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Nonalcoholic steatohepatitis (NASH) is a severe liver disorder
characterized by triglyceride accumulation, severe inflamma-
tion, and fibrosis. With the recent increase in prevalence,
NASH is now the leading cause of liver transplant, with no
approved therapeutics available. Although the exact molecular
mechanism of NASH progression is not well understood, a
widely held hypothesis is that fat accumulation is the primary
driver of the disease. Therefore, diacylglycerol O-acyltransfer-
ase 2 (DGAT2), a key enzyme in triglyceride synthesis, has
been explored as a NASH target. RNAi-based therapeutics is
revolutionizing the treatment of liver diseases, with recent
chemical advances supporting long-term gene silencing with
single subcutaneous administration. Here, we identified a hy-
per-functional, fully chemically stabilized GalNAc-conjugated
small interfering RNA (siRNA) targeting DGAT2 (Dgat2-
1473) that, upon injection, elicits up to 3 months of DGAT2
silencing (>80%–90%, p < 0.0001) in wild-type and NSG-PiZ
“humanized” mice. Using an obesity-driven mouse model of
NASH (ob/ob-GAN), Dgat2-1473 administration prevents
and reverses triglyceride accumulation (>85%, p < 0.0001)
without increased accumulation of diglycerides, resulting in
significant improvement of the fatty liver phenotype. However,
surprisingly, the reduction in liver fat did not translate into a
similar impact on inflammation and fibrosis. Thus, while
Dgat2-1473 is a practical, long-lasting silencing agent for po-
tential therapeutic attenuation of liver steatosis, combinatorial
targeting of a second pathway may be necessary for therapeutic
efficacy against NASH.

INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) is characterized by triglyc-
eride accumulation within hepatocytes (hepatic steatosis) and affects
up to 1 billion humans worldwide.1 NAFLD by itself can be relatively
benign but is often part of a sequel of liver conditions in obesity and
type 2 diabetes (T2D) varying in severity of injury. Most notably,
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NAFLD can precede the occurrence of nonalcoholic steatohepatitis
(NASH), which is associated with increased liver inflammation
through resident and infiltrating immune cell activation as well as
scarring and fibrosis through activation of resident stellate cells to
produce collagen.2 Currently, it is estimated that �20%–25% of
NAFLD patients will progress to develop NASH and, if left untreated,
the risk of developing cirrhosis, severe liver failure, and hepatocellular
carcinoma greatly increases.3–6 Collectively, the various pathologies
associated with dysfunctional liver lipid metabolism, inflammation,
and fibrosis represent a huge and burgeoning burden on the health
care system, with increasing rates among young adults and even chil-
dren projected to continue.3,4 While lifestyle improvements,
including weight loss, can alleviate NASH, behavioral modifications
are difficult to execute and have not provided a solid solution to the
problem.4–6 Despite the high prevalence of NASH, there is no US
Food and Drug Administration (FDA)-approved therapeutic agent
that can specifically alleviate it,7–9 indicating an urgent unmet medical
need.9

One of the major unresolved questions in this field is whether the he-
patic steatosis in NAFLD alone drives the inflammation and fibrosis
that occur in NASH, independent of other liver perturbations that
occur in obesity and T2D. If this is the case, might therapeutic target-
ing of the hepatic steatosis in NAFLD alleviate its progression to
NASH? Strong support for the idea that hepatic steatosis is the major
independent initiator of NASH has been derived from human
genome-wide association studies showing its strong link with
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single-nucleotide polymorphisms in genes related to lipid meta-
bolism. These include PNLP3, TM6SF2, LYPLAL1, GCKR, and
PPP1R3B, which can harbor polymorphisms that not only track
with steatosis but also with steatohepatitis and hepatic fibrosis.10–12

These findings strengthen the idea that hepatic steatosis drives the
inflammation/fibrosis aspects of the pathology and have resulted in
major investment toward therapeutic targets within lipid metabolism
pathways. On the other hand, clinical trials13–32 with agents that
target such proteins, for example thiazolidinediones (TZDs), FXR ag-
onists,18–21 and acetyl coenzyme A (CoA) carboxylase (ACC) inhib-
itors,26–29 have not succeeded, due to either adverse effects or lack of
improvement in inflammation and fibrosis.13–32 These failures sug-
gest the possibility that additional perturbations of gene products in
the inflammation and fibrosis pathways, independent of those initi-
ated by hepatic steatosis, are critical to the progression of NASH.
Thus, hepatic steatosis may be required but not sufficient to initiate
NASH.

On a similar note, candidate therapeutics designed to attack the end-
stage inflammation and fibrosis pathways of NASH, such as C-C che-
mokine receptor (CCR)2/5 antagonists,23,24 ASK1 inhibitors,25 or
caspase inhibitors,31,32 have also failed to achieve FDA approval.7,33,34

Together, these unfavorable results raise the likelihood that the
multiple pathways contributing to NASH must be simultaneously
targeted by therapeutics to be successful.

Based on the above considerations, the aims of the present study
were 2-fold: first, we addressed the unsolved question of whether
specific inhibition of liver triglyceride synthesis would also
diminish inflammation and fibrosis in the livers of a novel mouse
model whereby NASH is rapidly developed by high fat-high
cholesterol-high fructose (GAN) diet feeding. For this aim, we tar-
geted diacylglycerol (DAG) acyltransferase 2 (DGAT2), which cat-
alyzes the last step in the synthesis of triacylglycerol through the
esterification of fatty acyl-CoA to DAG.35 DGAT2 is expressed
prominently in liver and adipose tissue, while the DGAT1 isoform
is expressed mostly in intestine and much less so in other tissues.36

It has been shown previously that depletion of liver DGAT2 by
antisense oligonucleotide (ASO) does alleviate hepatic steatosis in
mouse37,38 and rat39 models, but the effects on inflammation and
fibrosis were not evaluated in these studies. In a study using a
choline deficient diet-induced mouse NASH model, liver damage
appeared to actually be increased by liver DGAT2 loss.38 In two
short-term human trials, pharmalogical40 or ASO41 targeting of
DGAT2 diminished liver triglycerides and suggested lower liver
damage and fibrosis,40,41 but the degree to which targeting
DGAT2 alone will yield effective therapy for the severe inflamma-
tion and fibrosis of NASH is still not clear.

To approach the above question, a second aim of this study was to
identify and advance the therapeutic potential of a chemically modi-
fied short interfering, double-stranded RNA compound to silence
Dgat2.42,43 RNA interference (RNAi) is an extremely efficient tool
for gene silencing that leverages the ability of a designed small inter-
1330 Molecular Therapy Vol. 30 No 3 March 2022
fering RNA (siRNA) to bind to a target mRNA and cause its cleavage
by the cellular RNA-induced silencing complex (RISC).42,44 Advances
in siRNA design and chemistry combined with suitable delivery plat-
forms have overcome many of the previous limitations associated
with non-modified siRNAs.45–62 This has led to a remarkable poten-
tial for RNAi therapeutics.46,47,51,52,63–67 In particular, the use of a
synthetic triantennary GalNAc conjugation to the double-stranded
siRNA has allowed delivery of the GalNAc-siRNAs safely and effi-
ciently to the liver via the GalNAc conjugate’s high affinity for the
asialoglycoprotein receptor (ASGPR).48,50–52,57,65–68 A single subcu-
taneous injection of GalNAc-siRNA can achieve efficacy for
>12 months in humans.46,47,65,67 We demonstrate here the identifica-
tion of a therapeutically promising, highly stable, and active GalNAc-
siRNA targeting Dgat2 mRNA that directs strong alleviation of
hepatic steatosis in obese mice. The data suggest that advancement
of this compound may lead to an effective therapy against NAFLD.
However, our findings also suggest that the advent of inflammation
and fibrosis in response to high-fat, high-cholesterol, high-fructose
(GAN) diet-induced NASH in mice is not alleviated simply by sub-
stantial inhibition of triglyceride accumulation.

RESULTS
Screening of chemically modified siRNAs targeting both human

and mouse Dgat2 transcripts

The chemical modifications and their locations among the nucleo-
tides in the RNA compounds used in this study are shown in Table
S1. The chemically modified siRNAs are asymmetric compounds
composed of 18-nucleotide, modified RNA duplexed with a single-
stranded 30, two-base extension on the guide strand. Modifications
at the 20 OH position of ribose in the siRNA are modified with 20-
O-methyl or 20-fluoro to provide stability, and the 30 end of the pas-
senger strand is conjugated to a hydrophobic cholesterol through a
tetraethylene glycol linker to promote membrane binding. The sin-
gle-stranded tail also contains phosphorothioate linkages to promote
cellular uptake by a mechanism similar to that of ASOs.37,39,42 The
above chemical modifications (phosphorothioates, ribose modifica-
tions) contribute to overall hydrophobicity and are essential for
compound stabilization and efficient cellular internalization. The
construct used for the in vitro screening in Figure 1 is conjugated
to cholesterol for added hydrophobicity. Such hydrophobic
siRNAs have been shown to bind to a wide range of cells and are
readily internalized without the requirement of a transfection
reagent.42,53,54,56,58,59,69,70

To identify the siRNA sequences that have strong and potent
silencing capability in vitro, several test sequences targeting different
regions of mouseDgat2mRNAwere generated by a custom algorithm
designed to optimize predicted silencing efficiency of chemically
modified RNAs (Figure 1A). Of the sequences identified, only those
predicted to silence both mouse and human Dgat2 mRNA were
then selected. This panel of siRNAs was synthesized and initially
screened for silencing efficacy in FL83B mouse hepatocytes by their
direct addition to the culture medium to a final concentration of
1.5 mM. Silencing effects on levels of Dgat2mRNA and housekeeping
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Figure 1. Identification of two potent chemically modified siRNAs that

silence both human and mouse Dgat2 transcripts in cultured hepatocytes

(A) Targeted locations on the mouseDgat2 transcript by the candidate compounds.

(B) FL83B hepatocytes were treated with siRNA compounds (1.5 mM) for 72 h prior

to analysis of Dgat2 mRNA levels to identify the most active siRNA sequences. (C)

HepG2 human hepatocytes were treated with two best siRNA compounds (1.5 mM),

from the previous mouse cell line screening, for 72 h prior to analysis of human

DGAT2 mRNA levels to identify the most active siRNA sequences. (D) Dose

response relationships for the two siRNAs (compounds 1476 and 1473) that

showed the strongest silencing using human HepG2 cell line. The IC50 values were

determined by using eight point serially diluted concentrations of the compounds

starting from 1.5 mM.
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(Hprt) gene mRNA after 72 h of treatment was performed with the
QuantiGene assay. Five siRNAs were identified (Table S1) that effec-
tively reduce mouse Dgat2 transcript in the mouse cell line compared
with untreated control (Figure 1B). Additionally, to confirm the activ-
ity of the best two hits from previous mouse cell line screening against
human DGAT2 transcript, human HepG2 cell lines were treated with
these two siRNAs (denoted 1473 and 1476) with final concentration
of 1.5 mM (Figure 1C). Further, to investigate the potency of 1473 and
1476 that showed the highest activity in this initial screening, a dose
response relationship assay was carried out with HepG2 cells treated
with eight concentrations of either compound 1473 or 1476
(1.5 mM–0.023 mM) for 72 h. These potency tests revealed half
maximal inhibitory concentration (IC50) values of 174 nM and
205 nM for siRNAs 1473 and 1476 for silencing human DGAT2
mRNA, respectively (Figure 1D).
Strength and potency of silencing with GalNAc-conjugated 1473

in vivo

Next, the in vivo silencing capability and longevity of siRNA1473
were investigated. For this, non-targeting control (NTC) siRNA
and siRNA 1473 were synthesized and conjugated to a GalNAc
construct (Dgat2-1473)48,50–52,57,68 for liver-specific targeting (Fig-
ure S1) with a final chemical moiety as shown in Figure 2A. Groups
of 8-week-old wild-type male C57BL6/J mice fed with chow diet
were subcutaneously injected once with either NTC (10 mg/kg)
or various concentrations of Dgat2-1473 (1 mg/kg, 3 mg/kg,
10 mg/kg) and were sacrificed 4, 8, and 12 weeks after the single in-
jection (Figure 2B). Strikingly, at the 10 mg/kg dose of Dgat2-1473,
silencing of Dgat2 mRNA in liver was nearly complete (87%, p =
0.0001) at 4 weeks and remained strong at 8 weeks and 12 weeks
(79%, p < 0.0001) post single injection. Even at 3mg/kg,
Dgat2-1473 provided 73% (p; 0.0002) silencing at 4 weeks and
60% (p:0.0013) at 8 weeks post injection. The lowest dose of
1 mg/kg Dgat2-1473 caused only about 50% (p = 0.02) or less
silencing in the 4- to 8-week time period post injection and this
was lost by 12 weeks (Figure 2B).

While loss of DGAT2 protein by itself is expected to greatly decrease
triglyceride synthesis and accumulation in liver, it has been previously
reported that DGAT2 depletion also causes a surprising decrease in
expression of enzymes in the de novo fatty acid synthesis
pathway.37,39,40,71 Moreover, this extended transcriptional effect of
DGAT2 loss was attributed to decreased Srebf1, a transcription factor
that controls expression of enzymes involved in fatty acid meta-
bolism. It is not known how Dgat2 silencing leads to loss of Srebf1.
We therefore investigated this extended effect of DGAT2 in the above
experiment and could confirm a strong reduction in expression of de
novo lipogenic genes such as fatty acid synthase (Fasn) and stearoyl-
CoA desaturase-1 (Scd1) (Figure 2C). In addition, expression of
Srebf1 mRNA was blunted, consistent with the previous work, sug-
gesting important signaling mechanisms at play in response to
DGAT2 loss.

Dgat2-1473 silencing in human hepatocytes engrafted in a

mouse model

Since Dgat2-1473 was designed to silence Dgat2 mRNA in both hu-
man and mouse cells, it was important to determine if this predicted
dual targeting actually occurs in vivo. We employed a “humanized”
immunocompromised mouse model (NSG-PiZ) that takes advantage
of a genetic modification that blunts the mouse hepatocytes’ ability to
regenerate following injury, and therefore provides an advantage for
engrafted normal human hepatocytes to predominate.72 Four-week-
old NSG-PiZ male mice that had been intravenously treated with a
monoclonal mouse-specific anti-Fas antigen (CD95) antibody
(2 mg) were injected with 1 million human hepatocytes into the
spleen. After 5 weeks on chow diet (Figure 3A), a human serum albu-
min ELISA and human albumin immunoblotting were performed to
validate the human hepatocyte engraftment (Figures 3B and 3C). An-
imals were then subcutaneously injected once with 10 mg/kg NTC or
Dgat2-1473 and sacrificed after 1 week on chow diet (Figure 3A).
Molecular Therapy Vol. 30 No 3 March 2022 1331
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Figure 2. Dgat2-1473 provides strong silencing for at least 12 weeks after a

single subcutaneous injection in the livers of male C57BL/6 mice

(A) Representative cartoon of chemically modified, GalNAc-conjugated siRNAs that

were used for in vivo studies. (B) Dose response relationships and longevity of

silencing elicited by Dgat2-1473 that was subcutaneously injected into wild-type

C57BL/6 mice (n = 3) on chow diet. The mice were treated with the indicated doses

(10, 3, 1 mg/kg) of Dgat2-1473 or NTC compound (10 mg/kg) and sacrificed at the

indicated time points (4, 8, 12 weeks) after injections. The mRNA levels of Dgat2

were normalized against the NTC group and 18S was used as the housekeeping

gene for the calculations. (C) DNL-related gene expression changes upon Dgat2

silencing in wild-type C57BL6 mice. *p < 0.05, **p < 0.005.
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Figure 3. Dgat2-1473 silences the human Dgat2 transcript in human

hepatocyte-engrafted NSG-PiZ mice

(A) Experimental procedure for generating human hepatocyte-engrafted NSG-PiZ

mouse model. (B) Human serum albumin levels in the plasma of these engrafted

mice were determined after being randomized from the study groups. (C) Immu-

nostaining of liver sections for human albumin for confirmation of engraftment. (D)

Mouse Dgat2 mRNA levels 1 week after injection (E) HumanDGAT2 mRNA levels

1 week after the injection of mice(n = 3) with Dgat2-1473. *p < 0.05, **p < 0.005,

***p < 0.0005, ****p < 0.00005.
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Human and mouse transcript-specific qPCR primers were used to
assess the Dgat2 mRNA levels in total RNA samples isolated from
livers of these mice. The results shown in Figure 3 demonstrate that
Dgat2-1473 provided substantial silencing of both mouse (Figure 3D)
and a strong silencing trend in human (Figure 3E) DGAT2 mRNA
1332 Molecular Therapy Vol. 30 No 3 March 2022
levels by 85% in the livers of the human hepatocyte-engrafted
NSG-PiZ mice.

Testingof Dgat2-1473 in a genetically obeseNASHmousemodel

We next investigated whetherDgat2 silencing has a beneficial effect in
the livers of a severe obese, NASH mouse model. Genetically obese
C57BL6/J (ob/ob) male mice were subcutaneously injected with the
either NTC (10 mg/kg) or Dgat2-1473 (10 mg/kg) and fed with
ResearchDiet D09100310 (GANdiet) to induceNASH. After 3 weeks,
the mice were sacrificed, and the tissues were harvested (Figure 4A).
The virtually complete DGAT2 protein knockdown in the livers of the
Dgat2-1473-treated mice was documented by immunoblotting (Fig-
ure 4B) and Dgat2 mRNA loss was confirmed by qPCR (Figure 4C).
The body weights of the mice at the start and the end of the study re-
vealed decreased weight gain in the Dgat2-1473-injected group (Fig-
ure 4D). Hematoxylin-eosin (H&E) staining of liver sections from
these mice showed that the Dgat2-1473-injected group had fewer
and smaller lipid droplets compared with the control NTC group
(Figure 4E). This was also supported by a significantly lower liver
weight to body weight ratio (Figure 4F) and lower triglyceride content
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Figure 4. Single subcutaneous injection of Dgat2-1473 alleviates liver fat

accumulation and decreased liver-to-body weight ratio in a genetically

obese NASH mouse model

(A) Ten-week-old male genetically obese C57BL6/J (ob/ob) mice (n = 4) were in-

jected subcutaneously with either NTC (10 mg/kg) or Dgat2-1473 (10 mg/kg) and

provided a NASH-inducing diet (GAN diet) for 3 weeks. After 3 weeks, mice were

sacrificed. (B) DGAT2 protein levels in liver 3 weeks after NTC or Dgat2-1473 in-

jection. (C) Dgat2 mRNA level changes in liver in response to either Dgat2-1473 or

NTC. (D) Body-weight difference comparison (start versus 3 weeks on GAN diet). (E)

Histological comparison of liver H&E sections of the groups. (F) Liver weight to body

weight ratio between groups. (G) Liver total triglyceride measurements via lip-

idomics. *p < 0.05, **p < 0.005, ***p < 0.0005.

Figure 5. Dgat2 silencing by Dgat2-1473 elicits significant changes in many

pathways and genes in the livers of genetically obese mice with NASH

DEBrowser data that came from the DolphinNext RNA-seq pipeline (Figure 5) was

first filtered to eliminate genes whose expression level was not above 10 in any

sample, and then DESeq2 was employed to determine DE genes, using an adjusted

p value of 0.05 as the cutoff and requiring at least a 1.5-fold change, up or down.

The list of DE genes was then analyzed using the enrichGO function in the clus-

terProfiler package. The pathways were simplified using its simplify function with

options of p value cutoff of 0.05. This was followed bymanually specifiedmerging of

similar pathways to produce heatmaps. DE genes were clustered according to the

pathways they were involved in, and the pathways (color coded) were displayed on

the left column alongside the heatmap. Color scheme for the DE gene presentation

was produced by Z-scoringmethod (�2 to +2 standard deviation from themean) on

expression levels normalized for sample depth by DESeq2. Heatmap representation

of (A) upregulated and (B) downregulated DE genes clustered by the pathways in

which they are involved.
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per milligram of protein (Figure 4G) in the livers of the Dgat2-1473-
injected group without changing plasma lipids (Figure S2). Interest-
ingly, this triglyceride lowering did not cause an accumulation of di-
glycerides in the pathway, but rather it shunted fatty acids toward
phospholipid synthesis (Figure S3). Thus, the decreased liver triglyc-
eride and liver weights in the Dgat2-1473-treated, obese mice can ac-
count for much or all of the loss of body weight in these mice.

Gene expression in livers of NASH mice injected

with Dgat2-1473

To investigate the transcriptional changes in the ob/ob NASH mice
subcutaneously injected either with NTC or Dgat2-1473, total RNA
was isolated from the livers of these mice and assessed for changes
in gene expression profiles by RNA sequencing (RNA-seq). A poly
A selection of mRNA species was used for rRNA removal to enrich
our dataset. Principle component analysis (PCA) for RNA-seq
showed a clear segregation and clustering of NTC and Dgat2-
1473-injected groups (Figure S4A). Next, it was important to assess
the possible off-target silencing of Dgat2-1473. For that, the seed
enrichment p value was calculated using a Fisher’s exact test
comparing the prevalence of the seed (guide 2–8) target in the 30

UTR of genes that were downregulated with the prevalence of the
seed target in the 30 UTR of genes that were not downregulated.
Molecular Therapy Vol. 30 No 3 March 2022 1333
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Figure 6. Targeting liver DGAT2 by Dgat2-1473 in genetically obese NASH

mice causes downregulation of major genes in the fatty acid metabolism

pathway, correlating with a decrease in SREBP1c processing and ChREBP

protein expression

(A) Heatmap representation of DE liver genes in fatty acid metabolism pathway

(major DNL genes in the pathway highlighted by the black arrows). (B) qPCR

confirmation of the RNA-seq data for important genes in fatty acid metabolism

pathway. *p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.00005. (C) Measurements

of both unprocessed (cytosolic) and processed (nuclear) SREBP1c protein levels in

liver. (D) ChREBP protein level measurements in liver. *p < 0.05, **p < 0.005, ***p <

0.0005, ****p < 0.00005.
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The analysis revealed that Dgat2-1473 did not elicit detectable off-
target silencing among all the reads that were collected by RNA-
seq (Figure S4B).

To better visualize the upregulated (Figure 5A) and downregulated
(Figure 5B) differentially expressed (DE) genes and pathways, heat-
maps were generated. The data generated by RNA-seq was first
filtered to eliminate genes whose expression level was not above 10
reads in any sample and then DESeq2 was employed to determine
DE genes, using an adjusted p value of 0.05 as the cutoff and requiring
at least a 1.5-fold change, up or down. The list of DE genes was then
analyzed using the enrichGO function in the clusterProfiler package.
The pathways were analyzed using the simplify function with options
of a p value cutoff of 0.05. This was followed by manually specified
merging of similar pathways to produce heatmaps. DE genes were
1334 Molecular Therapy Vol. 30 No 3 March 2022
clustered according to the pathways they were involved in and the
pathways displayed on the left column alongside the heatmap. Color
scheme for the DE gene presentation was produced by Z-scoring
method (�2 to +2 standard deviation from the mean). In these
heat maps, DE genes were clustered depending on the pathways
that are shown in a color-coded manner. This analysis revealed 34 up-
regulated (Figure 5A) and 43 downregulated (Figure 5B) pathways
that are significantly altered in the livers of ob/ob NASHmice treated
with Dgat2-1473.

Next, further analysis was performed on the fatty acid metabolism
pathway-related genes in livers of ob/ob NASH mice injected with
either NTC or Dgat2-1473. Major genes that play a role in fatty
acid biosynthesis were downregulated significantly, indicated by black
arrows on the pathway heat map such as Chrebp, Fasn, Acly, and
Elovl6 (Figure 6A). Changes in the expression of genes either control-
ling or within the de novo lipogenic pathway, such as Srebf1, Srebf2,
Fasn, Scd1, Chrebp, were confirmed with qPCR analysis. Importantly,
although the de novo lipogenesis (DNL)-related genes such as Fasn
and Scd1 were downregulated, the gene expression of transcription
factor Srebf1c did not change in the livers of ob/ob mice that were
fed with GAN diet and treated with Dgat2-1473 compared with the
control NTC-injected group (Figure 6B). This differs from what
was observed in lean mice, as noted above (Figure 2C), and in previ-
ous reports.37,39,40,71When this phenomenon was further investigated
by immunoblotting of the processed, transcriptionally active, nuclear
SREBP1c fragment versus the unprocessed, cytosolic SREBP1c pro-
tein levels, a remarkable correlation between downregulation of
DNL gene expression and the decrease in processed, nuclear SREBP1c
protein levels (Figure 6C) was detected. In addition, protein levels of
the transcription factor Chrebp, known also to regulate genes in the
lipogenic pathway, were reduced in correlation with SREBP1c pro-
cessing (Figure 6D). Noteworthy is the fact that it has been reported
that Chrebp expression is strongly correlated with SREBP1c process-
ing in liver.73

Further investigation of other major metabolic pathways such as acyl-
CoA metabolism (Figure 7A), cholesterol metabolism (Figure 7B),
and carbohydrate metabolism (Figure 7C) showed that Dgat2
silencing in the liver of ob/ob NASHmice resulted in downregulation
of major genes that play a role in the biosynthesis of the metabolites in
these pathways (black arrows).

Liver inflammation and fibrosis in Dgat2-1473-treated NASH

mice

To investigate the inflammation and fibrosis states in our NASH
mouse model, the histological presence of collagen fibers in liver sec-
tions from ob/ob NASH mice injected with NTC versus Dgat2-1473
were assessed by both trichrome staining and immunohistochemistry
(IHC) analysis for type 1 collagen. The histological analysis revealed
no significant alleviation of fibrosis in the livers of Dgat2-1473-in-
jected ob/ob NASH mice (Figures 8A and S5). The collagen protein
levels in the livers were measured by immunoblotting and this anal-
ysis also showed no significant difference in Dgat2-1473-injected
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Figure 8. Dgat2 silencing does not significantly alleviate the inflammation

and fibrosis in the liver of genetically obese NASH mice

Ten-week-old genetically obese ob/ob mice (n = 4) were injected subcutaneously

with either NTC (10 mg/kg) or Dgat2-1473 (10 mg/kg) and provided a NASH-

inducing diet (GAN diet) for 3 weeks. After 3 weeks, mice were sacrificed. (A) His-

tological examination of fibrosis via trichrome staining and type 1 collagen IHC. (B)

Type I collagen protein levels in whole-liver tissue. (C) Plasma ALT measurements.

(D) Inflammation and fibrosis related gene expression levels. *p < 0.05, **p < 0.005.

Figure 7. Dgat2 silencing in liver of genetically obese NASH mice causes

downregulation of major metabolic pathways

Heatmap representation of DE genes in (A) acyl-CoA metabolism, (B) cholesterol

metabolism, and (C) carbohydrate metabolism (major genes in the pathways that

are involved with the synthesis are highlighted by the black arrows).
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mice (Figure 8B). The extent of hepatocyte cell death and damage as
assessed by plasma alanine aminotransferase (ALT) activity also indi-
cated no difference due to the Dgat2-1473 treatment (Figure 8C). The
gene expression levels of genes in the inflammation and fibrosis path-
ways, such as CCL2, IL1b, Opn, Timp1, Acta2, and Col1a1, showed no
improvements in Dgat2-1473-injected ob/ob NASH mice compared
with the NTC-injected ob/ob NASH mice (Figure 8D). Further anal-
ysis of the expression levels of genes in the inflammation pathway,
such as M1 macrophage markers (Figure S6A), M2 macrophage
markers (Figure S6B), as well as chemokines and their receptors (Fig-
ure S6C), showed no improvements in Dgat2-1473-injected ob/ob
mice compared with the NTC-injected ob/ob mice. Finally, no im-
provements in plasma cytokine levels upon Dgat2 silencing were
observed (Figure S7).

DISCUSSION
A major finding of this study is the identification and characteriza-
tion of Dgat2-1473, a therapeutically promising siRNA targeting
Dgat2 mRNA in liver. This compound was derived from screening
siRNA sequences complementary to both mouse and human Dgat2
in a mouse hepatocyte cell line, revealing that at 1.5 mM the 1473
sequence caused 95% silencing of Dgat2 mRNA and in human
hepatocyte cell line it exhibited an IC50 of less than 200 nM (Fig-
ure 1). Remarkably, a single subcutaneous injection of Dgat2-1473
at 10 mg/kg elicited a 79% loss of Dgat2 mRNA for at least 12 weeks
in the livers of male C57BL/6J mice (Figure 2B), which is the
longest duration of silencing by single dosing of a siRNA or ASO
reported in mice.37,52,74–76 Dgat2-1473 was also effective in
silencing human DGAT2 mRNA in a humanized mouse model
(Figure 3). Dgat2-1473 embodies many advancements in applying
chemical modifications into native siRNA, including 20 ribose mod-
ifications, a 50-(E)-vinylphosphonate moiety, and phosphorothioate
linkages, which result in greater stability and potency of silencing
compounds.42,45,53,54,56,59,61,62,77 A particularly important feature
of Dgat2-1473 is the pattern of 2-O-methyl and fluoro modifica-
tions at the 2’ ribose positions, which are designed to optimize sta-
bility without compromising silencing potency by using limited
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2’fluoro content.45,53,54,58,59,61,62,77 It has been shown that the
higher 20-OMe/20-F content ratio results in higher potency of
chemically modified RNAs.53,62 These improvements in chemical
modification patterns for siRNA have enabled FDA approval of
the first RNAi therapeutics and potentially open the way for
many others in the future. Considering the comparatively long-last-
ing efficacy of current GalNAc-conjugated oligonucleotide thera-
peutics in human trials versus their relatively short-lived effects
in mouse studies,41,46,47,66 our Dgat2-1473 compound may also
be expected to elicit long-term silencing with single administration
in humans.

An important question we addressed is whether the strong siRNA-
mediated silencing that is observed in livers of lean mice is attenuated
in fatty livers with damaged, inflamed hepatocytes and increased
fibrotic extracellular matrix, as occurs in human NASH. For this pur-
pose, we used an extremely obese, steatotic mouse model in which
mice reach 50 g or more in body weight (Figure 4D) with heavy liver
fibrosis (Figure 8A) during the course of a short study. A single injec-
tion of Dgat2-1473 indeed did achieve a similar strong and potent
silencing of liver Dgat2 in this ob/ob NASH model (Figures 4B and
4C). Importantly, such silencing of liver Dgat2 by Dgat2-1473 in
mice caused the expected marked inhibition of hepatic triglyceride
levels and alleviation of hepatic steatosis as measured by histology
(Figure 4G). This level of liver triglyceride reduction is similar to
what has been reported in rodent models with liver-specific
DGAT2 KO,71 AAV-shRNA silencing of Dgat2,78 silencing of
Dgat2 with ASOs,37–39 or inhibition of DGAT2 with a small molecule
inhibitor.40,78 These data show that not just prevention but actual
reversal of hepatic steatosis occurs upon DGAT2 loss, as the obese
mice that were treated with Dgat2-1473 in this study were already af-
flicted with severe hepatic steatosis and metabolic syndrome (Figure
4). The large attenuation of liver triglyceride levels and liver weight
(Figure 4F) in these Dgat2-1473-injected mice were indeed sufficient
to account for the reduced body-weight gain in this group compared
with mice treated with NTC (Figure 4D). Taken together, Dgat2-1473
is effective at both strong Dgat2 silencing and alleviation of hepatic
steatosis (NAFLD) in an extreme model of mouse obesity and NASH.

A previous unexpected finding associated with hepatic DGAT2 loss
was an apparent decrease in DNL based on greatly decreased expres-
sion of genes encoding enzymes such as Fasn and Scd1 in this
pathway.39,40,71 This phenomenon was linked to a reduction in
expression of Srebf1, encoding a key transcription factor that regu-
lates genes related to lipid synthesis and metabolism.79–82 While we
did not observe this effect in the obese mouse NASH model, conver-
sion of unprocessed cytosolic SREBP1c protein to its transcriptionally
active fragment that locates to the nucleus was greatly inhibited. This
conversion is catalyzed by proteolytic cleavage (proteases S1P and
S2P) in the Golgi membrane, preceding translocation of the cleaved
protein into the nucleus to regulate lipid metabolism-related gene
expression.79,81,82 Our data (Figure 6) thus reveal a powerful mecha-
nism to explain the connection between DGAT2 loss and the down-
regulation of many genes that control lipid synthesis.
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Adding to a role for SREBP1c processing in how Dgat2 silencing
causes marked decreases in expression of genes that control many
metabolic pathways is our finding that Chrebp expression is also
downregulated in the Dgat2-1473-treated obese mice. The essential
role of ChREBP in lipid metabolism has been investigated in ro-
dents by gene deletion83 and silencing with adenovirus84 as well
as ASO.85 In summary, these published studies showed that
ChREBP is required for the increased lipogenic gene expression
exemplified by Fasn, Scd1, and Acc1 in response to high carbohy-
drate intake. It also has been shown that Chrebp plays an important
role in enhancing both Srebf1 gene expression and processing by an
unknown mechanism.73 In contrast to a previous study in a
different mouse model, we did not observe a decrease in Srebf1
mRNA in the ob/ob-GAN diet model even though we did detect
a similar downregulation of DNL genes in the Dgat2-1473-injected
group(Figures 6A and 6B). However, we unexpectedly observed a
marked inhibition by Dgat2-1473 of the processing of SREBP1c
leading to a decreased level of transcriptionally active fragment (Fig-
ure 6C). This downregulation of processed SREBP1c strongly corre-
lated with a decreased Chrebp protein expression pattern, suggest-
ing that the downregulation of DNL gene expression upon Dgat2
silencing,37–39 deficiency,71 or inhibition40,78 is closely linked to
these changes in the major transcription factors controlling lipid
metabolism (Figures 6C and 6D). Additionally, in a previous report,
a genetically driven reduction of phosphatidylcholine (PC) levels
induced the processing of cytosolic SREBP1c and increased lipid
synthesis.86 Here a remarkable increase in PC levels (Figure S3B)
in the Dgat2-1473-injected group was observed and this may
explain the lower levels of processing of SREBP1c protein.

A critical question in liver metabolism is whether the hepatic stea-
tosis in NAFLD is sufficient to drive the inflammation and fibrosis
that develops in NASH independent of any other factors in obesity
that might directly activate Kupffer or stellate cells. This unresolved
issue raises another crucial question related to strategies for drug
development against NASH: might hepatic steatosis as sole thera-
peutic target be effective in alleviating NASH? In the studies pre-
sented here, the marked reduction in hepatic steatosis did not pre-
vent the development of inflammation and fibrosis in the livers of
Dgat2-1473-injected ob/ob mice on the GAN diet. Our assessments
of inflammation and fibrosis showed no significant change in
collagen accumulation (Figures 8A, 8B, and S5), plasma ALT levels
(Figure 8C), or in expression of genes in the inflammation pathway
(Figures 8D and S6). There are conflicting reports in the literature
about the effect of Dgat2 silencing or inhibition on inflammation
and fibrosis pathology in liver.37,38,40,41,78 One study showed that
DGAT2 loss actually elevated inflammation and fibrosis in the livers
of MCD diet-fed mice in which NASH is induced rapidly.38

Another study showed no change in plasma ALT levels in placebo
versus Dgat2 targeting ASO-treated human subjects.41 On the other
hand, a small molecule inhibitor of DGAT2 elicited alleviation of
high plasma ALTs and aspartate transaminase (ASTs) in early hu-
man clinical trials. However, based on the modest size and time
frame of this latter study, further work is needed to confirm these
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findings.40 Interestingly, while our study was in the review process, a
phase 2 clinical trial of a DGAT2 small molecule inhibitor was pub-
lished supporting our conclusions on inflammation and fibrosis not
changing upon DGAT2 inhibition.87 It is possible that mouse
models do not exactly reflect the mechanisms at play in the human
liver physiology of NASH.

Another possibility is that although our mouse model seems to mimic
human NASHmore than other models due to the presence of obesity
as well as metabolic syndromes such as strong insulin resistance, hy-
perglycemia, and hyperinsulinemia, it is a metabolic model where
mice are extremely hyperphagic. Our use of a genetic model of leptin
deficiency is also unlike the typical human obesity condition in which
leptin levels are high.86 To this point, leptin itself has metabolic effects
on whole-body metabolism beyond its ability to suppress appetite.87

Finally, our NASH model is a very rapidly developing NASH model
that also does not fully align with human NASH progression. This
issue of rapid development could also explain the Dgat2-1473’s
inability to prevent the development of fibrosis. Although the general
outcomes and phenotype in terms of NASH in this mouse model are
similar to the human disease state, clearly it is not an exact model of
human NASH. This issue may explain the fact that although Dgat2-
1473 treatment alleviated fatty liver, it failed to prevent the develop-
ment of fibrosis because there is a constant overwhelming intake of
toxic metabolites such as cholesterol from the GAN diet and these
mice do not have enough time to recover from already fat-accumu-
lated liver.

In summary, the present studies have yielded a promising siRNA
compound, Dgat2-1473, which is highly effective in alleviating
NAFLD in a model of extreme obesity in mice. Silencing Dgat2
expression by Dgat2-1473 is long lasting after a single subcutaneous
injection and leads to strong downregulation of fatty acid synthesis
as well as triglyceride synthesis in liver. Our data also indicate that
attenuating NAFLD alone may not be fully effective in alleviating
the inflammation and fibrosis in NASH, and that targeting multiple
pathways in parallel may be necessary for an optimal therapeutic
effect.
MATERIALS AND METHODS
Animals and siRNA administration

Animal experiments were performed in accordance with animal care
ethics approval and guidelines of University of Massachusetts Medi-
cal School Institutional Animal Care and Use Committee (IACUC,
protocol number A-1600-19). For in vivo dose response and KD
longevity of Dgat2-1473, wild-type C57BL6/J male mice (n = 3)
were injected doses of 1, 3, or 10 mg/kg or 10 mg/kg NTC subcutane-
ously once and sacrificed at time points of 4, 8, and 12 weeks after in-
jections. For NASH studies, 10-week-old genetically obese (ob/ob)
male mice (n = 4) were injected subcutaneously either with NTC or
Dgat2-1473 and put on a NASH-inducing GAN diet (Research Diets
D09100310) for 3 weeks. After 3 weeks, mice were sacrificed with CO2

and double-killed with a cervical dislocation.
Oligonucleotide synthesis

Oligonucleotides were synthesized using modified (2ʹ-F, 2ʹ-O-Me)
phosphoramidites with standard protecting groups. 50-vinyl tetra-
phosphonate (pivaloyloxymethyl) 20-O-methyl uridine 30-CE phos-
phoramidite (VP) was used for the 50-vinyl-phosphonate coupling
when needed. All amidites were purchased from (Chemgenes,
Wilmington, MA). Phosphoramidite solid-phase synthesis was
done on a MerMade12 (Biosearch Technologies, Novato, CA) using
modified protocols. Unconjugated oligonucleotides were synthesized
on 500-Å long-chain alkyl amine (LCAA) controlled pore glass
(CPG) functionalized with Unylinker terminus (Chemgenes,
Wilmington, MA). Cholesterol-conjugated oligonucleotides were
made on a 500-Å LCAA-CPG support, where the cholesterol moiety
is bound to tetraethylene glycol through a succinate linker (Chem-
genes, Wilmington, MA). GalNAc-conjugated oligonucleotides
were grown on a 500-Å LCAA custom aminopropanediol-based
trivalent GalNAc-CPG (Centernauchsnab, Minsk, Belarus). Phos-
phoramidites were prepared at 0.1 M in anhydrous acetonitrile
(ACN), with added dry 15% dimethylformamide in the 20-OMe-uri-
dine amidite. 5-(benzylthio)-1H-tetrazole (BTT) was used as the acti-
vator at 0.25 M. Detritylations were performed using 3% trichloro-
acetic acid in dichloromethane. Capping reagents used were CAP
A, 20% n-methylimidazole in ACN and CAP B, 20% acetic anhydride,
30% 2,6-lutidine in ACN (synthesis reagents were purchased at
AIC, Westborough, MA). Sulfurization was performed with 0.1 M
solution of 3-[(dimethylaminomethylene)amino]-3H-1,2,4-dithia-
zole-5-thione (DDTT) in pyridine (Chemgenes, Wilmington, MA)
for 3 min. Phosphoramidite coupling times were 4 min.

Deprotection and purification of oligonucleotides

Conjugated oligonucleotides were cleaved and deprotected 28%–30%
ammonium hydroxide and 40% aq. methylamine (AMA) in a 1:1 ra-
tio, for 2 h at room temperature. The VP-containing oligonucleotides
were cleaved and deprotected as described previously.88 Briefly, CPG
with VP-oligonucleotides was treated with a solution of 3% diethyl-
amine in 28%–30% ammonium hydroxide at 35⁰C for 20 h.

The solutions containing cleaved oligonucleotides were filtered to re-
move the CPG and dried under vacuum. The resulting pellets were
resuspended in 5% ACN in water. Purifications were performed on
an Agilent 1290 Infinity II HPLC system. VP- and GalNAc-conju-
gated oligonucleotides were purified using a custom 20 � 150-mm
column packed with Source 15Q anion exchange resin (Cytiva, Marl-
borough, MA); run conditions were eluent A, 10 mM sodium acetate
in 20% ACN in water; eluent B, 1 M sodium perchlorate in 20% ACN
in water; linear gradient, 10%–35% B 20 min at 40�C. Cholesterol-
conjugated oligonucleotides were purified using a 21.2 � 150-mm
PRP-C18 column (Hamilton Co, Reno, NV); run conditions were
eluent A, 50 mM sodium acetate in 5% ACN in water; eluent B,
100% ACN; linear gradient, 40%–60% B 20 min at 60�C. Flow was
40mL/min in both methods and peaks were monitored at 260 nm.
Fractions were analyzed by liquid chromatography mass spectrom-
etry (LC-MS), and pure fractions were dried under vacuum. Oligonu-
cleotides were resuspended in 5% ACN and desalted by size exclusion
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on a 50 � 250-mm custom column packed with Sephadex G-25
media (Cytiva, Marlborough, MA), and lyophilized.

LC-MS analysis of oligonucleotides

The identity of oligonucleotides was verified by LC-MS analysis on an
Agilent 6530 accurate mass Q-TOF using the following conditions:
buffer A, 100 mM 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and
9 mM triethylamine (TEA) in LC-MS grade water; buffer
B,100 mMHFIP and 9 mM TEA in LC-MS grade methanol; column,
Agilent AdvanceBio oligonucleotides C18; linear gradient 0%–30% B
8 min (VP and GalNAc); 50%–100% B 8 min (cholesterol); tempera-
ture, 60�C; flow rate, 0.5 mL/min. LC peaks were monitored at
260 nm. MS parameters: source, electrospray ionization; ion polarity,
negative mode; range, 100–3,200 m/z; scan rate, two spectra/second;
capillary voltage, 4,000; fragmentor, 180 V.

Deprotection, purification, and LC-MS reagents were purchased from
Fisher Scientific, Sigma-Aldrich, and Oakwood Chemicals.

Humanized liver

A human hepatocyte-engrafted NSG-PiZ mouse model was
generated in collaboration with Michael Brehm as previously
explained.72 Cryopreserved plateable human hepatocytes were pur-
chased from BioIVT (https://bioivt.com/liverpool-cryoplateable-
hepatocytes). The hepatocytes were collected from a female cadaveric
donor and deidentified. The hepatocytes were stored in liquid nitro-
gen and thawed for transplant. The 4-week-old NSG-PiZ male mice
were intravenously treated with a monoclonal mouse-specific anti-
Fas antigen (CD95) antibody (2 mg). After 2 h, 1 million human he-
patocytes were injected into the spleen by the intrasplenic injection.
After 5 weeks on chow diet, a human serum albumin ELISA was per-
formed to screen for human hepatocyte engraftment. Animals were
then subcutaneously injected with 10 mg/kg NTC (n = 3) or Dgat2-
1473 (n = 3) and sacrificed after 1 week on chow diet. Human- and
mouse-specific qpcr primers were used to assess the transcript levels.

Histological analysis

For the IHC, one lobe of the liver was fixed in 4% paraformaldehyde
and embedded in paraffin. Sectioned slides were then stained with tri-
chrome and type I collagen (Southern Biotech) at the UMass Medical
School Morphology Core. Photos from the liver sections were taken
with an Axiovert 35 Zeiss microscope (Zeiss) equipped with an
Axiocam CCI camera at the indicated magnification.

RNA isolation and qRT-PCR

Frozen liver tissue punches (25–50 mg) were homogenized in Trizol
using the Qiagen TissueLyser II. Chloroform was added to the ho-
mogenate and centrifuged for 15 min at maximum speed. The clear
upper layer was added to an equal volume of 100% isopropanol
and incubated for 1 h at 4�C. After 10 min of centrifugation at
maximum speed, the supernatant was discarded and 70%–75%
ethanol was added to wash the pellet. After 15 min of centrifugation
at maximum speed, the supernatant was discarded and the pellet was
briefly dried in the hood before being resuspended in double-distilled
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H2O (ddH2O). RNA concentration was then measured by the
Thermo Scientific NanoDrop2000 spectrophotometer. cDNA was
synthesized from 1 mg of total RNA using iScript cDNA Synthesis
Kit (Bio-Rad) and Bio-Rad T100 thermocycler. Quantitative RT-
PCR was performed using iQ SybrGreen Supermix on the Bio-Rad
CFX96 C1000 Touch Thermal Cycler and analyzed as previously
described.89 18S served as a housekeeping gene for analysis. Primer
sequences for qRT-PCR analysis can be found in Table S2.

In vitro screening of chemically modified siRNAs

The initial in vitro screening was carried out by plating 10,000 cells/
well in a 96-well plate. The cells were treated with the candidate com-
pounds in final concentration of 1.5 mM. Cells were treated for 72 h at
37�C, 5% CO2 in 3% FBS F-12K medium. After 72 h, mRNA levels
were quantified using the QuantiGene 2.0 assay kit (Affymetrix,
QS0011) as previously described.58,69,70 Briefly, cells were lysed in
300 mL of diluted lysis mixture composed of one part lysis mixture
(Affymetrix, QG0503), two parts H2O, and 0.167 mg/mL proteinase
K (Thermo Scientific, EO0491) for 1 h at 55�C. Cell lysates were
mixed thoroughly, and 20 mL/well of each lysate was added to the cap-
ture plate with 60 mL of diluted lysis mixture without proteinase K.
Probe sets for Dgat2 and HPRT (Affymetrix; 80246, 80003) were
used according to the manufacturer’s recommended protocol. Data-
sets were normalized to HPRT. The dose response investigation
was performed using serially diluted doses of the two candidate com-
pounds (1.500, 0.750, 0.375, 0.188, 0.094, 0.047, 0.023, 0.012 mM),
each condition in triplicate, and then the QuantiGene 2.0 assay was
carried out.

Immunoblotting

For protein expression analyses, frozen liver tissue (�25 mg) was ho-
mogenized by the Qiagen TissueLyser II in a sucrose buffer (250 mM
sucrose, 50 mMTris-Cl pH 7.4) with 1:100 protease inhibitor (Sigma-
Aldrich). The tissue lysates were denatured by boiling, separated on a
4%–15% sodium dodecyl sulfate/polyacrylamide gel electrophoresis
gel (Bio-Rad), and transferred to a nitrocellulose membrane (Bio-
Rad). The membrane was blocked with Tris-buffered saline with
Tween (TBST) containing 5% milk for 1 h at room temperature
and incubated with primary antibodies; DGAT2 (generously pro-
vided by Farese & Walther Lab, Harvard), histone H3, b-actin pur-
chased from Cell Signaling, SREBP1c antibody purchased from
Millipore, type I collagen antibody purchased from Southern Biotech,
and ChREBP antibody purchased from Novus Bio. The blot was
washed in TBST for 1 h, incubated at room temperature with corre-
sponding second antibody at room temperature for 30 min, washed
again, incubated with ECL (Perkin Elmer), and visualized with the
ChemiDox XRS+ image-forming system.

Nuclear extraction protocol

A 50-mg sample of frozen liver tissue was homogenized in cold DPBS
with 1:100 protease inhibitor in the Qiagen TissueLyser II for 3 min.
The sample was then centrifuged at 1850� g for 15 min. The fat cake
was discarded, and the supernatant was saved as the cytoplasmic frac-
tion. The pellet was resuspended in 500 mL of CER I buffer with 1:100
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protease inhibitor and incubated for 10 min. After incubation, 55 mL
of CER II buffer was added and then centrifuged at 14,000 � g for
5min. The supernatant was discarded, and the pellet was resuspended
in 250 mL of NER buffer with 1:100 protease inhibitor and vortexed
every 10 min for a total of 40 min. The supernatant was then collected
as the nuclear fraction.
Lipidomics analysis

Lipid species in liver samples were analyzed using multidimensional
MS-based shotgun lipidomic analysis.90 In brief, each liver tissue sam-
ple homogenate containing 0.5 mg of protein (determined with a
Pierce BCA assay) was accurately transferred to a disposable glass cul-
ture test tube. A pre-mixture of lipid internal standards (IS) was
added prior to conducting lipid extraction for quantification of the
targeted lipid species. Lipid extraction was performed using a modi-
fied Bligh and Dyer procedure,91 and each lipid extract was reconsti-
tuted in chloroform:methanol (1:1, v/v) at a volume of 400 mL/mg
protein.

For shotgun lipidomics, the lipid extract was further diluted to a final
concentration of �500 fM total lipids per microliter. Mass spectro-
metric analysis was performed on a triple-quadrupole mass spec-
trometer (TSQ Altis, Thermo Fisher Scientific, San Jose, CA) and a
Q Exactive mass spectrometer (Thermo Scientific, San Jose, CA),
both of which were equipped with an automated nanospray device
(TriVersa NanoMate, Advion Bioscience, Ithaca, NY) as described.92

Identification and quantification of lipid species were performed us-
ing an automated software program.93 Data processing (e.g., ion peak
selection, baseline correction, data transfer, peak intensity compari-
son, and quantitation) was performed as described.93 The results
were normalized to the protein content (nanomoles of lipid per milli-
gram of protein).
Plasma measurements

Alanine transaminase quantification was determined using the
Alanine Transaminase Colorimetric Activity Assay Kit from Cayman
Chemical following the user manual using plasma collected via eye
bleed prior to sacrifice. Absorbance was read by the Tecan safire2 mi-
croplate reader. Plasma cytokine and lipid level measurements were
carried out by UMass Metabolic Core.
RNA-seq analysis

Ten-week-old genetically obese ob/ob mice (n = 4/group) were in-
jected subcutaneously with either NTC (10 mg/kg) or Dgat2-1473
(10 mg/kg) and provided with a NASH-inducing diet (GAN diet)
for 3 weeks. After 3 weeks, mice were sacrificed. Total RNA samples
were isolated from whole-liver tissues from the study explained in
Figure 4 and sent out for next-generation RNA-seq. PolyA selection
of mRNA species was used for the method of rRNA removal. The
depth of the sequencing was 20–30 million reads/sample. The
RNA-seq pipeline in DolphinNext94,95 was used to convert the fastq
files into gene counts. The three parts of that pipeline that were
used were the FastQC, trimmomatic96, and RSEM modules.
1 FastQC (v0.11.8) was used to verify the quality of the data.
2 trimmomatic (v0.39) was used to improve the analysis by
removing Illumina adapter sequences via the ILLUMINACLIP:
<fastaWithAdaptersEtc>:<seed mismatches>:<palindrome clip
threshold>:<simple clip threshold>:<minAdapterLength > option.
Specifically, we specifiedILLUMINACLIP:GATCGGAAGAGCA
CACGTCTGAACTCCAGTCA, GATCGGAAGAGCGTCGTGT
AGGGAAAGAGTGT,AATGATACGGCGACCACCGAGATCT
ACACTCTT:2:30:5:10.

3 RSEM (v1.2.28) was used to align the fastq reads (using –star for
the STAR aligner) and quantify the gene expression levels.

The resulting estimates for gene expression were passed to
DEBrowser.umassmed.edu94. Within DEBrowser, data were first
filtered to eliminate genes whose expression level did not get above
10 in any sample and then DESeq2 was called to normalize expression
levels and determine DE genes97, using an adjusted p value of 0.05 as
the cutoff and requiring at least a 1.5-fold change, up or down.

The list of DE genes was then analyzed with using the enrichGO func-
tion in the clusterProfiler package. It was used with options ont =
"BP”, pAdjustMethod = "fdr", pvalueCutoff = 0.05, universe = default,
and minGSSize = 20. The pathways were simplified using its simplify
function with options of cutoff = 0.75, by = "p value", select_fun =
min. This was followed by manually specified merging of similar
pathways to produce heatmaps.

The presence of siRNA seed complementarity (6-mer complementary
to siRNA AS strand positions 2–8) in all genes with annotated 30

UTRs in Ensembl GRMCm38.p6 annotations was determined with
a custom Python script. siRNA seed enrichment in downregulated
versus unchanged transcripts was calculated using a Fisher exact
test. Data were plotted using Matplotlib.

Software and statistics

All statistical analyses were performed using the GraphPad Prism 8
(GraphPad Software). The data are presented as mean ± SEM. For
analysis of the statistical significance between four or more groups,
two-way ANOVA and multiple comparison t tests were used. NS is
nonsignificant (p > 0.05), *p < 0.05, **p < 0.005, and ***p < 0.0005.
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Figure S1
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Figure S1: Dgat2-1473 targets Dgat2 mRNA specifically in liver. Eight week old

male C57BL6 were injected with either NTC (n=5) or Dgat2-1473 (n=5) 

subcutaneously. Four week after single injection, mice were sacrificed and Dgat2 

silencing was examined in kidney, spleen, inguinal fat, epididymal fat and liver via 

qPCR



Figure S2
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Figure S2: Dgat2 silencing did not alter (A) plasma total cholesterol, 

triglycerides or (B) non-esterified fatty acid levels in ob/ob NASH model. 
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Figure S3: Dgat2 silencing in liver resulted in a remarkable decrease in 

diglycerides and increase in phospholipid levels in ob/ob mice with NASH (A) 

Diglyceride levels (B) Phosphatidylcholine (C) Phosphatidylethanolamine (D) 

Phosphatidylinositol levels. (*: p<0.05, **:p<0.005, ***:p<0.0005, ****:p<0.00005)
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Figure S4: Dgat2-1473 did not produce significant detectable off-target 

silencing activity in liver in vivo. Total RNA samples were isolated from whole 

liver tissues from the study explained in Figure 4 and sent out for next-gen RNA 

sequencing. PolyA selection of mRNA species was used for the method of rRNA 

removal. The depth of the sequencing was 20-30 million reads/sample. The 

RNAseq pipeline in DolphinNext (Yukselen O, et.al.2020) was used to convert the 

fastq files into gene counts and the resulting estimates for gene expression were 

passed to DEBrowser (Kucukural A, et.al 2019) for (A) Principle Component 

Analysis (PCA) of the RNAseq database (B) Volcano plot of all differentially 

expressed genes and off-target silencing analysis. The seed enrichment p-value is 

calculated using a Fisher’s exact test comparing the prevalence of the seed (guide 

2-8) target in the 3’ UTR of genes that are downregulated to the prevalence of the 

seed target in the 3’ UTR of genes that are not downregulated.



A

B

Sense strands:

Antisense strands:

GalNac-1473 sense strand:

GalNac-1473 antisense strand:

Table S1

1473

1476

1464

1093

1094

1473

1476

1464

1093

1094

Dgat2-1473

Table S1: Chemically modified siRNA sequences. (A) Cholesterol conjugated 

chemically modified siRNA sequences for in vitro screening (B) Dgat2-1473 

sequence for in vivo studies. ( P: 5’ phosphate; vP: 5΄-(E)-vinylphosphonate;

(m):2’-O- methyl modification; (f): 2’-fluoro modification; #:phosphorothioate 

modification; Teg: triethyl glycerol; Chol: Cholesterol conjugate; GalNAc: trivalent 

GalNAc conjugate)

Dgat2-1473 (mU)#(mG)#(mG)(mG)(mU)(mU)(mA)(fU)(fU)(fU)(mA)(fA)(m

A)(mA)(mG)(mA)#(mA)#(mA)- GalNAc

(mU)#(mG)#(mG)(mG)(mU)(mU)(mA)(fU)(fU)(fU)(mA)(fA)(mA)(mA)(mG)(

mA)#(mA)#(mA)- TegChol



Table S2

Table S2: Primer sequences used for qRT-PCR.
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Figure S5

Figure S5: Dgat2 silencing does not significantly alleviate the fibrosis in the 

liver of genetically obese NASH mice. Ten-week-old genetically obese ob/ob

mice (n=4) were injected subcutaneously with either non targeting control NTC 

(10mg/kg) or Dgat2-1473 (10mg/kg) and provided a NASH-inducing diet (GAN 

diet) for 3 weeks. After 3 weeks mice were sacrificed. Histological examination of 

fibrosis via Type 1 collagen IHC. 
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Figure S6

A

B

C

Figure S6: Dgat2 silencing does not improve the inflammation in the liver of 

genetically obese NASH mice. mRNA expression levels of (A) M1 macrophage 

markers  (B) M2 macrophage markers (C) Chemokines and their receptors. (ns: 

not significant, *: p<0.05, **:p<0.005, ***:p<0.0005, ****:p<0.00005)



Supplemental Figure 7
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Figure S7: Dgat2 silencing does not attenuate the plasma levels of 

inflammatory cytokines in genetically obese NASH mice.
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