Supplementary Information (16 figures and 3 tables)

Supplementary Figure 1: Longitudinal two-photon imaging tracks activity of neurons over weeks.

Supplementary Figure 2: Anatomical location of imaging sites.

Supplementary Figure 3: Mean freezing to CS+ and CS- and learning specificity across sessions.

Supplementary Figure 4: Mean response to CS+ or CS- does not predict learning specificity

Supplementary Figure 5: Relationship between Zdiff and best frequency and anatomical location.

Supplementary Figure 6: Changes in neuronal discrimination between imaging sessions.

Supplementary Figure 7: Changes in frequency response after conditioning

Supplementary Figure 8: Changes in normalized responses and normalized responses post-DFC do not correlate with learning specificity.

Supplementary Figure 9: Changes in neuronal discriminability negatively correlate with learning specificity.

Supplementary Figure 10: Effects of best frequency distributions on changes in response post-DFC.

Supplementary Figure 11: Effects of region of sampling on changes in response post-DFC and prediction of learning specificity.

Supplementary Figure 12: Model schematic.

Supplementary Figure 13: Model schematic with PV inactivation of AC during DFC.

Supplementary Figure 14: Model schematic with AC inactivation during DFC.

Supplementary Figure 15: Model schematic with AC inactivation during memory recall.

Supplementary Figure 16: Auditory Brainstem Responses.

Supplementary Table 1: Statistics for all figures.

Supplementary Table 2: Statistics comparing normalized responses at CS+, CS- and CSc.

Supplementary Table 3: Statistics comparing non-normalized responses at CS+, CS- and CSc.

Supplementary Information

Supplementary Figure 1: Longitudinal two-photon imaging tracks activity of neurons over weeks. (a) Two-photon imaging field of view with regions of interest corresponding to individual neurons (yellow outline, N = 350). Scale bar = 100 µm. (b) Cell outlines from a indicating cells not responsive to the stimuli (light gray), cells responsive to tones (dark gray, t-test against zero, p < .05, corrected for multiple comparisons using Holm-Bonferroni method) but not frequency tuned and frequency-tuned cells (colored according to frequency tuning, significantly responsive and oneway ANOVA, p < .05). Color bar indicates best frequency of each tuned neuron. (c) Part of a raw fluorescence trace (black) for an example frequency-tuned neuron with tone pip presentation times overlaid in color (vertical lines). The color of the vertical lines corresponds to the frequency of the tone pip presented - colors as in b. (d) Responses of neuron in **c** with single-trial responses (gray, n = 25 for each frequency) and the mean response (black). Dashed lines = tone pip onsets. (e) Mean response (from tone onset to 2 s after tone onset) across trials at each frequency of neuron in c-d. This neuron has a best frequency (B.F.) of 6.1 kHz. (f) Distribution of best frequencies of responsive cells recorded 24 hours pre-DFC (N = 23 mice, n = 1148 neurons). (g) Distribution of sparseness of responsive cells recorded in f. (h) Smoothed best frequency distributions¹ of responsive neurons for each mouse pre-DFC ordered by anatomical location of the imaging window from anterior (A) to posterior (P). Black dashes indicate the median best frequency of all responsive neurons in the imaging window across sessions. (i) An example of neurons tracked between imaging sessions from one mouse. Field of view from two imaging sessions from the same mouse (maximum intensity projections), 15 days apart (left and middle) with ROIs tracked between the two sessions outlined in cyan and magenta. The right panel shows the ROIs from the two sessions overlaid. Scale bar = 100 µm. (j) Field of view and frequency responses of an example cell over the 8 sessions of the experiment. Cell is shown outlined (cyan line). Scale bar = 25 µm. Error bars = standard error of the mean (sem). Source data are provided as a Source Data file.

Supplementary Figure 2: Anatomical location of imaging sites. (a) A section from an example mouse is shown this procedure was carried out on all mice and used to align the imaging site with the mouse brain atlas as in **b**. Upon completion of the experiments, the cranial window was removed, and a red indicator injected into the imaging site. The brains were fixed and sectioned at 40µm. We applied DAPI to reveal cell nuclei. This stain was used to align the section and the red indicator injection site (white arrows) with the mouse brain atlas (magenta outline). The red channel reveals the site of injection (Retrobeads) and is aligned with strong GCaMP6m/s expression (GCaMP). Scale bar = 1 mm. (b) Using the red injection sites as markers for the location of the imaging windows, the brain sections were aligned with the mouse brain atlas² to obtain the anterior-posterior location of the imaging windows relative to bregma and the field of auditory cortex imaged from. The center of the imaging field of view on the surface of the brain of conditioned (yellow) and pseudo-conditioned (blue) mice (N = 26/28) is indicated on the mouse brain atlas adapted from. The left stack of sections contains the auditory thalamus (medial geniculate body, MGB), and the more anterior right-hand stack of sections does not contain the MGB. (c) For two mice, the red injection failed, and we used widefield imaging to locate the field of view. The figure shows an example widefield result. Thresholded responses to low (5 kHz, blue), medium (15 kHz, green) and high (30 kHz, red) tones of each pixel are indicated by the shaded regions. The pattern of responses allowed us to estimate the locations of the auditory fields (black dashed lines) using Romero et al.³ as a guide. A1 – primary auditory cortex, VPAF - ventral posterior auditory field, SRAF - suprarhinal auditory field, AAF - anterior auditory field. Arrows indicate tonotopic gradients from low (L) to high (H) frequency. White-dotted line indicates dental cement at the edge of the imaging window. Source data are provided as a Source Data file.

Supplementary Figure 3: Mean freezing to CS+ and CS- and learning specificity across sessions. (a) Mean (\pm sem) freezing across all 4 retrieval sessions at baseline (gray) and in response to CS+ (pink) and CS- (blue). Learners (N = 14) showed a significant difference from baseline freezing (baseline vs non-baseline) while non-learners (N = 5) did not (see Methods). Non-learners were subsequently excluded from further analysis. *Pseudo*-conditioned mice N = 9. Gray lines indicate individual mice. (b) Mean (\pm sem) learning specificity in each retrieval session for conditioned mice (N = 14). Gray lines show individual mice. (c) Same as b for *pseudo*-conditioned mice (N = 9). (d) Mean (\pm sem) learning specificity across all 4 retrieval sessions for conditioned (gray, N = 14) and *pseudo*-conditioned mice (red, N = 9). Circles show individual mice. Source data are provided as a Source Data file.

Supplementary Figure 4: Mean response to CS+ or CS- does not predict learning specificity. (a) Responses to CS+ and CS- of responsive cells were averaged in each session and across the 4 pre-DFC imaging sessions (1-4). These mean responses were compared with the learning specificity from retrieval session 1 (24 hours post-DFC). (b) Mean (\pm sem) learning specificity of conditioned mice (N = 14) as a function of the mean (\pm sem) response to CS- pre-DFC. The line shows the linear best fit. Error bars represent standard error of the mean. Statistics: two-tailed Spearman's rank correlation. (c) Same as b but for responses to CS+. Statistics: two-tailed Spearman's rank correlation. Source data are provided as a Source Data file.

Supplementary Figure 5: Relationship between Z_{diff} and best frequency and anatomical location. (a) Mean Z_{diff} of responsive neurons was averaged in each session and across sessions for each mouse. Relationship between the distance from bregma of the imaging field of view and the mean Z_{diff} scores of conditioned (black circles) and *pseudo*-conditioned mice (red diamonds) across pre-DFC sessions. (b) Relationship between the distance from bregma of the imaging field of view and the mean Z_{diff} scores across pre-DFC sessions. (c) Relationship between mean best frequency of responsive units in the imaging field of view and the mean Z_{diff} scores across pre-DFC sessions. (d) Relationship between mean best frequency of responsive units in the imaging field of view and the mean X_{diff} scores across pre-DFC sessions. (d) Relationship between mean best frequency of responsive units in the imaging between the mean % of significant Z_{diff} scores in the imaging field of view across pre-DFC sessions and the learning specificity from retrieval session 1 for conditioned mice. (f) Relationship between mean Z_{diff} across pre-DFC sessions for each neuron and best frequency. Grey bars show median Z_{diff} ± sem. Statistics **a** - **e**: two-tailed Spearman's rank correlation. Source data are provided as a Source Data file.

Supplementary Figure 6: Changes in neuronal discrimination between imaging sessions. (a) The SVM was trained (with 10-fold cross validation) with data from a single imaging session (training session) and subsequently tested on data from the same neurons recorded from a second imaging session (testing session). Since the number of neurons tracked between each pair of sessions varied, performance of the SVM on the testing data is shown relative to the baseline of performance of the SVM on data left out from the training session. SVM performance is shown averaged across mice. (b) The relationship between the difference in performance from **a** and the number of sessions between each pair in the forward time-direction (upper triangle outlined in **a**). Black lines show best linear fit. Statistics: two-tailed Spearman's rank correlation *r* [95% CI]. (c) The difference in Z_{diff} between neurons tracked between pairs of imaging sessions between each pair in the forward direction (upper triangle outlined in **c**). Statistics: two-tailed Spearman's rank correlation *r* [95% CI]. (c) The Z_{diff} scores of neurons tracked between pairs of sessions were assessed using Pearson's correlation (*r*). The panels show the similarity between each pair of sessions averaged across conditioned mice (right). Black lines show best linear fit. Source data are provided as a Source Data file.

Supplementary Figure 7: Changes in frequency response after conditioning. (a) Normalized frequency response curves of all neurons responsive at least once pre-DFC (imaging sessions 1-4) and once post-DFC (imaging sessions 5-8). Responses from neurons present in more than one session pre- or post-DFC are averaged together. Neurons are ordered according to their best frequency and secondarily by sparseness. The grey bars indicate the identity of each neuron pre- and post-DFC. The bars indicate the neurons with CS- (cyan) and CS+ (magenta) best frequencies. (b) (Upper panel) The mean (± sem) frequency response curve of all responsive neurons (not normalized) pre- and post-DFC. (Lower panel) Mean (± sem) change in frequency response curve across responsive all neurons. (c) Same as b for pseudo-conditioned mice. Statistics: two-way rm-ANOVA, Tukey-Kramer post-hoc analysis, Table S1. (d) Mean CS+responses ordered by magnitude from conditioned mice (N = 14 mice) pre-DFC (left) and post-DFC (right). The grey bars indicate the identity of each neuron pre- and post-DFC. Red lines indicate the upper and lower 20th percentiles (N = 176 neurons). (e) Mean (± sem) responses to CS+ (left panel) and CS- (middle panel) of the upper and lower percentile of neurons in d. Right panel: Mean (± sem) positive and negative responses from stimulus onset to 2 seconds after onset (dotted lines in left and middle panels) to CS+ and CS- pre- and post-DFC. Dots show individual neurons. Statistics: 2-way ANOVA with Tukey's multiple comparisons test, Table S1. (f) Same as d but for responses to CS+ from pseudo-conditioned mice (N = 9 mice, N = 126 neurons). (g) Same as e but for responses to the CS+ and CS- in pseudoconditioned mice. Statistics for **e** and **g**: Data are shown as mean \pm sem. $^{\dagger}p < 0.1$, $^{*}p < 0.05$, $^{**}p < 0.01$, $^{***}p < 0.001$, n.s.p > 0.10. Source data are provided as a Source Data file.

Supplementary Figure 8: Changes in normalized responses and normalized responses post-DFC do not correlate with learning specificity. (a) Cells included were responsive in at least one imaging session pre- (sessions 1-4) and post-DFC (sessions 5-8). (b) Mean learning specificity across retrieval sessions 1-4 as a function of change in normalized response magnitude to CS+ post-DFC. Magenta line represents the best linear fit. (c) Same as b but for change in response to CS-. (d) Same as b but for change in difference between CS+ and CS-. (e) Mean learning specificity across retrieval sessions 1-4 as a function of normalized response magnitude to CS+ post-DFC. Magenta line represents the best linear fit. (f) Same as a function of normalized response magnitude to CS+ post-DFC. Magenta line represents the best linear fit. (f) Same as e but for response to CS-. (g) Same as e but for difference in normalized response magnitude between CS+ and CS-. Statistics b - g: two-tailed Spearman's rank correlation (N = 14). Data are shown as mean \pm sem. Source data are provided as a Source Data file.

Supplementary Figure 9: Changes in neuronal discriminability negatively correlate with learning specificity. (a)

Change in neuronal discriminability was calculated as the difference between the mean discriminability across pre-DFC imaging sessions (1-4) and the mean discriminability across post-DFC imaging sessions (5-8). Learning specificity post-DFC (retrieval sessions 1-4) as a function of change in Z_{diff} from pre- to post-DFC. Black line represents the best linear fit. (b) Same as **a** but for change in SVM performance. Data are shown as mean ± sem. Statistics: two-tailed Spearman's rank correlation. [†]p < 0.1, ^{*}p < .05, ^{**}p < .0.01, ^{n.s.}p > 0.10. Source data are provided as a Source Data file.

Supplementary Figure 10: Effects of best frequency distributions on changes in response post-DFC. (a) The minimum number of neurons with best frequency at each tested frequency pre-DFC (n = 32) across conditioned and pseudo-conditioned mice was resampled with replacement (x250) from populations of neurons with best frequency at each frequency in conditioned and pseudo-conditioned mice. This had the effect to normalize the pre-DFC frequency distributions across neurons from the conditioned and *pseudo*-conditioned mice. The top panels show the mean (± sd) normalized responses pre- (blue) and post-DFC (orange) for conditioned and pseudo-conditioned mice. The bottom panels show the mean (± sd) % change in normalized response for the two groups. (b) Mean (± sd) distance of the best frequency from CS+ pre- and post-DFC, using the same resampling as in **a**, n = 250 resamples. (c) Mean (± sd) sparseness of frequency tuning pre- and post-DFC, using the same resampling as in \mathbf{a} , n = 250 resamples. (d) Mean (± sd) best frequency distributions post-DFC of the resampled neurons from **a** for conditioned (top, N = 14 mice) and pseudo-conditioned (middle, N = 9 mice) mice, n = 250 resamples. The pre-DFC distribution is indicated by the blue line. The bottom panel shows the difference between the post-DFC best frequency distributions of the conditioned and pseudo-conditioned mice. Statistics **a** – **c**: Significance p-values in indicate the percentile of the shuffled distributions at which zero occurred for the difference between the pre- and post-DFC for each frequency (a), distance of best frequency from CS+ (b) and sparseness (c). Error bars in all panels: \pm standard deviation of resampled data. $^{\dagger}p < 0.1$, $^{*}p < .05$, **p < .01, ***p < 0.001, n.s.p > 0.10. Source data are provided as a Source Data file.

Supplementary Figure 11: Effects of region of sampling on changes in response post-DFC and prediction of learning specificity. (a) The minimum number of neurons with best frequency at each tested frequency pre-DFC (n =16) across conditioned mice with imaging regions in putative A1 or AAF was resampled with replacement (x250) from populations of neurons with best frequency at each frequency. This had the effect to normalize the pre-DFC frequency distributions across neurons from imaging windows in A1 or AAF. The top panels show the mean (± sd) normalized responses pre- (blue) and post-DFC (orange) for A1 and AAF in conditioned mice. The bottom panels show the mean (± sd) % change in normalized response for the two groups. Significance p-values indicate the percentile of the shuffled distributions at which zero occurred for the difference between the pre- and post-DFC for each frequency (b) Mean (± sd) distance of the best frequency from CS+ pre- and post-DFC, using the same resampling as in **a**, *n* = 250 resamples. Significance p-values indicate the percentile of the shuffled distributions at which zero occurred for the difference between the pre- and post-DFC distance of best frequency from CS+. (c) Relationship between mean Zdiff (± sd) across pre-DFC imaging sessions (1-4) and learning specificity (± sem) in retrieval session 1 for conditioned mice (N = 14) with imaging regions in putative A1 (black) and AAF (blue). Statistics: two-tailed Spearman's rank correlation. (d) Relationship between mean (± sem) SVM performance across pre-DFC imaging sessions (1-4) and learning specificity (± sem) in retrieval session 1 for conditioned mice with imaging regions in putative A1 (black) and AAF (blue). Statistics: two-tailed Spearman's rank correlation. (e) Change in mean Z_{diff} (± sem) from pre- to post-DFC for conditioned mice (N = 14) with imaging regions in A1 (N = 8 mice) and AAF (N = 6 mice). (f) Relationship between mean change in normalized response at CS+ (± sd) of neurons tracked from pre- to post-DFC and mean learning specificity (± sem) post-DFC (retrieval sessions 1-4) across mice. Statistics: two-tailed Spearman's rank correlation. Error bars in a and b: ± standard deviation of resampled data from **a**. $^{\dagger}p < 0.1$, $^{\star}p < .05$, $^{\star\star}p < .01$, $^{\star\star\star}p < 0.001$, $^{n.s.}p > 0.10$. Source data are provided as a Source Data file.

Supplementary Figure 12: Model schematic. The stages of the model are outlined with narrow tuning in AC (high discriminability, left column) and broad tuning (low discriminability, right column). (a) Activation of projections during DFC. MGB is narrowly tuned and provides input to AC (orange connections). Feedback from AC to MGB (black connections) is narrow or broad depending upon the tuning width of AC, e.g. in different subjects. A foot-shock (lightning shape) is delivered simultaneously with the CS+ (magenta) and activates the BLA. CS- (cyan) is presented alone and there is no activation of BLA. The weights of the connections between AC and BLA, and MGB and BLA are strengthened depending on their co-activation of BLA. Feedback connections from AC help to strengthen the MGB projections to BLA. Connections with increased weights are shown as larger circles. (b) During memory recall, with narrow AC tuning, CS+ stimulus activates consolidated connections, thus activating BLA, whereas the CS- does not. With broad AC tuning, both CS+ and CS- activate consolidated connections, leading to BLA activation with both stimuli. (c) The normalized freezing output of the model (relative levels of BLA activation). Broad tuning leads to increased levels of fear generalization. Source data are provided as a Source Data file.

Supplementary Figure 13: Model schematic with PV inactivation of AC during DFC. The process of the model is the same as Supplementary Fig. 12. PV inactivation is modeled by lowering cortical inhibition. It effectively increases the tuning width of AC tuning (therefore lower discrimination in AC). Following activation (a), AC tuning is returned to its original narrow and broad tuning (as in Supplementary Fig. 11). Even with narrow tuning, CS- now activates strengthened AC-BLA and MGB-BLA connections (**b**, left panel) leading to increased fear generalization (**C**, left panel) compared with no PV inactivation (Supplementary Fig. 12). With broad tuning, both CS+ and CS- activate many strengthened AC-BLA and MGB-BLA connections (**b**, right panel) leading to high levels of fear generalization compared with no PV inactivation (**c**, right panel). Source data are provided as a Source Data file.

Supplementary Figure 14: Model schematic with AC inactivation during DFC. The process of the model is the same as Supplementary Fig. 12 AC inactivation is modeled by setting cortical currents to zero during the conditioning phase. Following inactivation (**a**), AC tuning is returned to its original narrow and broad tuning (as in Supplementary Fig. 12). (**b**) Schematic of recall with AC active. (**c**) Freezing to CS+ and CS- presentations during recall. Although freezing is lower in general, there is still discrimination in both cases but much lower than when AC is active throughout. Source data are provided as a Source Data file.

Supplementary Figure 15: Model schematic with AC inactivation during memory recall. Activation and consolidation during DFC are the same as Supplementary Fig. 12 (a) shows activation of MBG and BLA without the presence of AC. With broad tuning, CS- still activated strengthened MGB-BLA connections thus increasing BLA activation. (b) Results of freezing during memory recall are very similar to when there are no interventions (Supplementary Fig. 12). Source data are provided as a Source Data file.

Supplementary Figure 16: Auditory Brainstem Responses. (a) Example ABR responses to 5 frequencies presented at 7 different sound levels (10 - 80 dB SPL). Red arrows indicate Wave I at the highest and lowest detected threshold. Waves are indicated in red (I - V) in the 11.3 kHz panel. (b) Relationship between age at ABR threshold measurement and threshold (mean of frequencies closest to CS+ and CS-). Mice with thresholds greater than 70dB (red) were excluded from the study. (c) Relationship between age at the last imaging session and learning specificity. Black lines in b and c are best linear fits. Statistics b & c: two-tailed Spearman's rank correlation. Source data are provided as a Source Data file.

Figure	Comparison	N	Test Denils
Figure	Comparison		tex results
			Sum of squares: F-statistic (UF) p-value post-hoc Tukey-Kramer testing
	Two way ANOVA:		cond_type = 472.90 F(1,63) = 472.9 0.032 pc&bl pc&bl pc&bl pc&bl pc&bl pc&bl c&bl c&bl c&bl pc&CS-pc&CS- c&CS- c&CS- c&CS- c&CS-
	Two-way ANOVA.		stimus = 1565 9 F(2,63) = 783.0 0.001 Group C & bit or & CS c & C
10	Effect of cond_type (conditioned [c], pseudo-	23 mice	
10	conditioned [pc]) and stimulus (CS-, CS+,	20 11100	$\frac{1}{16} \frac{1}{16} \frac$
	baseline [bl]) on freezing (%)		estimated mean 9.99 4.60 -1.04 3.63 -16.81 -5.39 -11.03 -6.35 -26.79 -5.64 -0.96 -27.40 4.67 -15.77 -20.44
			upper CI 22.43 18.32 11.40 17.36 4.37 7.05 -0.02 6.09 -15.79 6.80 12.76 -8.97 17.11 4.76 -8.00
			p-value 0.186 0.921 1.000 0.970 0.002 0.798 0.049 0.665 0.000 0.766 1.000 0.878 0.001 0.000
			Wodel Configurates' Estimate + standard error t.statistic (IDE) available
	A.C. 1. W. 1. 1.1		
	Mixed-effects model:		intercept: -12.6/ ± 5.0/ f(154) = -2.50 0.014
1d	freezing ~ 1 + stim_type*session +	14 mice	Session: 1.66 ± 1.85 t(164) = 0.90 0.372
	(1Imouse)		stim type: 15.63 + 2.35 $t/(164) = 6.66 < 0.001$
	(11110000)		
			session sum type: -1.04 ± 0.00 (104) -1.21 0.221
			Model Coefficients: Estimate ± standard error I t-statistic (DF) p-value
	Mixed-effects model:		Intercept: 13.57 ± 3.75 t/(104) = 3.62 0.001
10	freezing ~ 1 + stim_type*session +	9 mice	Section: 126+137 //(10)=0.92 0.359
10	(dimense)	5 11100	
	(Ilmouse)		
			session stim_type: -0.75 ± 0.63 (1144) = -1.19 (0.236)
	Two-way repeated measures ANOVA:		Sum of squares: F-statistic (DF) p-value post-hoc Tukey-Kramer testing
	Effect of time (are DEC, pact DEC) and		tion = 0.000 E/(131) = 2.65 0.149 Conditions DEC
4a	Ellect of time (pre-billo, post-billo) and	23 mice	
	cond_type (conditioned, pseudo-conditioned)		time*cond_type = 0.003 F(1,21) = 4.20 0.053 Time pre-DFC vs post-DFC
	on Zdiff		<i>p-value</i> 0.740 0.028
	Two-way repeated measures ANOVA:		Sum of snuares: F-statistic (DF) n-value post-froc Tukey-Kramer lesting
	Effect of time (pre-DEC_post-DEC) and		time = 73.43 F(1.21) = 10.88 0.003 Cond.tyne DEC
4b	cond tune (conditioned, provide conditioned)	23 mice	
	en CV/M exfermance		
	on 3 vivi periormance		b-value 0.3/3 0.001
	Two-way repeated measures ANOVA:		Sum of squares: F-statistic (DF) p-value post-hoc Tukey-Kramer testing
Co. and a	Effect of time (pre-DFC, post-DFC) and	4	time = 6.77 F(1,348) = 13.18 < 0.001 Frequency (kHz) 5.0 6.1 7.6 9.3 11.4 12.5 13.7 15.0 17.2 21.2 26.0 32.0
oa panel	stimulus (frequency) on response magnitude	1 neuron	time*stimulus = 14 15 F(11 348) = 2.5 0.005 Time pre-DFC vs.post-DFC
1	(AF/Fstd)		number 0.115 0.644 0.342 0.533 0.045 0.017 0.004 0.007 0.839 0.655 0.397
	(a		
1	I wo-way repeated measures ANOVA:		
6a	Effect of time (pre-DFC, post-DFC) and	1	time = 0.01 F(1,208) = 0.01 U317 [requency (kHz] 5.0 6.1 7.6 9.3 11.4 12.5 13.7 15.0 17.2 21.2 26.0 32.0
oa panel	stimulus (frequency) on response magnitude	rieuron	time*stimulus = 17.76 F(11.248) = 2.55 0.004 Time pre-DFC vs post-DFC
1	(AF/Fstd)		p-value 0.613 0.557 0.940 0.160 0.002 0.378 0.131 0.002 0.174 0.721 0.524 0.429
	(
1	Two-way repeated measures ANOVA-		Sum of squares: P-statistic (UP) p-value (posi-rivor Tuke)-Kramer testing
1	Effect of time (pre.DEC, post DEC)		time = 188 0/2 F(1,288) = 11./4 0.001 Frequency (kHz) 5.0 6.1 7.6 9.3 11.4 12.5 13.7 15.0 17.2 21.2 26.0 32.0
5a panel	attended to the	1 neuron	time*stimulus = 1194.00 F(11,288) = 6.78 <0.001 Time pre-DFC vs post-DFC
	sumulus (rrequency) on response magnitude	. · ·	
1	(ΔF/Fstd)		p-value 0.968 0.937 0.945 0.000 0.237 0.457 0.000 0.861 0.348 0.959 0.431 0.694
I			Due of summer Extended to DD a such a station Tables Vienese holized
1	Two-way repeated measures ANOVA:		
1	Effect of time (pre-DEC_nost-DEC) and		time = 0.81 P(1,105:56) = 11.39 0.001 Prequency (kHz) 50 6.1 7.6 9.3 11.4 12.5 13.7 15.0 17.2 21.2 26.0 32.0
5b	ctimulus (fraguoneu) on response magnitude	879 neurons	time*stimulus = 3.01 F(11,10536) = 4.06 < 0.001 Time pre-DFC vs post-DFC
	(AC/C-red)		
	(ΔF/Fstd)		p-value 0.3/7 0.232 0.14/ 0.052 0.309 0.004 0.002 < 0.001 0.002 0.786 0.294 0.695
	Two-way repeated measures ANOVA:		Sum of enuance: E-statistic (DE) nualue nost-hoc Tukey-Kramer testion
	Effect of time (are DEC, and DEC) and		
5c	Effect of time (pre-DFC, post-DFC) and	626 neurons	ume = 0.32 F[1,100] = 0.07 0.005 [Requercy [Krz]] 5.0 0.1 7.0 9.3 11.4 12.5 13.7 13.0 17.2 21.2 20.0 32.0
	stimulus (frequency) on response magnitude		time*stimulus = 1.52 F(11,7500) = 2.16 0.014 Time pre-DFC vs post-DFC
	(ΔF/Fstd)		p-value < 0.001 0.103 0.449 0.687 0.967 0.635 0.184 0.177 0.786 0.401 0.939 0.014
	Two-way repeated measures ANOVA:		Sum of squares: F-statistic (DF) p-value post-hoc Tukey-Kramer testing
	Effect of time (pre-DEC_post-DEC) and		time = 0.86 F(1.1503) = 108.78 0.026 Cond type DEC
6c	cond type (conditioned, posude conditioned)	1505 neurons	
	cond_type (conditioned, pseudo-conditioned)		
	on distance of BF from CS+		p-value < 0.001 0.934
	Two-way repeated measures ANOVA:		Sum of squares: F-statistic (DF) p-value post-hoc Tukey-Kramer testing
64	Effect of time (pre-DFC, post-DFC) and	4505	time = 0.23 F(1,1503) = 20.93 < 0.001 Cond type DFC pseudo-DFC
od	cond type (conditioned, pseudo-conditioned)	1505 neurons	time'cond type = 0.002 F(1.1503) = 0.21 0.649 Time pre-DEC vs post-DEC
	on snarseness		
-			Model Poetfinisets: Estimate L standard error L statistic (PE) a user
	Marcal affects and the		moder Centrefins, Zulmare z admande ena la Poladiala (Dr) – Poladiala (Dr)
0.01	wixed-ellects model.		$\frac{1}{100} \frac{1}{100} \frac{1}$
S3b-c	learning_specificity ~ 1 + controls"session +	23 mice	conditioning_type: -14.39 ± 6.78 / (68) = -2.20 0.030
	(1 mouse)		session: 0.26 ± 1.10 t(88) = 0.23 0.817
			session"conditioning type: -0.01 ± 1.76 //(88 = -0.01) 0.995
			Sum of snuares H-statistic (DF) - o-value post-froc Tukey-Kramer lesting
			Destrequency - 0.45 er/or (X-(11,21,3) = 5,00 er/or (V-0.01)) Best freq. (kHz)
	Kruskalwallis:		6.1 / 6 9.3 11.4 12.5 13.7 15.0 1/2 21.2 26.0 32.0 / 6 9.3 11.4 12.5 13.7 15.0 1/2 21.2 26.0 32.0 9.3 11.4 12.5 13.7 15.0 1/2 21.2 26.0 32.0 11.4 12.5 13.7 15.0 11.2 12.2 12.2 12.2 12.2 12.2 12.2 12
S5f	Effect of best frequency on Zdiff	2185 neurons	lower Cl 1052 170.6 227.8 -754.8 -152.5 -241.0 -614.1 -275.2 -149.0 163.0 116.4 -267.7 -325.3 -850.9 -248.4 -336.9 -710.4 -371.6 -246.4 -260.0 -214.5 -272.8 -977.7 -155.1 -283.5 -657.2 -318.4 -193.7 -207.1 -162.2 -726.9 -124.4 -212.9 -586.3 -247.5 -122.2 -135.9 -90.4 354.7 (266.3 -107.9) 230.8 354.2 -230.8 -230.9 -248.4 -336.9 -710.4 -371.6 -246.4 -260.0 -214.5 -272.8 -797.7 -355.1 -283.5 -657.2 -318.4 -193.7 -207.1 -162.2 -726.9 -124.4 -212.9 -586.3 -247.5 -122.2 -135.9 -90.4 354.7 -207.8 -20
	Elect of best frequency of Zum		estimated mean 85.5 26.6 -37.9 -538.9 68.9 -19.6 -401.2 -63.3 43.0 37.5 63.8 -58.8 -123.4 -624.3 -16.6 -105.1 +486.6 -148.8 +42.5 +7.9 -21.7 -64.6 -656.5 +42.2 +42.8 +8.9 + 16.4 +10.9 37.2 +500.9 +106.8 +18.3 +363.2 +25.4 +10.9 +10.5 +10.18 +10.7 +10.5 +10.18 +10.7 +10.5 +10.18 +10.1 +10.5 +10.18 +10.1 +10.18
1			upper Ci 276.1 223.9 151.9 -323.0 290.3 201.8 -188.3 148.6 235.0 238.1 244.0 150.1 78.5 -397.8 215.2 126.8 262.9 74.1 161.5 164.1 171.2 143.6 133.3 1279.5 191.1 -198.4 138.6 126.5 128.9 126.6 1275.0 138.0 124.4 1 126.8 124.4 126.8 126.4 1
1			
1			nicolar Colerinaetris. Essumaira error essumatica (UP) p-Value
1	Encore 11		Intercept: -2.16 ± 1.27 t(52) = -1.70 0.094
S6b	linear model:	28 observation	days apart: -0.19 ± 0.37 (f(52) = -0.53 0.596
000	ΔSVM ~ 1 + days_apart*conditioning_type		confidences to the 0.47 ± 1.70 // (50) = 0.10 0.005
1			versionenergy pp. v.r.i t.v.i t.v.ii t.v.ii L
			days_apart conditioning_type: -1.94 \pm 0.86 // (52) = -2.39 0.020
			Nodel Coefficients: Estimate ± standard error t-statistic (IDF) p-value
1			Intercect: 0.01 ± 0.01 (152) = 0.75 0 449
564	linear model:	28 observation	days, andt 0.0001 + 0.0038 $k(52) = 0.04$ 0.955
000	ΔZdiff ~ 1 + days_apart*conditioning_type		renditioning to the 0.03 ± 0.02 to 102 to 10
1			venenoming_pype_vene_evene
I			ways apart conducting type, $-vx x + vx y = 1$, $vx = 1$
			Model Coetholents: Estimate ± standard error I Estatistic (DF) p-value
1	Mixed-effects model:		Intercept: 0.42 ± 0.06 t (524) = 7.10 < 0.001
S6e	similarity ~ 1 + days_apart*cond_type + (1	28 observation	days, apart: -0.03 ± 0.01 / t(524) = -2.87 0.004
	mouse)		cond type: -0.25 ± 0.10 / $1/624 = -2.64$ 0.009
1			daus aparts and thins: 0.02 + 0.02 / 1/201 / 201
	Too water a state of		wyg gene wer ype, waa zw zw i (ujeerje ² LOU U/OF]
1	two-way repeated measures ANOVA:		Sum or squares: r-searstoc (ur) p-vaue just-inc Tukey-Mamer Resting
S7F	Effect of time (pre-DFC, post-DFC) and	879 решиссо	time = 0.94 F(1,10536)= 16.24 < 0.0011 Frequency (kHz) 5.0 6.1 7.6 9.3 11.4 12.5 13.7 15.0 17.2 21.2 26.0 32.0
310	stimulus (frequency) on response magnitude	or a neurons	time*stimulus = 1.13 F(11,10536) = 1.78 0.051 Time pre-DFC vs post-DFC
1	(ΔF/Fstd)		p-value 0.799 0.016 0.061 0.001 0.112 0.790 0.717 0.211 0.851 0.213 0.115 0.008
	Two-way repeated measures ANOVA-	1	Sum of sequence: E-statistic (IDE) osubue post-hoc Turker-Kamer testino
1	Effect of time (are DEC, next DEC)		Unit of Opportune 1 - Dimension (unit /) produce (providere / UNID) (TV BUTTER 10000)()
S7c	Energy of time (pre-DFC, post-DFC) and	626 neurons	unite - 16.4 1 11,1.000 = 100,10 & 300 11 1000 e100 (1012) 30 0.1 1.0 3.3 11.4 12.3 13.1 13.0 11.2 21.2 20.0 32.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 1
	sumulus (trequency) on response magnitude		
	(ΔF/Fstd)		
	Ture way ANOVA.		Num of any services Field State (Tells and State Trades Field State States States)
S7e (top	Two-way ANOVA:		oun o aquaroo. I toanono (u / prane positio Taneproatine insurg
20th	Effect of time (pre-DFC, post-DFC) and	704 peurope	time=0.12 F(1.700)=1.21 0.106 stimulus*time CSore CSore CS+.ore CS
porcontile	stimulus (CS+/CS-) on response magnitude	neurolls	$\frac{1}{10000} = 100 \text{First} \text{for } p_0 = 00 \text{prod} \text{post} po$
percentile	(ΔF/Fstd)		automas = v_Lv 1 (1,110y) = Cv_L v_Lr_L automas (0-r), (01) (0-r), (03) (0-r), (03) (0-r), (03) (0-r), (03) bits bits with a plan (-1,110y) = Close (-1,11
		l	ume sumuus – v. i.z. Pr(1,100) – i. z.o. p-varle U.2.75 U.400 U.2.18 U.985 T.100 U.3164
S7e	Two-way ANOVA:		Sum of squares: F-statistic (DF) p-value post-hoc Tukey-Kramer testing
(bottom	Effect of time (pre-DFC, post-DFC) and	704	time = 0.17 F(1,700) = 19.26 < 0.001 stimulus time [CS., pre] CS.,
20th	stimulus (CS+/CS-) on response magnitude	ru4 neurons	stimulus = 0.23 F11.7001 = 26.79 < 0.0011 stimulus Time CS+, pret CS-, post CS+, post
percentile	(AF/Fetd)		time*stimulus = 0.02 F/1.7001 = 7.23 0.136 p-value 0.046 0.171 < 0.001 0.945 < 0.001 0.001
percentile	The way Allovia		
S7g (top	Filest of time (are DEC)		Sum or aquates. 1 "Statistic (r) / pratie / post-mor integrinal/100 1001/00 1000 1000 1000 1000 1000 1
20th	Effect of time (pre-DFC, post-DFC) and	504 neurons	1me = 1.31 r[1,500] = 0.10 U.U.4 Sumus time [LS-, pt [LS+, pt [LS+
percentile	stimulus (CS+/CS-) on response magnitude		stmulus = 2.01 F(1,500) = 8.61 0.005 stmulus Time [CS+, post [CS+,
porcentile	(ΔF/Fstd)		time'stimulus = 0.03 F(1,500) = 0.11 0.745 p-value 0.097 0.110 < 0.001 1.000 0.278 0.252
S7a	Two-way ANOVA:		Sum of squares: F-statistic (DF) p-value post-hoc Tukey-Kramer testing
(bottom	Effect of time (pre-DFC, post-DFC) and		time = 0.001 F(1.500) = 0.14 0.068 stimulus time CS-, pre CS-, pre CS+, pre
20th	stimulus (CS+/CS-) on response magnitude	504 neurons	stimulus = 0.03 F(1.500) = 0.07 0.711 stimulus Time CS+ prel CS- post ICS+ p
percentile	(AF/Fetd)		time*stimulus = 0.002 F/1 5001 = 0.23 0.635 0-y-alue 0.775 1.000 0.405492 0.732 0.933 0.363
porcentile	Two-way repetied measures ANOVA:		Sum of sectors - Contraction -
1	Two-way repeated measures ANOVA:		Sum or opportes. I "signification (in) predice provintion (UNRP)***Official (INRP)************************************
S11e	Enect of time (pre-DFC, post-DFC) and	14 mice	$\lim_{t \to \infty} \frac{1}{2} $
	Loutative auditory cortex location (A1, AAF)		timer conditype = u.uuuz = F(1,Tz) = u.su = U.su = Imer
			L pupile 0.563 0.837
	on Zdiff		projecti 0.000 0.001

Supplementary Table 1: Statistics for all figures.

Source	Sum sq.	degrees of freedom	Mean sq.	F	p-value
Intercept:Time	1.02	1	1.02	15.59	0.000
stimulus:Time	0.62	2	0.31	4.71	0.009
Error(Time)	237.18	3625	0.07		

post-hoc Tukey-Kramer testing

Stimulus	Time	Difference	Std. Error	p-value	lower confidence interval	upper confidence interval	
CS+	pre-DFC post	-DFC	-0.05	0.01	0.00001	-0.08	-0.03
CS-	pre-DFC post	-DFC	-0.01	0.01	0.302	-0.04	0.01
CSc	pre-DFC post	-DFC	-0.01	0.01	0.251	-0.03	0.01

Supplementary Table 2: Statistics comparing normalized responses at CS+, CS- and CSc. (Upper panel) Twoway repeated measures ANOVA with dependent variable mean response (across cells) and independent variables; stimulus (CS+, CS-, CSc) and Time (pre-DFC, post-DFC). (Lower panel) post-hoc Tukey-Kramer testing.

Source	Sum sq.	degrees of freedom	Mean sq.	F	p-value
Intercept:Time	0.67	1	0.67	8.30	0.004
stimulus:Time	1.62	2	0.81	10.10	0.000
Error(Time)	291.01	3625	0.08		

post-hoc Tukey-Kramer testing

Stimulus	Time		Difference	Std. Error	p-value	lower confidence interval	upper confidence interval
CS+	pre-DFC	post-DFC	-0.01	0.01	0.289	-0.04	0.01
CS-	pre-DFC	post-DFC	0.02	0.01	0.178	-0.01	0.04
CSc	pre-DFC	post-DFC	0.06	0.01	0.000	0.04	0.08

Supplementary Table 3: Statistics comparing non-normalized responses at CS+, CS- and CSc. (Upper panel) Two-way repeated measures ANOVA with dependent variable mean normalized response (across cells) and independent variables; stimulus (CS+, CS-, CSc) and Time (pre-DFC, post-DFC). (Lower panel) post-hoc Tukey-Kramer testing.

Supplementary References

- 1. Jonas. (2021) Violin Plots for plotting multiple distributions (distributionPlot.m) (https://www.mathworks.com/matlabcentral/fileexchange/23661-violin-plots-for-plotting-multiple-distributions-distributionplot-m), MATLAB Central File Exchange. Retrieved August 2. (2021).
- 2. Franklin, K. & Paxinos, G. *The mouse brain in stereotaxic coordinates 3rd edition*. (Academic Press, 2007).
- 3. Romero, S. *et al.* Cellular and Widefield Imaging of Sound Frequency Organization in Primary and Higher Order Fields of the Mouse Auditory Cortex. *Cereb. Cortex* **30**, 1603–1622 (2020).