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Supplementary Note 1: Cohort description 

 The Health, Well-being, and Aging (SABE) Study is a large effort to investigate 

health-related conditions of the elderly in Latin America and the Caribbean, initiated in 2000 

with a follow-up design and at the time coordinated by the Pan American Health 

Organization. The Brazilian branch is based on the Public Health School at the University of 

São Paulo and enrolled elderly from the city of São Paulo, the largest in the Southern 

hemisphere. Subjects were invited based on probabilistic sampling from the census stratified 

from 60 years of age and older at the time of collection, with an oversample at the initial 

cohort of individuals with 75 and older. Every five years, recollection was performed with the 

inclusion of new cohorts (B, C, D) to reintroduce elderly subjects aging 60-64 

(Supplementary Figure 1A)3. Supplementary Table 1 presents the age and sex distribution of 

SABE cohorts. 

 

Supplementary Table 1. Age and sex distribution of SABE cohorts 

Entry SABE cohort Wave 

2010 (n) 

Unrelated individuals 

with WGS (n) 

Age at 

collection 

(years ± s.d.) 

Females (%) Males (%) 

A 746 640 78.89±6.82 416 (65) 224 (35) 

B 240 220 65.52±1.29 135 (61.4) 85 (38.6) 

C 349 311 61.86±1.36 193 (62.1) 118 (37.9) 

Total 1335 1171 71.86±7.94 744 (63.5) 427 (36.5) 

 

SABE participants were asked for specific consent on taking part in genomic studies 

from the year 2010 and beyond. All subjects in the genomic dataset have agreed on 

participating in this study on written consent forms approved by CEP/CONEP (Brazilian 

local and national ethical committee boards) under the following protocols: COEP FSP USP 

OF.COEP/23/10, CONEP 2044/2014, CEP HIAE 1263-10. 

Our group in the HUG-CELL center was responsible for creating SABE DNA 

collection and sequencing its subjects to evaluate their genomes' features. In 2017, 609 

individuals of three SABE cohorts (A, B, and C) were whole-exome sequenced, and variants 

and respective allelic frequencies deposited in ABraOM (http://abraom.ib.usp.br), a resource 

that has been widely used by the scientific community and by molecular diagnosis 

laboratories as controls (Supplementary Figure 1B)4. Later, whole-genome sequencing of 

near all samples from the 2010 wave was performed (Supplementary Figure 1, 

Supplementary Table 2). 

From a total of 1,335 SABE participants enrolled in 2010, samples from 1,200 met 

quality criteria and were submitted to whole-genome sequencing at Human Longevity Inc. 

using the protocols previously described5. Relatedness was assessed by KING, and when 

identifying siblings and duos, one individual was maintained. The final number of unrelated 

individuals was 1,171 (Supplementary Figure 1, Supplementary Table 2). 

 

 

http://abraom.ib.usp.br/
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Supplementary Figure 1. SABE cohorts longitudinal design and datasets deposited at ABraOM. A. The 

first census-based cohort (A00) participants were enrolled in 2000, with 60 years of age and older, and followed 

up ever since in waves of phenotypic and biological samples recollections. A new cohort (B, C, D) was included 

every 5-6 years, with individuals aging 60-65 years old at enrollment. Whole-genome sequencing (WGS) was 

performed for most subjects (n=1200) of cohorts A, B, and C enrolled in the wave of 2010, of which 1171 are 

unrelated. B. Nearly half of SABE 2010 participants (N=609) were previously whole-exome sequenced, and this 

dataset of variants and allele frequencies was deposited at ABraOM. The current study refers to WGS of 1171 

unrelated individuals, of which 574 were in the previously published dataset4. 

 

Since baseline, several health-related phenotypes were collected at their households, 

including the self-reported history of prevalent disorders, medications, measured 

anthropometric values, and functional tests relevant to elderly individuals. Questionnaires are 

comprehensive and were expanded and optimized every step, with about 3,500 variables, 

most nested within specific interrogations (treatment details on disorders). A total of 496 

individuals were successfully recruited to perform additional data collections, including 

magnetic resonance (3T) of the brain at Albert Einstein Hospital (Supplementary Table 2). 
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Supplementary Table 2. List of SABE study collected phenotypes per cohort-year 

Cohorts Wave of collection  Measurements  

SABE Cohort A Baseline (2000-01)  Questionnaire; 

Anthropometry: weight, height, 

waist circumference and hips; 

Balance, mobility and flexibility. 

Cognitive test: “Mini” MMSE.  

SABE Cohorts A+B Follow up (2006)  Additional to above: 

MMSE; 

Blood pressure; 

Blood glucose.  

SABE Cohorts A+B+C Follow up (2010-12)  Additional to above: 

Wide range of 

haematological/biochemical blood 

tests; 

Serum frozen at -80ºC; 

HIV screening; 

Urinalysis (uri-color check); 

Immune response; 

Accelerometer (trace movement).  

SABE Cohorts A+B+C Genetics + MRI + Functional (2010-

14)  

DNA extraction of all collected in 

2010-12; 

Whole-genome sequencing for 1,171 

subjects of SABE cohorts A+B+C 

496 individuals were recruited to 

Albert Einstein Hospital to perform: 

Brain MRI of n~452 (up to 5 

acquisitions); 

Pin pegboard of n~480; 

Hand-grip strength n~480; 

Ediburgh handedness inventory 

n~488; 

Cognitive tests: 3MS and MMSE 

n~494; 

 

Supplementary Note 2: CEGH-Filter and variant analyses 

We performed a standard pipeline cited in the main Methods. All software and 

versions can be found in Supplementary Data 1.  

 
 

In the final SABE dataset (1,171), WGS depth of coverage was assessed by GATK-

DepthOfCoverage with a mapping quality threshold of 10 or greater6. Individual averages 

ranged from 31.3X to 64.8X, with a mean of individual averages of 38.65X and a median of 

36.64X (Supplementary Fig. 2A). Horizontal coverage per vertical coverage thresholds 

yielded the complete dataset of 1,171 individual samples having 60% of bases with >30X and 

91% of bases with >10X. A total of 1,098 individuals (93.7% of the sample) reach 70% of 

bases with >30X. (Supplementary Fig. 2B). 

 



7 

 

 

Supplementary Figure 2. Depth of coverage of 1,171 WGS samples from SABE. A. Distribution of the 

average depth of coverage per individual. The lower and upper hinges correspond to the 25th and 75th 

percentiles respectively, and the whiskers represent the 1.58 x inter-quartile range (IQR) extending from the 

hinges. B. Histograms of horizontal coverage per vertical coverage thresholds. 

An in-house algorithm asserted genotype and variant qualities in addition to GATK 

flagging. CEGH-Filter (Supplementary Fig. 3) is a genotype walker algorithm that directly 

flags genotypes based on-site hard cutoff depth of coverage (DP>=10) and allele balance on a 

posteriori genotype calls (genotypes called heterozygous allelic proportion between inclusive 

0.3 and 0.7; homozygous inclusive 0.1). After flagging all genotypes, each variant is flagged 

based on proportions of ‘pass’ genotypes carrying alternate alleles (heterozygotes 0/1 or 

alternative homozygotes 1/1) considering all genotypes at the site. Hard cutoffs on well-

genotyped proportions of 90%, 50%, and one genotype to 10% will flag variants with ‘Very 

Strong - vSR’, ‘Strong - SR’ or ‘Weak - WK’ assertions, respectively. If no alternative allele 

carrying genotypes survive flagging, the variant is flagged either with ‘Filtered out due to 

depth - FDP’ or ‘Filtered out due to allele balance - FAB’ with corresponding proportions of 

each observation pending on 50% (FDP inclusive). If at least one genotype survives, but the 

quality of genotypes at the site does not fit quality criteria (cutting at 1,000 alleles or 500 

genotypes), a ‘Low cohort call’ flag is added to vSR, SR, or WK. Allele frequencies are 

calculated before and after genotype flagging. 
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Supplementary Figure 3. CEGH-Filter algorithm. Steps, criteria, genotype flags, and variant flags. 

 

Some genotypes are flagged by CEGH-Filter but not considered in the final counts to 

generate allele frequencies. Multiallelic informative genotypes (0/. and ./1), including SNVs, 

indels, and spanning deletions, are not included in allele frequency calculations due to 

dependency on other variants at the same site. Also, non-pseudoautosomal regions (non-

PAR) loci along the X chromosome that harbor genotypes called as heterozygous state in 

male individuals are not accounted for, since they are expected to be hemizygous in those 

sites. These unexpected genotypes may be explained as false positives due to call errors or 

contamination, or else as true positives (duplications, aneuploidies, or mosaicism).  

Although we consider further investigating those cases, at this point, we opted to 

exclude both multiallelic genotypes and non-PAR heterozygous in males from the counts and 

allelic frequency calculations, without, however, excluding the variant row per se. Therefore, 

some variants will appear to have zero allele frequency, even in non-FDP or non-FAB sites. 

For overall counts (Supplementary Fig. 4), the high confidence dataset considered 

only GATK ‘PASS’ and CEGH ‘vSR’, ‘SR’, and ‘WK’. Therefore, among the shadowed 

branch of counts, there are variants likely to be true positives, but rather fall within sites 

containing lower confidence calls. pLOF variants classified by LOFTEE1 were considered 

irrespective of confidence label (HC or LC), since LC contains variants with at least one filter 

failed but can be a true positive. Additional evidence for nonsense-mediated decay or non-

canonical splice sites can enrich the classification (https://github.com/konradjk/loftee). In the 

clinical analyses dataset, we have considered any CEGH-filter flag except for ‘FDP’ and 

‘FAB’, since manual curation took place in the final step. 
 

 Annotation of variants per predicted function yielded the expected higher number of 

https://github.com/konradjk/loftee
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intergenic (53.7%) and intronic (35.3%), whereas coding variants represent less than 1% with 

635 thousand variants (Supplementary Table 3). 
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Supplementary Figure 4. Single nucleotide variants (SNVs) and insertion/deletion (indel) counts in SABE 

WGS dataset. Variant counts in SABE WGS dataset. A. Summary of all variants detected in SABE WGS 

dataset, including single nucleotide variants (SNVs), insertions/deletions (indels), mobile element insertions and 
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HLA remapped variants. High confidence flag is defined for SNVs and indels based on combined flags of 

GATK Filter and CEGH Filter. Variants with GATK Pass flags were counted as GATK+, and variants with 

CEGH vSR, SR, and WK flags were counted as CEGH+, a combination of both were considered high 

confidence (GATK+/CEGH+). SNVs and indels were absent from databases if not found in dbSNP v150, 

gnomAD v2.1.1 genomes, gnomAD v2.1.1 exomes, ESP6500 and 1000 Genomes. Mobile element insertions 

are absent from databases if not found in DGV and gnomAD. HLA variants are absent from databases if not 

found in IPD-IMGT/HLA Database version 3.4.0. B. Detailed total and high confidence counts for SNVs and 

indels in SABE WGS dataset. Spanning deletions were excluded from the annotation in the current study.  High 

confidence calls are represented in the sharp color branch or else placed in the faded branch. Variants were 

classified as Novel (outer branches) if they are absent in all reference databases used for SNVs and indels (see in 

panel A), or if found in at least one database were included in inner branches. Yellow boxes represent counts of 

indels longer than 1bp, and blue boxes represent counts of SNVs and 1bp-indels. pLOF counts in red boxes are 

based on LOFTEE annotations1. 

Supplementary Table 3. Variant counts per predicted function. 

Variants Predicted Function Counts % Group % All 

Coding and splicing within genes 635689   0.81 

Nonsynonymous SNV 329744 51.87 0.42 

Synonymous SNV 221436 34.83 0.28 

Splicing 28526 4.49 0.04 

Exonic;splicing 25752 4.05 0.03 

Nonframeshift deletion 8218 1.29 0.01 

Frameshift deletion 7196 1.13 0.01 

Stopgain 6677 1.05 0.01 

Nonframeshift insertion 4144 0.65 0.01 

Frameshift insertion 3638 0.57 0.00 

Stoploss 356 0.06 0.00 

Splicing;splicing 2 0.00 0.00 

Noncoding within genes 29064505   37.08 

Intronic 27186280 93.54 34.68 

UTR3 647982 2.23 0.83 

Downstream 531982 1.83 0.68 

Upstream 519497 1.79 0.66 

UTR5 157192 0.54 0.20 

Upstream;downstream 21185 0.07 0.03 

UTR5;UTR3 379 0.00 0.00 

Intronic;intronic 8 0.00 0.00 

Noncoding genes 4829729   6.16 

ncRNA_intronic 4544805 94.10 5.80 

ncRNA_exonic 275495 5.70 0.35 

ncRNA_exonic;splicing 4734 0.10 0.01 

ncRNA_splicing 4669 0.10 0.01 

ncRNA_UTR5 22 0.00 0.00 

ncRNA_intronic;ncrna_intronic 4 0.00 0.00 

Intergenic 41363727   52.76 

Intergenic 41363715 100.00 52.76 

Intergenic;intergenic 12 0.00 0.00 

Other 2499880   3.19 

Spanning deletion 2495642 99.83 3.18 

NA + unknown 4238 0.17 0.01 

All 78393530     
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Supplementary Note 3: Ancestry analyses 

 In ancestry inference analyses, data from 30 populations were used as parental 

references, among which 16 were Native American (Supplementary Table 4). 

Supplementary Table 4. Parental population used for ancestry inferences.  

Population Region/Parental Population N Reference 

Luhya in Webuye, Kenya Africa 99 Auton et al., 20157 

Yoruba in Ibadan, Nigeria Africa 108 

Gambian in Western Divisions in 

the Gambia 

Africa 113 

Mende in Sierra Leone Africa 85 

Esan in Nigeria Africa 99 

Han Chinese in Beijing, China East Asia 103 

Southern Han Chinese East Asia 105 

Chinese Dai in Xishuangbanna, 

China 

East Asia 93 

Kinh in Ho Chi Minh City, 

Vietnam 

East Asia 99 

Finnish in Finland Europe 99 

British in England and Scotland Europe 91 

Toscani in Italia Europe 107 

Iberian Population in Spain Europe 107 

Utah Residents (CEPH) with 

Northern and Western European 

Ancestry 

Europe 99 

Aimara in Peru Native American 11 Borda et al., 20202 

Ashaninka in Peru Native American 33 

Awajun in Peru Native American 22 

Candoshi in Peru Native American 16 

Chopccas in Peru Native American 7 

Lamas in Peru Native American 17 

Matses in Peru Native American 11 

Matsiguenka in Peru Native American 3 

Mache in Peru Native American 9 

Nahua in Peru Native American 2 

Qeros in Peru Native American 12 

Quechua in Peru Native American 1 

Shimaa in Peru Native American 23 

Shipibo in Peru Native American 14 

Tallanes in Peru Native American 30 

Uros in Peru Native American 12 
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Supplementary Figure 5. Ancestry distributions and self-reported ethnoracial groups. A. Upper 

section: Boxplots of the proportions of genetic ancestry per self-reported ethno-racial groups (one way 

ANOVA p-value <2e-16; Tukey test p-value<0.001). The lower and upper hinges correspond to the 

25th and 75th percentiles respectively, and the whiskers represent the 1.58 x inter-quartile range 

(IQR) extending from the hinges. Bottom table: Counts of individuals per self-reported ethno-racial 
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group and corresponding average ancestries; Number of individuals within different ranges of 

ancestry proportions. B. Principal component analysis of SABE individuals and parental populations. 

Analyses were performed with 372,527 SNVs (after overlapping- and LD-pruning). AFR, EAS and 

EUR from 1KGP3 and NAM from Borda et al., (2020)2. Three individuals self-reported as Indigenous 

had a high degree of admixture but were removed due to the small sample size of the group. Specific 

samples are described in Supplementary Table 4. 

 

Supplementary Note 4: Clinical findings 

4.1. Strategy 

 

As initial classification criteria, we flagged all variants harbored by 4,250 OMIM 

disease genes (Supplementary Data 2) with ClinVar pathogenic assertions (Pathogenic, 

Likely Pathogenic, or Pathogenic/Likely Pathogenic) or predicted as promoting any loss of 

function consequence by LOFTEE algorithm. A total of 5,142 variants met the criteria (4,096 

SNVs and 1,046 >1bp indels) (Pathogenicity analyses summarized in Supplementary Figure 

6).  

 

4.2. Frequencies of variants with potential clinical relevance 

 

Although 10.6% of these variants are absent from population databases (gnomAD, 

dbSNP, and 1000 genomes), and most of which are indels, the remaining are mainly rare 

single-nucleotide substitutions (frequencies ≤ 0.001) (Supplementary Table 5). 
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Supplementary Table 5. Distribution of variants identified in SABE 1171 cohorts with potential clinical relevance in OMIM Disease genes  absent 

and present in database, per frequency 

      

Count per frequency bins of variants absent from 

population databases (% Singleton) 

Type (total counts) Category Counts ≤ 0.001 ≤ 0.01 ≤ 0.05 ≤ 0.1 > 0.1 

SNV Substitution (25) Any assertion on ClinVar 23 23 (96) 0 0 0 0 

  Any pathogenic assertion on ClinVar* 2 2 (100) 0 0 0 0 

  pLOF 25 2 (100) 0 0 0 0 

  pLOF & Pathogenic assertion on ClinVar* 2 2 (100) 0 0 0 0 

1bp-INDELs (293) Any assertion on ClinVar 9 9 (100) 0 0 0 0 

  Any pathogenic assertion on ClinVar* 8 8 (100) 0 0 0 0 

  pLOF 292 289 (97) 3 (33) 0 0 0 

  pLOF & Pathogenic assertion on ClinVar* 7 7 (100) 0 0 0 0 

INDELs >1bp (229) Any assertion on ClinVar 9 9 (100) 0 0 0 0 

  Any pathogenic assertion on ClinVar* 9 9 (100) 0 0 0 0 

  pLOF 229 214 (54) 9 (0) 0 1 (0) 3 (0) 

  pLOF & Pathogenic assertion on ClinVar* 9 9 (100) 0 0 0 0 

      

Count per frequency bins of variants present in at least one 

population database (% Singleton) 

Type (total counts) Category Counts ≤ 0.001 ≤ 0.01 ≤ 0.05 ≤ 0.1 > 0.1 

SNV Substitution (3151) Any assertion on ClinVar 1646 1156 (77) 386 (0) 52 (0) 13 (0) 37 (0) 

  Any pathogenic assertion on ClinVar** 953 796 (83) 142 (0) 6 (0) 2 (0) 5 (0) 

  pLOF 2047 1614 (86) 289 (0) 59 (0) 13 (0) 71 (0) 

  pLOF & Pathogenic assertion on ClinVar** 289 257 (85) 32 (0) 0 0 0 

1bp-INDELs (627) Any assertion on ClinVar 195 115 (74) 54 (0) 10 (0) 2 (0) 14 (0) 

  Any pathogenic assertion on ClinVar** 87 72 (75) 15 (0) 0 0 0 

  pLOF 619 373 (77) 144 (0) 53 (0) 10 (0) 40 (0) 

  pLOF & Pathogenic assertion on ClinVar** 81 68 (75) 13 (0) 0 0 0 

INDELs >1bp (817) Any assertion on ClinVar 217 131 (71) 60 (0) 8 (0) 3 (0) 13 (0) 

  Any pathogenic assertion on ClinVar** 92 83 (77) 8 (0) 1 (0) 0 0 

  pLOF 788 421 (72) 242 (1) 62 (0) 15 (0) 41 (0) 

  pLOF & Pathogenic assertion on ClinVar** 74 69 (78) 5 (0) 0 0 0 

*Pathogenic, Likely pathogenic or Conflicting interpretations of pathogenicity with at least one P or LP assertion         

**Pathogenic or Likely pathogenic. Excludes any variants asserted as Conflicting interpretations of pathogenicity         
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Few exceptions reach over 0.1 Among these high-frequency variants, we highlight the 

five asserted as pathogenic (Supplementary Data 3): (a) rs429358 APOE p.C130R 

(NM_000041) with a frequency of 0.13, which should be considered in phase with rs7412 

p.R176C to the well-known functional haplotypes (ε2, ε3, and ε4) associated with late-onset 

Alzheimer’s and type III hyperlipoproteinemia; C. rs17261572 and rs1566734, which were 

asserted as pathogenic before large allelic frequency datasets and community-based 

consensual criteria such as recommendations provided by American College of Human 

Genetics and Genomics (ACMG) were available8; and (c) variants classified as risk factors 

(lower penetrance by definition) in sporadic breast cancer multifactorial susceptibility 

(rs2046210) or in glycine metabolism on a digenic model of inheritance (rs35329108). 

Therefore, pathogenic assertions should be considered with caution. 

 

4.3. Context of variants 

 

These 5,142 variants fall within 1,949 unique genes and 168 intergenic regions or 

overlapping genes, 98% of which harbor no more than 10 variants (Supplementary Table 6). 

Most genes are annotated as either recessive or non-monogenic modes of inheritance, but a 

considerable amount of genes (749) are described as having either dominant or both 

dominant and recessive inheritance (Supplementary Table 7).  

 

 
Supplementary Table 6. Number of genes and regions that harbor one or more variant with potential 

clinical relevance 

Variants per gene/region Number of genes/regions % 

1 992 46.86 

2 493 23.29 

3 257 12.14 

4 135 6.38 

5 81 3.83 

(5-10] 126 5.95 

(10-20] 26 1.23 

>20 7 0.33 

Total 2117 100 

 

Supplementary Table 7. Number of genes that harbor variants with potential clinical relevance per 

inheritance mode 

Inheritance mode (OMIM) Number of genes 

AD/XLD only 437 

AR/XLR only 1170 

AD and AR, XLD and XLR 312 

Somatic mutation 31 

Multifactorial 12 

Mitochondrial 6 

Digenic (Dominant or Recessive) 20 

Somatic mosaicism 1 

Total 1989 
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Supplementary Figure 6. Filtering strategies for the identification of variants of potential clinical relevance 

and indication of downstream results. Among high-confidence variants, we have identified a total of 5,142 variants 

within 4,250 OMIM disease genes (Supplementary Data 2) that were found to have pathogenic, likely pathogenic, or 

conflicting containing at least one pathogenic ClinVar assertions, or classified as potential loss of function (pLOF). 
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Downstream analyses pointed that: over 10% are absent from population databases, but most are singleton or low 

frequency (Supplementary Table 5; Supplementary Data 3); most genes contain up to five variants (Supplementary 

Table 6); most genes are annotated to associate with recessive modes of inheritance (Supplementary Table 7); manual 

curation of variants initially classified as pathogenic or likely pathogenic in genes of dominant inheritance can be 

either reclassified or fall indeed in recessively inherited conditions or else are required to be in trans with a more 

deleterious variant (Supplementary Data 4-5, Supplementary Table 8); 14 pathogenic variants harbored by ACMG-59 

genes were identified (Supplementary Data 6); SABE cohort recapitulates variant-based incidence of recessive 

disorders that are more prevalent in European or African populations (Supplementary Data 7). 

4.4. Manual curation of variant pathogenicity on genes associated with dominant mode 

of inheritance 

 

 In order to identify individuals carrying variants with potential clinical implications, 

including the reassessment of related phenotypes to support the analyses, we have filtered a 

total of 394 variants asserted as either ‘Pathogenic’ or ‘Likely Pathogenic’ (P/LP) in genes 

annotated to have a dominant mode of inheritance only, and in genes with more than one 

mode of inheritance, including dominant or monoallelic. Manual curation aiming 

reclassification of pathogenicity using ACMG criteria was performed by two independent 

clinical geneticists (professionals with clinical genetics residency and previous experience in 

clinical exome analysis and variant pathogenicity classification using ACMG criteria). 

Manual curation included functional studies and segregation  information described in the 

available literature, evidence details on the original assertions, and allele frequency. Each of 

the 394 variants in dominant genes containing P/LP ClinVar assertions was submitted to 

manual curation aided by population-specific frequencies (gnomAD and SABE, mainly); 

ClinGen (to reannotate inheritance modes); review of VarSome automated calculation of 

ACMG classification criteria; and in-depth analyses on ClinVar submissions leading to 

classification, particularly in evidence levels (ACMG criteria assigned and provided by 

submitters, to adjust PP5), details on co-segregation of ClinVar assertion combined with 

literature reports of carriers and families (to adjust PP1). OMIM aided reclassification of 

gene’s mode of inheritance in cases where ClinGen information could not be conclusive, such 

as only one affected case was reported and recessive mode could not be excluded. When loss 

of function consequence would only be detected in trans with another P/LP variant and not by 

itself (hypomorphic variants) the allele did not meet criteria for haploinsuficiency and 

dominant phenotype (hereby classified as ‘recessive allele’). A total of 116 variants (29%) 

were reclassified as non-pathogenic assertions (benign, likely benign or unknown 

significance) (Supplementary Data 4), most of which had no assertion criteria provided (70 

variants), 41 had criteria provided by a single submitter and 5 by multiple submitters. The 

remaining 278 kept as pathogenic or likely pathogenic (Supplementary Table 8). Among the 

latter, literature validation and matching phenotypes, when available, enabled further 

characterization of variants to either a reported reduced penetrance, non-dominant mode (of 

the specific allele or gene), or associated to clinical features that are not severe enough to 

cause mortality before the average age of subjects (Supplementary Table 8, Supplementary 

Data 5).  
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Supplementary Table 8. Counts of variants per category after manual curation of 394 pathogenic 

variants in genes with dominant mode of inheritance 

Category after curation Counts % 

Compatible finding 2 0.51 

Subclinical/Mild phenotypes 6 1.52 

Somatic mosaicism 1 0.25 

Somatic mosaicism/Subclinical/Mild phenotype 2 0.51 

Conditional (PGx) 2 0.51 

Incomplete penetrance/Subclinical/Mild phenotypes 13 3.30 

Recessive allele/Incomplete penetrance/Subclinical 4 1.02 

Incomplete penetrance 39 9.90 

Recessive allele/Incomplete penetrance 2 0.51 

Recessive allele 61 15.48 

Recessive gene 146 37.06 

Reclassified 116 29.44 

Total 394 100 

 

4.5. Manual curation of variant pathogenicity on ACMG 59 actionable genes  

 

We also analyzed P/LP variants in 59 actionable genes following ACMG 

recommendation9 and found 14 variants distributed in heterozygosity in different individuals 

all in the heterozygous state (Supplementary Data 6), among which BRCA2 and RYR1 harbor 

four variants each. Ten variants were classified using the above-mentioned protocol as 

pathogenic with reported incomplete penetrance; three were described as pathogenic only 

when in trans with another pathogenic variant (recessive alleles), and one potential 

phenotypic match (outcome compatible with finding) in LDLR. 

 

 

4.6. Assessment of variant-based incidence pathogenicity on selected genes associated 

with recessive mode of inheritance 

 

 To roughly estimate the incidence using counts of heterozygotes from SABE and 

gnomAD global and population-specific datasets, we selected five genes associated with 

prevalent monogenic clinical phenotypes: cystic fibrosis (CFTR), hemoglobinopathies (HBB), 

deafness (GJB2), familial Mediterranean fever (MEFV), and hemochromatosis (HFE) 

(Supplementary Data 7). These genes were used to filter high frequency (up to 5%) and low 

frequency (including singletons) known pathogenic variants, as classified by respective 

Locus Specific Databases. For CFTR we have used CFTR2 (https://cftr2.org/); for HBB, 

HbVar (http://globin.cse.psu.edu/hbvar/menu.html); for GJB2, Deafness Variation Database 

(http://deafnessvariationdatabase.org/); for MEFV, Infevers (https://infevers.umai-

montpellier.fr/web/); and for HFE, LOVD-HFE (https://databases.lovd.nl/shared/genes/HFE). 

The same variants were searched in gnomAD v3 and counts per population were used to 

calculate a frequency per population (number of genotypes fixed at 71700). Incidence was 

calculated without correction for penetrance, assuming panmixia and even distribution 

between sexes. We combined counts of heterozygotes (independently for each variant within 

a locus, as observed) and number of individuals. The fraction of carriers within each sample 
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was squared (providing a fraction of possible couples of carriers) and divided by four (an 

offspring of 25% of compound heterozygotes or homozygotes). 

 

 

4.7. Distribution of potential loss of function variants within OMIM Disease genes 

 

There are 4,000 potential loss of function (pLOF) variants in SABE that fall within 

OMIM Disease genes, of which 3,704 are ‘non-Benign’, which excludes ClinVar benign, 

likely benign, or conflicting assertions that lack pathogenic entries (Supplementary Fig. 7). 

We have found a normal distribution of individual loads of pLOF variants in heterozygous 

state (Supplementary Fig. 8A) and homozygous state (Supplementary Fig. 8B), and a Poisson 

distribution of variants with one or more pathogenic assertions (Supplementary Fig. 8C), with 

medians of 55, 25, and 1 variants per person, respectively. A comparison of allele frequencies 

of these variants between SABE and gnomAD revealed a high correlation regardless of pLI 

contexts (Supplementary Fig. 9A).  

Assuming a higher proportion of false positives among indels, mainly longer ones, we 

have filtered only pLOF variants produced by single nucleotide variants (substitutions or 1bp 

long indels), with allele frequency of 5% or lower on SABE and flagged as high-confidence 

by LOFTEE. These strict filtering criteria yielded a total of 1,853 pLOF variants, which were 

Poisson distributed with a median of 5 in heterozygosity per individual (Supplementary Fig. 

8D), a median of 0 in homozygosity (although 20% have one or two, Supplementary Fig. 8E) 

and a median of 0 with one or more pathogenic assertion (39% have one to four, 

Supplementary Fig. 8F). A high correlation with gnomAD frequencies is maintained in this 

subset (Supplementary Fig. 9B). Further detailed analysis of pLOF variants within genes of 

pLI ≥ 0.7 with higher differences in allele frequencies showed that they were either long 

indels multiallelic or homopolymers flagged as low confidence or in low-quality sites in 

gnomAD. Also, annotation of variants in intergenic regions may be wrongly attributed and 

lead to spurious flagging (Supplementary Fig. 9C). Therefore, regardless of the dataset 

quality cutoff, we have found non-deviant frequencies as compared with gnomAD. 
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Supplementary Figure 7. Filtering strategies for identification of variants of potential loss of function. 
Among high-confidence variants, we have identified 5,142 variants within 4,250 OMIM Disease genes, 4,000 of 

which were classified as potential loss of function (pLOF). A subset of any pLOF non-Benign variants 

corresponds to 3,704 variants with any ClinVar non Benign assertion (640 variants) plus 3,064 variants that lack 

any assertions. Substitutions, 1bp-indels, and indels >1bp were analyzed for the distribution of individual loads 

(Supplementary Fig. 8A, 8B, and 8C) and allele frequencies compared to gnomAD (Supplementary Fig. 9A). 

Further filtering to remove indels >1bp, common variants and LC-flagged pLOFs yielded 1,854 variants, which 

individual load distributions were also analyzed (Supplementary Fig. 8D, 8E, and 8F) as well as frequency 

comparison to gnomAD (Supplementary Fig. 9B). 
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Supplementary Figure 8. Distribution of individual loads of potential loss of function (pLOF) variants. 
Left panels: a subset of any non-Benign pLOF (ClinVar non-Benign assertions plus variants that lack any 

assertions) variants. Histogram of individual loads of pLOF variants in (A) heterozygosity, (B) homozygosity, 

and (C) variants with pathogenic assertions on ClinVar (including Pathogenic, Likely Pathogenic and 

Conflicting containing one or more pathogenic entries). Right panels: a subset of pLOF variants that are single 

nucleotide substitutions or 1bp-indels below 5% SABE cohort frequency and flagged as LOFTEE HC. 

Histogram of individual loads of pLOF variants in (D) heterozygosity, (E) homozygosity, and (F) variants with 

pathogenic assertions on ClinVar. 
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Supplementary Figure 9. Comparison of allele frequencies between pLOFs found in SABE and gnomAD 

(v2.2), within genes of pLI>=0.7 and pLI<0.7. A. Subset of non-Benign variants provided a comparison of 

pLOF frequencies of up to 100%. B. Rare single nucleotide variants flagged as HC on LOFTEE. C. Five 

examples of deviation were manually verified in gnomAD and explained by context leading to calls or 

annotations.  
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Supplementary Note 5: Mobile Element Insertions (MEIs) 

 

As presented in the main text and methods, mobile element insertions (MEIs) were 

identified across all samples and annotated by element types and frequency groups. 

Regarding their genomic locations, the correlation between number of MEIs and 

chromosome length can be observed in Supplementary Figure 10. The genomic context 

regarding AT/GC content in relation to MEI events per category can be observed in 

Supplementary Figure 11.  

 

 

Supplementary Figure 10. Number of MEIs per chromosome length. We observed a positive correlation 

between the number of MEIs and the chromosome length (one-sided test, not corrected for multiple tests, p-

value = 2.74e-6; rho = 0.95; Spearman's rank correlation; d.f. = 21). Shaded area represents the standard error. 
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Supplementary Figure 11. Base pair composition of mobile elements insertion point. We randomly selected 

10,000 windows of length 100 bp from the human genome version 38 and calculated their GC content. Then, we 

made the same for all Mobile Elements Insertion points, discriminating by Alu, L1, SVA, and HERV. Finally, 

we tested with Kolmogorov-Smirnov test (KS test) the random windows distribution against those of MEIs. L1 

and Alu insertions are skewed to AT-rich regions, while HERVs are biased to GC-rich regions. 
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Next, we have annotated the overlaps between occurrence of MEI events in OMIM 

disease genes (Supplementary Data 2) and their respective genomic contexts. Results can be 

found in Supplementary Table 9 (total counts) and Supplementary Data 8 (MEI events in 

exonic regions of OMIM Disease genes). 

 

 

Supplementary Table 9. Counts of mobile element insertions per frequency group, genomic context 

and OMIM annotation 

  Genomic context of MEIs 

  

Exon Intron Flank 

Frequency group 

Count of 

MEI events* All 

OMIM 

gene All 

OMIM 

gene All 

OMIM 

gene 

Shared 2111 69 15 1949 561 93 0 

SABE Private or 

Singleton 725 24 4 664 191 37 1 

Total 2836 93 19 2613 752 130 1 

*Events are counted when MEIs occurring in genes are unique, therefore these numbers do not account for 

frequency (when more than one individual carry MEIs spanning the same genomic position) 

 

 

 

Regarding MEIs identified in exonic regions of OMIM genes (Supplementary Data 

8), all genes but HCN1, PACS1 and PIK3R1 are associated with recessive disorders, 

susceptibility loci or non-disease traits. HCN1 variants associated with AD epilepsy are all 

missense with gain of channel function or dominant negative effects even though pLI in 

gnomAD is 1, multiple controls in Developmental Delay Database (DDD) have been 

identified with intragenic exon spanning deletions. Schuurs-Hoejimakers is associated with a 

single recurrent variant in PACS1 (NM_018026.4: c.607C>T), and even though pLI in 

gnomAD is also 1, loss of function variants  (or deletions) in this gene have never been 

reported associated with disease in humans. PIK3R1 variants have been associated both with 

AR inheritance (loss of function, nonsense, variant) and AD (splicing, predicted gain of 

function, variants), pLI in gnomAD is 0.02. Therefore there is evidence that none of the MEI 

in OMIM genes that could potentially lead to truncation of the gene product (and a loss of 

function consequence) are likely to be associated with a severe disease phenotype in the 

individuals from SABE cohort. 
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Supplementary Note 6: De novo assembly of non-reference sequences (NRS) 

 

 
Supplementary Figure 12.  Flowchart representing the non-reference sequences pipeline as described in 

Methods section. 
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Supplementary Figure 13. Analysis of non-reference contigs. A. The frequency of non-reference contigs 

(NR-contigs) in the SABE population. There are 372 NR- contigs found in all samples in the population. B. 

Violin plot showing the distribution of the total NR-contigs length in megabase pairs (Mbps) for the individuals. 

C. Length distribution of the NR-contigs with the vertical axis representing the sum of the contig lengths. From 

a total of 67Mbps of NR-contigs, 56Mbps are less than 500 base pairs long. There are 40 NR-contigs longer 

than 10kbps. 
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Supplementary Note 7: WGS Imputation 

 

 

Supplementary Table 10.  Number of SNPs per chromosome in each reference panel 

Chromosome 
Number of SNPs in each reference panel 

SABE 1KGP3 SABE+1KGP3 

1 3,996,540 6,191,833 7,939,598 

2 4,406,141 6,790,551 8,726,263 

3 3,690,698 5,641,493 7,257,393 

4 3,596,780 5,477,810 7,025,900 

5 3,325,574 5,115,036 6,553,929 

6 3,174,612 4,863,337 6,218,835 

7 2,945,373 4,511,408 5,792,582 

8 2,898,843 4,425,449 5,683,312 

9 2,204,350 3,384,360 4,346,771 

10 2,514,657 3,874,259 4,950,281 

11 2,509,089 3,881,791 4,972,826 

12 2,421,384 3,745,465 4,800,039 

13 1,806,750 2,760,845 3,534,231 

14 1,644,170 2,548,903 3,259,739 

15 1,484,079 2,301,453 2,949,517 

16 1,655,523 2,548,920 3,289,287 

17 1,427,164 2,209,149 2,855,082 

18 1,432,958 2,189,529 2,800,626 

19 1,106,201 1,738,824 2,237,376 

20 1,180,936 1,817,492 2,329,578 

21 664,678 1,045,269 1,324,116 

22 679,009 1,059,079 1,357,134 

TOTAL 50,765,509 78,229,219 100,204,415 

 

 

Supplementary Table 11. Comparison between target haplotype phase inferences with different 

reference haplotypes using the number of imputed SNPs for chromosomes 15, 17, 20, and 22. Target 

2.5M EPIGEN 

Imputation 

Reference Panel 

 SABE  1KGP3  SABE+1KGP3 

Number of variants  Total info score ≥ 

0.8 

 Total info score ≥ 

0.8 

 Total info score ≥ 

0.8 

Chr 15  1,481,369 600,332  2,297,258 799,440  2,943,434 951,917 

Chr 17  1,424,402 512,055  2,204,724 738,586  2,849,458 866,547 

Chr 20  1,180,618 417,420  1,816,925 615,816  2,328,821 703,545 

Chr 22  676,922 229,932  1,049,542 351,164  1,345,756 402,144 
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Supplementary Table 12. Comparison between target haplotype phase inferences with different 

reference haplotypes using the number of imputed SNPs for chromosomes 15, 17, 20, and 22. Target 

2.5M SALVADOR 

Imputation 

Reference Panel 

 SABE  1KGP3  SABE+1KGP3 

Number of variants  Total info score ≥ 

0.8 

 Total info score ≥ 

0.8 

 Total info score ≥ 

0.8 

Chr 15  1,481,369  605,791   2,297,258 799,308   2,943,434  921,805  

Chr 17  1,424,402 519,213   2,204,724 740,926  2,849,458 851,122 

Chr 20  1,180,618 423,629  1,816,925 616,333  2,328,821 691,770  

Chr 22  676,922 234,225  1,049,542 352,320  1,345,756 395,895 

 

Supplementary Table 13. omparison between target haplotype phase inferences with different 

reference haplotypes using the number of imputed SNPs for chromosomes 15, 17, 20, and 22. Target 

2.5M PELOTAS 

Imputation 

Reference Panel 

 SABE  1KGP3  SABE+1KGP3 

Number of variants  Total info score ≥ 

0.8 

 Total info score ≥ 

0.8 

 Total info score ≥ 

0.8 

Chr 15  1,481,369 594,208  2,297,258 763,178  2,943,434 898,979  

Chr 17  1,424,402 509,774   2,204,724 711,297   2,849,458  826,780  

Chr 20  1,180,618  414,600  1,816,925 594,121  2,328,821  673,256 

Chr 22  676,922 228,107  1,049,542 339,416  1,345,756 384,628 

  

Supplementary Table 14. Comparison between target haplotype phase inferences with different 

reference haplotypes using the number of imputed SNPs for chromosomes 15, 17, 20, and 22. Target 

2.5M BAMBUI 

Imputation 

Reference Panel 

 SABE  1KGP3  SABE+1KGP3 

Number of variants  Total info score ≥ 

0.8 

 Total info score ≥ 

0.8 

 Total info score ≥ 

0.8 

Chr 15  1,481,369 573,646   2,297,258 692,257  2,943,434 803,886  

Chr 17  1,424,402 495,561  2,204,724 648,734   2,849,458 746,572 

Chr 20  1,180,618  403,534   1,816,925 541,084   2,328,821 605,172 

Chr 22  676,922 224,813  1,049,542 314,774  1,345,756 354,075 
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Supplementary Table 15. Comparison between target haplotype phase inferences with different 

reference haplotypes using the number of imputed SNPs for chromosomes 15, 17, 20, and 22. Target 

2.5M Admixed from Peru 

Imputation 

Reference Panel 

 SABE  1KGP3  SABE+1KGP3 

Number of variants  Total info score ≥ 

0.8 

 Total info score ≥ 

0.8 

 Total info score ≥ 

0.8 

Chr 15  1,481,369 434,099  2,297,258 533,686  2,943,434 574,401  

Chr 17  1,424,518 383,032  2,204,724 495,656  2,849,458 535,641 

Chr20  1,180,618  319,760  1,816,925 413,588  2,328,821 442,458 

Chr22  676,922 176,627  1,049,542 238,874  1,345,756 255,402 

 

 

 

 

Supplementary Table 16. Comparison between target haplotype phase inferences with different 

reference haplotypes using the number of imputed SNPs for chromosomes 15, 17, 20, and 22. Target 

2.5M Admixed from Guatemala 

Imputation 

Reference Panel 

 SABE  1KGP3  SABE+1KGP3 

Number of variants  Total info score ≥ 

0.8 

 Total info score ≥ 

0.8 

 Total info score ≥ 

0.8 

Chr 15  1,481365 369,008  2,297,258 472,194  2,676,512 464,629 

Chr 17  1,424,518 316,207  2,204,724 441,305  2,849,458 480,433 

Chr20  1,180,618  260,163  1,609,925 319,676  2,274,965 381,225 

Chr22  676,922 143,214  1,049,542 210,215  1,345,756 226,126 
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Supplementary Figure 14. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 6,487 Brazilians from EPIGEN for chromosome 17 as 

target panel. A. The total number of imputed variants across different classes of the info score quality metric. 

B. The total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. 

Improvement in imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 

0 to 0.2, bin sizes of 0.005). 

 

 

 

  

 
 

 

Supplementary Figure 15. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 6,487 Brazilians from EPIGEN for chromosome 20 as 

target panel. A. The total number of imputed variants across different classes of the info score quality metric. 

B. The total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. 

Improvement in imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 

0 to 0.2, bin sizes of 0.005). 

  

 

A B C 

A B C 
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Supplementary Figure 16. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 6,487 Brazilians from EPIGEN for chromosome 22 as 

target panel. A. The total number of imputed variants across different classes of the info score quality metric. 

B. The total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. 

Improvement in imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 

0 to 0.2, bin sizes of 0.005). 

 

 

  

 

 

 

Supplementary Figure 17. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 1,442 Brazilians from BAMBUÍ for chromosome 15 as 

target panel. A. The total number of imputed variants across different classes of the info score quality metric. 

B. The total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. 

Improvement in imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 

0 to 0.2, bin sizes of 0.005). 

 

 

A B C 

A B C 
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Supplementary Figure 18. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 1,442 Brazilians from BAMBUÍ for chromosome 17 as 

target panel. A. The total number of imputed variants across different classes of the info score quality metric. 

B. The total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. 

Improvement in imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 

0 to 0.2, bin sizes of 0.005). 

 

 

 

  

 

 

 

Supplementary Figure 19. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 1,442 Brazilians from BAMBUÍ for chromosome 20 as 

target panel. A. The total number of imputed variants across different classes of the info score quality metric. 

B. The total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. 

Improvement in imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 

0 to 0.2, bin sizes of 0.005). 

 

A B C 

A B C 
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Supplementary Figure 20. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 1,442 Brazilians from BAMBUÍ for chromosome 22 as 

target panel. A. The total number of imputed variants across different classes of the info score quality metric. 

B. The total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. 

Improvement in imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 

0 to 0.2, bin sizes of 0.005). 

 

  

 

 

 

Supplementary Figure 21. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 1,309 Brazilians from SALVADOR for chromosome 

15 as target panel. A. The total number of imputed variants across different classes of the info score quality 

metric. B. The total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. 

Improvement in imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 

0 to 0.2, bin sizes of 0.005). 

A B C 

A C B 
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Supplementary Figure 22. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 1,309 Brazilians from SALVADOR for chromosome 

17 as target panel. A. The total number of imputed variants across different classes of the info score quality 

metric. B. The total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. 

Improvement in imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 

0 to 0.2, bin sizes of 0.005). 
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Supplementary Figure 23. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 1,309 Brazilians from SALVADOR for chromosome 

20 as target panel. A. The total number of imputed variants across different classes of the info score quality 

metric. B. The total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. 

Improvement in imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 

0 to 0.2, bin sizes of 0.005). 

 

 

 

 

 

Supplementary Figure 24. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 1,309 Brazilians from SALVADOR for chromosome 

22 as target panel. A. The total number of imputed variants across different classes of the info score quality 

metric. B. The total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. 

Improvement in imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 

0 to 0.2, bin sizes of 0.005). 

 

 

 

  

 

 

 

Supplementary Figure 25. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 3,736 Brazilians from PELOTAS for chromosome 15 

as target panel. A. The total number of imputed variants across different classes of the info score quality 

metric. B. The total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. 

A B C 

A B C 
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Improvement in imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 

0 to 0.2, bin sizes of 0.005). 

 

 

  

 

 

 

Supplementary Figure 26. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 3,736 Brazilians from PELOTAS for chromosome 17 

as target panel. A. The total number of imputed variants across different classes of the info score quality 

metric. B. The total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. 

Improvement in imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 

0 to 0.2, bin sizes of 0.005). 

 

 

 

  

 

 

 

Supplementary Figure 27. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

A B C 

A B C 
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reference panels using the Omni 2.5M array data for 3,736 Brazilians from PELOTAS for chromosome 20 

as target panel. A. The total number of imputed variants across different classes of the info score quality 

metric. B. The total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. 

Improvement in imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 

0 to 0.2, bin sizes of 0.005). 
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Supplementary Figure 28. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 3,736 Brazilians from PELOTAS for chromosome 22 as 

target panel. A. The total number of imputed variants across different classes of the info score quality metric. B. 

The total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. 

Improvement in imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 0 

to 0.2, bin sizes of 0.005). 

 

 

 

 

   

 

Supplementary Figure 29. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 391 Mestizos from Peru for chromosome 15 as target 

panel. A. The total number of imputed variants across different classes of the info score quality metric. B. The 

total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. Improvement in 

imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 0 to 0.2, bin sizes 

of 0.005). 
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Supplementary Figure 30. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 391 Mestizos from Peru for chromosome 17 as target 

panel. A. The total number of imputed variants across different classes of the info score quality metric. B. The 

total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. Improvement in 

imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 0 to 0.2, bin sizes 

of 0.005). 

 

 

 

 

 

 

 

Supplementary Figure 31. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 391 Mestizos from Peru for chromosome 20 as target 

panel. A. The total number of imputed variants across different classes of the info score quality metric. B. The 

total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. Improvement in 

imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 0 to 0.2, bin sizes 

of 0.005). 
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Supplementary Figure 32. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the Omni 2.5M array data for 391 Mestizos from Peru for chromosome 22 as target 

panel. A. The total number of imputed variants across different classes of the info score quality metric. B. The 

total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. Improvement in 

imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 0 to 0.2, bin sizes 

of 0.005). 

 

 

 

 

  

 

 

Supplementary Figure 33. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the oncoarray data for 640 individuals from Guatemala for chromosome 15 as target 

panel. A. The total number of imputed variants across different classes of the info score quality metric. B. The 

total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. Improvement in 

imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 0 to 0.2, bin sizes 

of 0.005). 
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Supplementary Figure 34. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the oncoarray data for 640 individuals from Guatemala for chromosome 17 as target 

panel. A. The total number of imputed variants across different classes of the info score quality metric. B. The 

total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. Improvement in 

imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 0 to 0.2, bin sizes 

of 0.005). 

 

 

 

 

 

 

Supplementary Figure 35. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the oncoarray data for 640 individuals from Guatemala for chromosome 20 as target 

panel. A. The total number of imputed variants across different classes of the info score quality metric. B. The 

total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. Improvement in 

imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 0 to 0.2, bin sizes 

of 0.005). 
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Supplementary Figure 36. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 

reference panels using the oncoarray data for 640 individuals from Guatemala for chromosome 22 as target 

panel. A. The total number of imputed variants across different classes of the info score quality metric. B. The 

total number of imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. Improvement in 

imputation accuracy as a function of MAF for the target dataset after imputation (MAF from 0 to 0.2, bin sizes 

of 0.005). 
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Supplementary Note 8: HLA 

 

The hla-mapper software was designed to optimize read mapping in HLA genes by 

comparing each read to a database of known HLA sequences and calculating where each read 

should be mapped or considered ambiguous10. This step is essential to get accurate genotype 

calls in the SNP-level for HLA genes. We used an updated version of this software, version 

4, with support to intergenic sequences and faster processing WGS data.  

After the map optimization, we used GATK HaplotypeCaller version 4.1.7 to call 

genotypes in the genome confidence model (GVCF), concatenating all samples together in a 

VCF file using GenotypeGVCFs. HaplotypeCaller can detect both SNPs and indels. For 

variant refinement, we noticed that the VQSR-AS approach does not produce reliable results 

for the HLA region by observing the filtered variants in samples with known HLA alleles. 

Because of that, we used a different approach for variant refinement and selection for HLA 

genes. We used a local program (vcfx) that introduces missing alleles in unbalanced 

genotypes (vcfx checked) and genotypes with a low likelihood (vcfx checkpl), and annotate 

each variant with some quantitative parameters such as the number of balanced heterozygous 

variants (when both alleles present similar depth of coverage), number of homozygous 

samples, the proportion of missing alleles, and others (vcfx evidence). Each variant that has 

not been approved by the vcfx evidence algorithm was evaluated manually. Each variant was 

annotated using the dbSNP dataset version 151. 

We inferred haplotypes combining two computational strategies. First, we used 

GATK ReadBackedPhasing (RBP) to detect the phase between close heterozygous variants. 

The minimal Phase Quality Threshold was set to 500 (25x the default value). This procedure 

produced phase sets, i.e., blocks of known phases, but unphased among each other. RBP does 

not consider Multi-allelic variants, indels, and missing alleles. The second step consisted of 

inferring the full haplotypes using probabilistic models, but considering the phase sets 

detected by RBP. For that, we used an in-house software named phasex (available upon 

request), that uses Shapeit411 to phase bi-allelic variants considering the RBP’s phase sets, in 

20 independent runs with different seeds and using a single core per independent run, 

comparing the results afterward. The independent runs can be parallelized according to the 

number of cores on the computer. We preserved the haplotypes of all samples in which the 

same pair of haplotypes was observed in at least 18 runs (P > 0.9), passing these haplotypes 

forward to the next round. Iterations were performed until the number of samples with P > 

0.9 no longer increased. Then, the haplotypes that have been detected are passed forward to 

the next step. In this next step, we use Beagle 4.112 to infer the final set of haplotypes, now 

including the multi-allelic variants. The same iteration procedure is used, with 20 

independent runs and fixing haplotypes with P > 0.9. For each sample, we considered the 

haplotype with P > 0.7 after the last Beagle run. Shapeit4 and Beagle 4.1 also imputed the bi-

allelic and multi-allelic missing alleles, which were introduced by the vcfx approach. It 

should be noted that we removed all singletons before the haplotyping procedure. This step is 

necessary because singletons are ambiguous by definition and impair haplotyping 

performance. Singletons were automatically inserted in the final VCF file using a local Perl 

script as unphased or phased, depending on the singleton's RBP status. 
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To generate complete sequences and CDS sequences (only exons) for each HLA gene 

and each sample, we used the vcfx fasta and vcfx transcript functions. We also compared our 

sequences with the ones described in the IPD-IMGT/HLA Database version 3.4.013 using a 

local Perl script, identifying whether they were identical or not to known sequences in the 

database. The CDS sequences were translated into full-length proteins using EMBOSS 

transeq and named according to the IPD-IMGT/HLA database. Allele, genotype, and 

haplotype frequencies were calculated by direct counting. Variants were annotated using 

SNPeff14. Results on HLA haplotypes, distribution of known and previously not described, 

frequencies distribution and annotation are summarized in Supplementary Figure 37. 

 

 

 
 

Supplementary Figure 37. HLA polymorphism in the SABE cohort. A. The average number of different 

HLA haplotypes observed in 10,000 resamplings of 50 individuals, considering genes HLA-A, HLA-B, HLA-C, 

HLA-E, HLA-F, and HLA-G. SABE: all samples from Brazil; SABE-ADM: samples with at least 30% of 

European and African ancestry; SABE-EUR: samples with 100% European ancestry. B. Distribution of known 

and new HLA haplotypes in the SABE+1KGP3 combined dataset compared to the IPD-IMGT/HLA database. 

We detected 682 new haplotypes (53.2% of all observed haplotypes), 21% exclusively in SABE (green). The 

cumulative frequency of these new haplotypes is 4.43%. C. Frequency of individuals in SABE with a new HLA 

allele (33%, light blue), and where these new alleles were detected. Most of the novelty was observed for non-

classical HLA class I alleles (gray). D. HLA variant annotation and the proportion of new variants detected in 

the SABE cohort according to dbSNP. 
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Supplementary Note 9: HLA Imputation 

 

 

Supplementary Table 17. Number of samples and alleles in each reference panel (1KGP3, SABE and 

SABE+1KGP3) and the out-of-bag accuracy for the HLA imputation models with 2 fields resolution. 

Locus Samples in the ref

erence panel 

N alleles in the reference panel 

(2 fields resolution) 

Average Out-of-bag Accuracy 

1KGP3 

HLA-A 2503 82 91.33% ± 0.79% 

HLA-B 2498 154 86.36% ± 0.87% 

HLA-C 2503 63 97.31% ± 0.41% 

SABE 

HLA-A 1171 68 92.47% ± 0.81% 

HLA-B 1171 107 85.61% ± 1.12% 

HLA-C 1171 45 97.72% ± 0.53% 

SABE + 1KGP3 

HLA-A 3674 102 90.28% ± 0.54% 

HLA-B 3669 176 86.33% ± 0.62% 

HLA-C 3674 74 97.58% ± 0.29% 

 

 

 
Supplementary Figure 14. Empirical cumulative distribution function (ECDF) of posterior probabilities for the 

HLA imputation models: 1KGP3 (black), SABE (dark gray) and SABE+1KGP3 (light gray). 
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