Supplementary Material

Figure 1. Schematic illustration of (A) the finger tapping task, (B) the stimuli of the respective tasks and (C) of the experimental design. (A) In order to type the sequence of the finger tapping task, the subjects were instructed that each finger of each hand corresponds to a specific number which should be used to press the respective key on a number pad. (B) tasks were either motor execution of left or right hand finger tapping (bottom left) or motor imagery of this task or a whole body movement (bottom right). The stimuli are shown in the upper part. At the beginning of each task run and after each break a task instruction indicated whether the following task is ME ('BEWEGEN') or MI ('VORSTELLEN'). The stimuli displayed whether the task was left or the right hand (ME and MI) or the whole body movement (MI only). (C) Each task run started with the task instruction (3s) and a rest period of 18-22s and consisted of 12 task blocks of 15s task period followed by 18-22s of rest period. After 6 task blocks a break of 15s duration was integrated.

Figure 2. Channel selection frequency for data types (columns) and tasks (rows) split by ROI. Illustrated is how often a channel was selected across subjects for an ROI based on its beta value. Note that a subset of channels (13, 17, 19) belonged to more than one ROI and were therefore considered for selection several times. (A) Channel selection frequencies for data types fMRI CHANLOCS, fNIRS $\Delta[HbO]$ and fNIRS $\Delta[HbR]$. (B) Channel selection frequencies for data types fMRI CHANLOCS, fNIRS $\Delta[HbO]$ and fNIRS $\Delta[HbR]$. (B) Channel selection frequencies for data types fNIRS $\Delta[HbR]$ LABELED and fNIRS $\Delta[HbR]$ LABELED. Color bars at the right end of each row apply for all five data types.

Figure 3. Visualisation of the distance between fNIRS channel position on the head surface and its projection to the cortex in voxel space. Each channels' distance incorporates the average distance across subjects. Darker colors indicate longer distances and brighter colors shorter distances. Voxel extraction is based on the head.nii file generated by AtlasViewer, therefore, a voxel has the size $1 \times 1 \times 1$ mm.

Table 1. Table containg the fNIRS preprocessing steps in the correct order with all necessary inputs and variables.

fNIRS Preprocessing Pipe	fNIRS Preprocessing Pipeline		
	job = nirs.modules.QT;(qt-toolbox in NIRS toolbox)		
(1) Quality check using qt-nirs toolbox	job.sciThreshold = 0.6;		
	job.qThreshold = 0.65;		
(2) Convert raw intensity data to changes of optical density	job = nirs.modules.OpticalDensity; (NIRS toolbox)		
(3) TDDR motion correction	job = nirs.modules.TDDR; (NIRS toolbox)		
	$lpf_cutoff = 0.09;$		
	$hpf_cutoff = 0.01;$		
	order = 1000;		
(4) Apply band-pass filter	bpFilt = designfilt('bandpassfir', 'FilterOrder', order,		
	'CutoffFrequency1', hpf_cutoff, 'CutoffFrequency2', lpf_cutoff,		
	'SampleRate', dat.Fs);		
	bp_data = filtfilt(bpFilt, dat.data);		
	dat.data = bp_data;		
(5) Channel Pruning: replace channels with bad quality detected in (1) with NaNs			
	PVF = 1/60;		
(6) Convert changes in optical density into hemoglobin concentration changes using mBLL	DPF = CalcDPF(age, [760 850]); (function from Scholkmann et al., 2013) job = nirs.modules.BeerLambertLaw; (NIRS toolbox) job.PPF = DPF.*PVF;		
(7) Apply systemic artifact correction using GLM in combination with all short distance channels; extract residuals			

Table 2. Table containg the SPM12 fMRI preprocessing steps in the correct order with all necessary inputs and variables in order to run it in a SPM12 batch file.

SPM12 Preprocessing Pipeline	
(1) Realign: Estimate & Reslice	
Data	
. Session	Functional Images
Estimation Options	
. Quality	1
Separation	4
. Smoothing (FWHM)	5
. Num Passes	Register to mean
. Interpolation	2nd Degree B-Spline
. Wrapping	Wrap Y
. Weighting	0 files

Reslice Options	
. Resliced Images	Mean Image Only
. Interpolation	4th Degree B-Spline
. Wrapping	Wrap Y
. Masking	Mask images
. Filename Prefix	r
(2) Coregister: Estimate	
Reference Image	DEP Realign: Estimate & Reslice: Mean Image
Source Image	Anatomical Image (T1)
Other Images	-
Estimation Options	
. Objective Function	Normalised Mutual Information
. Separation	[4 2]
. Tolerances	[0.02 0.02 0.02 0.001 0.001 0.001 0.01 0.
. Histogram Smoothing	[7 7]
(3) Coregister: Estimate	
Reference Image	\spm12\canonical\single_subj_T1.nii, 1
Source Image	DEP Coregister: Estimate: Coregistered Images
-	DEP
Other Images	Realign: Estimate & Reslice: Realigned Images (Sess 1)
-	Realign: Estimate & Reslice: Mean Image
Estimation Options	
. Objective Function	Normalised Mutual Information
Separation	[4.2]
. Tolerances	[0.02 0.02 0.02 0.001 0.001 0.001 0.01 0.
Histogram Smoothing	[7 7]
(4) Segment	r1
Data	
. Channel	
Volumes	DEP Coregister: Estimate: Coregistered Images
Bias regularisation	light regularisation (0 001)
Bias FWHM	60 mm cutoff
Save Bias Corrected	Save Bias Corrected
Tissues	Sure Blus concelled
Ticene	
Tissue probability map	\spm12\tpm\TPM nii 1
Num Gaussians	spint2.upin(11 ivi.ini, 1
Native Tissue	1 Nativa Space
Wormed Tissue	Nano Nano
Tigona	None
Tissue	(1)
New Consistent	\spin12\upin\1PM.ini, 2
. Num. Gaussians	
. Native lissue	Native Space
warped Tissue	None
Tissue	
. 11ssue probability map	\spm12\tpm\TPM.nii, 3
. Num. Gaussians	2
. Native Tissue	Native Space
. Warped Tissue	None
Tissue	
Tissue probability map	\spm12\tpm\TPM.nii, 4
Num. Gaussians	3
. Native Tissue	Native Space
Warped Tissue	None
. Tissue	
Tissue probability map	\spm12\tpm\TPM.nii, 5
Num. Gaussians	4
. Native Tissue	Native Space
. Warped Tissue	None
Tissue	
. Tissue probability map	\spm12\tpm\TPM.nii. 6
. Num. Gaussians	······································
Native Tissue	None
Warned Tissue	None
Warning & MRF	INOIIC
MRE Parameter	1
Clean Un	I joht Oloon
Warning Regularisation	
Affine Degularisation	[U U.UUI U.J U.UJ U.Z]
. Annie Regularisation	ICDM space temptate - European brains

	. Smoothness
	. Sampling distance
Forwar	. Deformation Fields
	(5) Normalise: Write
	Data
	. Subject
DEP Segment: Forward Deformation	Deformation Field
Realign: Estimate & Reslice: Realigned Images (Sess 1	Images to Write
Realign: Estimate & Reslice: Mean Image	· · · · · · · · · · · · · · · · · · ·
Realight Estimate & Resheet Healt mag	Writing Options
[-78 -112 -70; 78 76 85	. Bounding box
[2 2 2	. Voxel sizes
4th Degree B-Splin	. Interpolation
	. Filename Prefix
	(6) Normalise: Write
	Data
	. Subject
DEP Segment: Forward Deformation	Deformation Field
DE	
Coregister: Estimate: Coregistered Image	Images to Write
Segment: Bias Corrected (1	
	Writing Options
[-78 -112 -70; 78 76 85	. Bounding box
[1 1 1	. Voxel sizes
4th Degree B-Splin	. Interpolation
N N N N N N N N N N N N N N N N N N N	. Filename Prefix
	(7) Smooth
DEP Normalise: Write: Normalised Images (Subj 1	Images to smooth
[8 8 8	FWHM
SAM	Data Type
	Implicit Meelring
Ν	Implicit Masking