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Supplementary Figure Legends 

 

Supplementary Figure 1. Immunofluorescence analysis of bladder cancer cell lines 

for the presence of Lewis antigens. (A) RT4, J82COT, T24, TCCSUP and HL-60 control 

cells were incubated with anti-Lex IgG mAb F8A1.1 and bound antibodies were detected 

by incubation with Alexa-488 conjugated goat anti-mouse IgG followed by fluorescence 

microscopy imaging. Panels a and c: phase contrast images, Panels b and d: 

fluorescence images; Panels a and b: control incubation conducted without mAb F8A1.1; 

Panels c and d: incubation conducted with mAb F8A1.1. (B) RT4, T24, and HL-60 control 

cells were incubated with anti-sialyl-Lex IgM mAb HECA452 and bound antibodies were 

detected with Alexa-488 conjugated goat anti-rat IgM followed by imaging by fluorescence 

microscopy. Panels a and c: phase contrast images; Panels b and d: fluorescence 

images; Panels a and b: incubation with HECA452; Panels c and d: mock incubation 

lacking HECA452. (C) Western blot analysis of Lex-bearing glycoproteins 

immunoprecipitated from extracts of J82COT, RT4, and T24 cells using mAb F8A1.1 

(lanes indicated by +). Mock immunoprecipitations were carried out by omitting mAb 

F8A1.1 from the immunoprecipitation complex (lanes indicated by -). 

 

Supplementary Figure 2 (related to Figure 2, panel A). Binding of HECA452 mAb to 

bladder cancer cells. (A) Flow cytometry histograms showing staining of (left) normal 

bladder epithelial cells A/T/N, (middle) low-grade bladder cancer cells RT4, and (right) 

high-grade bladder cancer cells T24 with either isotype control (open histograms) or mAb 

HECA452 (grey histograms). (B) Flow cytometry histograms showing staining of (left) low-

grade bladder cancer cell line 5637 and (right) low-grade bladder cancer cell line SW780 



with either isotype control (light grey histograms) or mAb HECA452 (dark grey 

histograms). 

 

Supplementary Figure 3 (related to Figure 2, panel B). Expression of sialo-

fucosylated lactosaminyl glycans by bladder cancer cells. Flow cytometry histograms 

showing staining of (A) normal bladder epithelial cells A/T/N, (B) low-grade bladder cancer 

cells RT4, and (C) high-grade bladder cancer cells T24 with plant lectins, from left to right, 

AAL, MAL-I, MAL-II, SNA, and PHA-L. Open histograms present staining with secondary 

detection reagent alone (Streptavidin-Alexa488) and grey histograms present staining with 

respective plant lectin. (D) Flow cytometry histograms showing staining of low-grade 

bladder cancer cell lines 5637 (left) and SW780 (right) with respectively from top to 

bottom, secondary detection reagent alone, AAL, MAL-I, MAL-II, and PHA-L lectins. (E) 

Flow cytometry histograms showing staining of low-grade bladder cancer cell lines 5637 

(left) and SW780 (right) with secondary detection reagent alone (top histogram) and 

SNA lectin (bottom histogram). 

 

Supplementary Figure 4. Immunofluorescence analysis to assess binding of plant 

lectins on the membrane of bladder cancer cells. A/T/N, RT4, J82COT, T24, and 

TCCSUP cells were incubated with biotinylated lectins detected with Alexa-488-conjugated 

streptavidin. (A) AAL staining. +Fucose indicates addition of fucose to confirm lectin 

binding specificity. –AAL indicates streptavidin alone control. (B) L-PHA staining. +GalNAc 

indicates addition of GalNAc to confirm L-PHA binding specificity. For A and B, Panels a, 

c, e: phase contrast images, Panels b, d, f: fluorescence images. (C) Western blot 

analysis of lysates of A/T/N, RT4, J82COT, T24, and TCCSUP using AAL lectin as probe. 



Identical amount of cell lysate protein was analyzed for each cell line. (Left panel) AAL 

blot of untreated cell lysates. –Fucose: free fucose was not added during blotting. 

+Fucose: free fucose was added during blotting to confirm AAL binding specificity.  

(Middle panel) AAL blot of cell lysates either untreated (-) or treated with PNGase F (+). 

(Right panel) AAL blot without (-NaOH) or with (+NaOH) β-elimination of O-glycans using 

NaOH. 

 

Supplementary Figure 5. MALDI-TOF MS spectrum of permethylated N-glycans derived 

from (A) A/T/N, (B) T24, and (C) RT4 cell lines. Permethylated N-glycans were eluted at 

the 50% acetonitrile fraction (Materials and Methods). Main structures are depicted. 

Structures above a bracket have not had their location unequivocally defined. Putative 

structures are based on composition, tandem MS and knowledge of biosynthetic 

pathways. All molecular ions are [M+Na]+. 

 

Supplementary Figure 6. MALDI-TOF/TOF MS/MS spectra of the molecular ions at (A) 

m/z 3316 and (B) m/z 3490 selected from A/T/N cell lines (Supplementary Figure 5A). 

Structures outside a bracket have not had their location unequivocally defined. Putative 

structures are based on composition, tandem MS and knowledge of biosynthetic 

pathways. All molecular ions are [M+Na]+. Horizontal blue dashed lines with arrowheads 

indicate the losses of the corresponding structures from the molecular ions. Fragment ion 

peaks in green colour correspond to losses of two LacNAc repeats having attached 

various fucose residues, from the molecular ion. In (B) fragment ion peak marked with an 

asterisk (*) corresponds to a contamination fragment ion from the molecular ion at m/z 

3503. 



 

Supplementary Figure 7. MALDI-TOF/TOF MS/MS spectra of the molecular ions at (A) 

m/z 5085, (B) m/z 5259, (C) m/z 5360, (D) m/z 5708, (E) m/z 5883 and (F) m/z 6332 

selected from RT4 cell lines (Supplementary Figure 5c). Structures above/outside a 

bracket have not had their location unequivocally defined. Putative structures are based on 

composition, tandem MS and knowledge of biosynthetic pathways. All molecular ions are 

[M+Na]+. Horizontal blue dashed lines with arrowheads indicate the losses of the 

corresponding structures from the molecular ions. Fragment ion peaks in green, yellow 

and red colours correspond to losses of two, three and four LacNAc repeats having 

attached various fucose residues, from the molecular ion respectively. 

 

Supplementary Figure 8. Expression of fucosyltransferase genes in TCCSUP and 

J82COT cells. All gene expression is calculated using the ΔCT method and expressed as 

per mille (%0) of GAPDH expression. (A) Bar plots present gene expression of FUTs 1-7. 

(B) Bar plots present gene expression of FUTs 8-11. Data are presented as Mean±SD of 

technical quadruplicates. Statistics: t-test was performed for each gene comparing the 

means of the two cell lines. Statistical significance was determined using Holm-Sidak 

method. P<0.05 is considered statistically significant difference. (C) Sequences of the 

primers used for gene expression analysis. All primer sequences were kindly provided by 

Dr. Kelley Moremen (Complex Carbohydrate Research Center, University of Georgia, 

Athens, Georgia). 

 



Supplementary Table I

Supplemental Table 1. List of qRT-PCR primers used to amplify glycosyltransferase transcripts

Gene Forward Primer (5'-3') Reverse Primer (5'-3') Source

FUT1 AGCAACGGCATGGAGTGGTGTA AAGCCGAAGGTGCCAATGGTCA Origene

FUT2 CTACCACCTGAACGACTGGATG AGGGTGAACTCCTGGAGGATCT Origene

FUT3 GCCGACCGCAAGGTGTAC TGACTTAGGGTTGGACATGATATCC (Higai et al, 2006)

FUT4 GGGTTTGGATGAACTTCGAGTCG GGTAGCCATAAGGCACAAAGACG (Mondal et al, 2018)

FUT5 ACCTGAGCTACTTTCACTGGCG TCAGGTGAACCAAGCCGCTATG (Mondal et al, 2018)

FUT6 CCGACTACATCACCGAGAAGCT GAACCTCTCGTAGTTGCTTCTGC (Mondal et al, 2018)

FUT7 GAATGAGAGCCGATACCAACGC TAGCGGTCACAGATGGCACAGA (Mondal et al, 2018)

FUT8 ATCCTGATGCCTCTGCAAAC GGGTTGGTGAGCATAAATGG (Bernardi, et al 2013)

FUT9 TCCCATGCAGTTCTGATCCAT GAAGGGTGGCCTAGCTTGCT (Higai et al, 2006)

FUT10 CTAACCAGCGACTTCTGACAGC CCCATCTTTTGGGTGGTAAGCC Origene

FUT11 ACACCTGGCTTTGGCAATGTGG GTGGATCATGGCAGTGAGAGCT Origene

ST3Gal I AAGAGGACCCTGAAAGTGCTC CTCCAGGACCATCTGCTTGG (Silva et al, 2017)

ST3Gal3 GCCTGCTGAATTAGCCACCAA GCCCACTTGCGAAAGGAGT (Silva et al, 2017)

ST3Gal4 CTTCCTGCGGCTTGAGGATTA CTCACTCCCCTTGGTCCCATA (Silva et al, 2017)

ST3Gal6 ACTGCATTGCATATTATGGGGAA TGGCTTTGATAAACAAGGCTGG (Mondal et al., 2018)

ST6Gal I CTGAATGGGAGGGTTATCTGCC ACCTCAGGACTGCGTCATGATC (Silva et al, 2017)

ST6Gal2 ACGCTGCTGATTGACTCTTCT CACATACTGGCACTCATCTAA (Ma et al, 2014)

ST6GALNACI CTCTCTTCCTGGACTCCAGACA AAGCGTGTCACGACCTTCTGCA Origene

ST6GalNAcII ACTTCCGTGGCCTGTTCAATC GGCGATGACTTGGTGAGAGAG (Silva et al, 2017)

ST6GALNAC3 TACGTGACCACAGAGAAGCGCA CGTGAATGCCATAACAGGCGTC Origene

ST6GALNAC5 GATTACTCGCCACAAGATGCTGC GATCCTGTCACAGAGCTCCAGT Origene

ST6GALNAC6 TGAGGTCTTCCATTACGGCTCC CTGCTGACAATCACACACTGGTG Origene

B4GalT1 GTATTTTGGAGGTGTCTCTGCTC GGGCGAGATATAGACATGCCTC (Mondal et al, 2018)

B4GalT2 GACCGCGACAAGCATAACGAAC AGACACCTCCAAGACCTGGTAC Origene

B4GalT3 TCCTCAAGGTCTGCCCTACTGT ATTCCGCTCCACAATCTCTGCC Origene

B4GalT4 CTCTGACTAATGAAGCATCCACG CTGCCTGTACCTCTTCCAAAGTG Origene

B4GalT5 GAAGATGACGACCTCTGGAACAG GCCGTTCTTTTGACTTCCTCAGC Origene

B4GalT6 CTCATTCCTTTCCGTAATCGCCA GCCCACATTGAAAAGCATCGCAC Origene

B4GalT7 TGCTCAACCAGGTGGACCACTT AGGTCAACGTCGTGCATGGCAA Origene

B3GALT1 CCTCATCAGCACCACTCACAAG TGGCTCTCTTGCTCCACCATCT Origene

B3GALT2 GTGTTCAATCACTGGCGAGTCTC TTGCTGCGTTGGCACAGGCATT Origene

B3GALT4 TCCTACCGCAACCTCACCCTAA TCGCAAGACCAGCTCTGATACC Origene

B3GALT5 AGCGGAAACGAAAGAGGTGGAC CCTGAGGACAAAAGCGATGGAC Origene

B3GALT6 ACCAGTACCTGGTGACGCACAA GACCAGTCGTACACGTAGGACA Origene

GCNT1 AACCCCTTAGTAAAGAAGAGGCG AGCAGCCTGTCAAGCATTTCA (Silva et al, 2017)

GCNT3-For CACCAGAGACTGTGAGCACTTC CATACACAGCTCGCAGTAGCCT Origene

GCNT4-For CTCTCCTGATGAGCACTTTTGGG CCACTTGACAAGGCGAGTCTTAC Origene

MGAT1 CCTATGACCGAGATTTCCTCGC TGAAGCTGTCCCTGCCCGTATA (Mondal et al, 2018)

GCNT2-For TCCTGGTCCAAGGACACCTACA CTGAGGTTTCCAGTCCAGGATG Origene

GAPDH CAGCCTCAAGATCATCAGC ACAGTCTTCTGGGTGGCA (Mondal et al, 2018)

B-Actin CACCATTGGCAATGAGCGGTTC AGGTCTTTGCGGATGTCCACGT (Mondal et al, 2018)
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Supplementary figure 3
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FUT3 CGCTGGATCTGGTTCAACTT GTATCTGTCCAGGGCTTCCA

FUT4 TGGCCCGCTACAAGTTCTAC GCCAGAGCTTCTCGGTGATA

FUT5 ACATCACTGCCGACTCCAGT CATGATATCCCAGTGGTGCA

FUT6 CTGCTGATGGCTGTGTGTTT GGGTACACAGTGGGATCGTC

FUT7 GTGCATGTGGATGACTTTGG GCTCTCATTCATGCCAGTGA
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FUT9 CTTACCGCCGTGATTCAGAT AAACACGAAGGGATTTGTGC

FUT10 TATGTTCGCGAGCTGATGAC TGAGGGAGGTCTTTGTTTCG
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