
Supplemental Figure 1. Unadjusted Kaplan-Meier curves for cumulative probability estimates of KRT in 3 years of follow-up, by CKD stage at study entry and sex.

Supplemental Tables

Age	CKD		CKDC					
group	stage	Brazil	France	Germany	US	— NHANES (95% CI)		
18-44	3	57	50	38	45	39.4 (17.1, 61.6)		
18-44	4/5	58	44	40	50	57.7 (26.1 <i>,</i> 89.4)		
45-54	3	41	34	33	51	55.7 (40.9 <i>,</i> 70.6)		
45-54	4/5	45	51	39	52	54.0 (21.4 <i>,</i> 86.5)		
55-64	3	50	35	40	44	48.8 (37.6, 60.1)		
55-04	4/5	50	43	40	50	39.5 (19.9 <i>,</i> 59.1)		
65-74	3	35	28	37	46	57.0 (49.4 <i>,</i> 64.5)		
05-74	4/5	48	34	39	49	58.0 (41.4, 74.6)		
75.	3	39	32	40	45	59.4 (54.8 <i>,</i> 64.1)		
75+	4/5	50	32	49	50	70.2 (57.1, 83.2)		

Supplemental Table 1. Percentage of women in the CKDopps versus NHANES (2013-2018) by age group and CKD stage.

Note: CKD stage is classified based on eGFR using CKD-EPI formula

Supplemental Table 2. Fine-Gray Subdistribution Hazard Ratios (SHRs) of men versus women for dialysis, and allcaused pre-KRT deaths throughout 3 years of follow-up, excluding individuals receiving a pre-emptive transplant.

Fine-Gray SHR (95% CI)	Pre-KRT death	Dialysis			
Model 1	1.27 (1.07, 1.51)	1.40 (1.24, 1.59)			
Model 2	1.30 (1.10, 1.54)	1.40 (1.24, 1.58)			
Model 3	1.30 (1.10, 1.53)	1.40 (1.24, 1.57)			
Model 4	1.22 (1.03, 1.45)	1.38 (1.22, 1.56)			
Model 5	1.22 (1.03, 1.45)	1.19 (1.05, 1.35)			
Model 6	1.15 (0.97, 1.36)	1.18 (1.05, 1.33)			
Model 7	1.16 (0.98, 1.37)	1.27 (1.11, 1.44)			
Model 8	1.15 (0.97, 1.37)	1.23 (1.07, 1.40)			

Models stratified by CKD stage at study entry and accounting for facility clustering.

Model 1: Unadjusted

Model 2: Adjusted for age, Black race (equals model A [Abstract])

Model 3: Model 2 + diabetes comorbidity

Model 4: Model 2 + cardiovascular disease (including coronary artery disease, cerebrovascular disease, congestive heart failure, and other cardiovascular disease)

Model 5: Model 2 + albuminuria

Model 6: Model 2 + diabetes comorbidity, cardiovascular disease, albuminuria (equals model B [Abstract])

Model 7: Model 6 + first eGFR in first 12 months after study enrolment as baseline eGFR + eGFR slope in first 12 months after study enrolment as continuous variable (equals model C [Abstract])

Model 8: Model 6 + last eGFR in first 12 months after study enrolment as baseline eGFR + eGFR slope in first 12 months after study enrolment as continuous variable

Supplemental Table 3. Types of vascular access used for initial HD dialysis, by country and sex.

	All		В	razil	Fr	ance	US		
	Men	Women	Men	Women	Men	Women	Men	Women	
Patients, N	341	188	30	18	269	133	42	37	
Central venous catheter	28%	33%	27%	17%	26%	33%	41%	41%	
Arteriovenous fistula	70%	61%	73%	83%	72%	64%	57%	38%	
Arteriovenous graft	2%	6%	0%	0%	2%	3%	2%	22%	

Supplemental Table 4. Crude adverse event rates, by country and sex.

	All		Brazil		France		Germany		US	
	Men	Women	Men	Women	Men	Women	Men	Women	Men	Women
Patients, N	4929	3544	463	417	1944	1024	1479	1109	1043	994
Median follow-up time, years	2.7	2.5	1.8	1.7	4.0	4.0	2.6	3.1	1.2	1.3
Adverse event rate, per 100 pa	tient-yea	rs								
Hospitalizations ^a	18.6	18.2	17.9	13.4	17.5	15.9	-	-	25.3	27.6
KRT ^b	8.3	6.7	9.4	10.6	6.0	5.7	10.7	5.5	11.0	9.8
Death before KRT	4.9	4.2	3.2	2.1	4.1	3.0	5.7	4.9	7.4	6.1
Death ^c	7.0	5.4	5.0	3.0	4.6	3.7	10.6	7.2	8.8	6.7

^a Hospitalization data are not available for Germany ^b Includes dialysis and kidney transplantation

^c Includes death after ESRD; follow-up time for death after ESRD is ended at 12 months after patient's departure from the study

Supplemental Table 5. Fine-Gray Subdistribution Hazard Ratios (SHRs) of men versus women for dialysis, transplant, and all-caused pre-KRT deaths throughout 3 years of follow-up.

	Brazil			France			Germany			US		
Fine- Gray SHR (95% CI)	Pre-KRT death	Dialysis	Transplant	Pre-KRT death	Dialysis	Transplant	Pre-KRT death	Dialysis	Transplant	Pre-KRT death	Dialysis	Transplant
Model 1	2.04 (0.99,4.19)	0.98 (0.70,1.37)	-	1.45 (1.05,2.00)	1.13 (0.89,1.44)	1.43 (0.78,2.63)	1.04 (0.78,1.38)	1.91 (1.57,2.32)	-	1.21 (0.93,1.57)	0.98 (0.80,1.20)	1.21 (0.48,3.01)
Model 2	2.15 (1.05,4.42)	0.97 (0.68,1.4)	-	1.33 (0.96,1.83)	1.16 (0.91,1.48)	1.89 (1.13,3.15)	1.18 (0.88,1.58)	1.82 (1.51,2.20)	-	1.22 (0.95,1.56)	1.02 (0.82,1.27)	1.32 (0.55,3.15)
Model 3	2.16 (1.08,4.33)	0.98 (0.68,1.40)	-	1.30 (0.95,1.79)	1.16 (0.91,1.47)	1.93 (1.17,3.18)	1.18 (0.88,1.57)	1.78 (1.48,2.13)	-	1.21 (0.95,1.55)	1.03 (0.83,1.28)	1.31 (0.55,3.13)
Model 4	2.13 (1.05,4.30)	0.97 (0.67,1.39)	-	1.18 (0.86,1.62)	1.14 (0.90,1.44)	2.01 (1.22,3.32)	1.15 (0.85,1.54)	1.79 (1.48,2.16)	-	1.13 (0.87,1.45)	1.02 (0.83,1.27)	1.36 (0.56,3.32)
Model 5	2.01 (0.98,4.13)	0.94 (0.66,1.34)	-	1.22 (0.89,1.68)	0.99 (0.78,1.27)	1.82 (1.10,3.02)	1.16 (0.87,1.55)	1.58 (1.29,1.93)	-	1.19 (0.92,1.54)	0.97 (0.77,1.21)	1.26 (0.52,3.03)
Model 6	2.00 (1.00,4.02)	0.94 (0.65,1.35)	-	1.10 (0.81,1.50)	0.98 (0.77,1.25)	1.96 (1.21,3.17)	1.13 (0.84,1.52)	1.52 (1.25,1.86)	-	1.11 (0.86,1.44)	0.99 (0.79,1.23)	1.28 (0.52,3.13)
Model 7	2.01 (1.00,4.05)	0.94 (0.65,1.35)	-	1.11 (0.81,1.50)	1.07 (0.84,1.37)	1.95 (1.17,3.27)	1.14 (0.85,1.54)	1.55 (1.27,1.90)	-	1.11 (0.86,1.44)	1.05 (0.83,1.33)	1.36 (0.55,3.35)
Model 8	2.01 (1.00,4.05)	0.93 (0.64,1.35)	-	1.09 (0.80,1.48)	1.02 (0.79,1.31)	1.83 (1.03,3.24)	1.13 (0.84,1.51)	1.47 (1.19,1.81)	-	1.12 (0.87,1.45)	1.03 (0.81,1.31)	1.33 (0.54,3.27)

Note: The results of Transplant models for Brazil and Germany are not shown as there were too few outcomes

Models stratified by CKD stage at study entry and accounting for facility clustering.

Model 1: Unadjusted

Model 2: Adjusted for age, Black race (equals model A [Abstract])

Model 3: Model 2 + diabetes comorbidity

Model 4: Model 2 + cardiovascular disease (including coronary artery disease, cerebrovascular disease, congestive heart failure, and other cardiovascular disease) Model 5: Model 2 + albuminuria

Model 6: Model 2 + diabetes comorbidity, cardiovascular disease, albuminuria (equals model B [Abstract])

Model 7: Model 6 + first eGFR in first 12 months after study enrolment as baseline eGFR + eGFR slope in first 12 months after study enrolment as continuous variable (equals model C [Abstract])

Model 8: Model 6 + last eGFR in first 12 months after study enrolment as baseline eGFR + eGFR slope in first 12 months after study enrolment as continuous variable