Rank Sum	0.0547	8
41	Male vs Toy	Paired t test	0.0414	8	S5D	Peak	Wilcoxon Rank Sum	0.25	4
41	Female vs Toy	Paired t test	0.0026	8	S5D	AUC	Wilcoxon Rank Sum	0.25	4
40 4G	alpha vs beta	Mann-Whitney U	0.0020	8,11	S5E	Peak	Wilcoxon Rank Sum	>0.25	4
4G 4J			0.0018	8	S5E S5E	AUC	Wilcoxon Rank Sum	>0.99999	4
4J 4M	alpha vs beta	Mann-Whitney U			S5E S5F	Beta			
	alpha vs beta	Welch-corrected t test	< 0.0001	6,35			Welch-corrected t test	< 0.0001	9,5
5E	appetitve vs consummatory	Unpaired t test	0.0119	7	S5F	Alpha	Welch-corrected t test	0.0284	4,7
51	appetitve vs consummatory	Unpaired t test	0.0002	11,5	S6D	Male	Paired t test	0.3224	6
6G	AGG vs non-AGG	Mann-Whitney U	0.0033	14,5	S6D	Female	Paired t test	0.208	6
6G	AGG vs non-AGG	Mann-Whitney U	0.0012	14,5	S6D	Тоу	Paired t test	0.1508	6
6H	AGG vs non-AGG	Mann-Whitney U	0.0112	9,4	S6E	Alpha	Paired t test	0.1747	6
6H	AGG vs non-AGG	Mann-Whitney U	0.0196	9,4	S6E	Beta	Paired t test	0.0609	11
7D	Virgin vs Lac, peak	Wilcoxon Rank Sum	0.0039	9	S6G	Male	Paired t test	0.554	6
7D	Virgin vs Lac(highest value removed)	Paired t test	0.0002	8	S6G	Female	Wilcoxon Rank Sum	0.1563	6
7D	Post vs Lac, peak	Wilcoxon Rank Sum	0.0078	8	S6G	Тоу	Wilcoxon Rank Sum	0.4375	6
7D	Post vs Lac(highest value removed)	Paired t test	0.0004	7	S6H	Alpha	Wilcoxon Rank Sum	0.0313	6
7D	Virgin vs Lac, AUC	Wilcoxon Rank Sum	0.0039	9	S6H	Beta	Paired t test	0.8165	10
7D	Virgin vs Lac(highest value removed)	Paired t test	0.0004	8	S7G	Virgin vs Lac	Paired t test	0.015	4
7D	Post vs Lac, AUC	Wilcoxon Rank Sum	0.0078	8	S7G	Post vs Lac	Paired t test	0.0522	6
7D	Post vs Lac(highest value removed)	Paired t test	0.0014	7	S7H	Virgin vs Lac	Paired t test	0.0198	5
7F	Virgin vs Lac, peak	Paired t test	0.0057	7	S7H	Post vs Lac	Paired t test	0.0022	6
7F	Virgin vs Lac(highest value removed)	Paired t test	0.0037	6	S7I	Virgin vs Lac	Paired t test	0.028	7
7F	Post vs Lac, peak	Paired t test	0.0024	6	S71	Post vs Lac	Paired t test	0.0524	8
7F	Post vs Lac(highest value removed)	Paired t test	0.0024	5	371 S7J	Virgin vs Lac	Paired t test	0.0524	7
7F	Virgin vs Lac, AUC	Paired t test	0.0025	7	37J S7J	Post vs Lac	Paired t test	0.0036	8