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SUPPLEMENTARY METHODS 28 

 29 

Virtual screening protocol  30 

A ligand-based (LB) VS protocol was set up to select potential Bcl-2 modulators compounds from a 31 

~ 1 million of compounds commercial database. The study started with the compilation of a Bcl-2 32 

modulators dataset interrogating the publicly available ChEMBL and PubChem databases and 33 

retrieving all records related to ligands assayed against Bcl-2 protein by either biochemical or cell-34 
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based methods. The Bcl-2 modulators dataset was subjected to a pruning procedure and the cleaned 35 

dataset was opportunely divided into different training sets for the developing of predictive QSAR 36 

models to be used as filtering tools to rank a commercial small molecules database and acquire the 37 

most promising compounds to be experimentally tested as potential Bcl-2 modulators. 38 

Data collection and pruning. A Bcl-2 modulators database was compiled from ChEMBL version 39 

22 database. Human apoptosis regulator Bcl-2 bioactivity records, referred with the target identifier 40 

CHEMBL4860, were retrieved and processed to compile a dataset (BCL2MChEMBL dataset). The 41 

initial BCL2MChEMBL dataset of 1762 activity records was then subjected to a cleaning procedure 42 

(see material and methods section). A cleaned BCL2MChEMBL dataset of 1634 compounds was 43 

obtained and divided into subsets: the binding assay set (BA) containing 1570 molecules and the 44 

functional assay one (FA) of 64 compounds. The two datasets (BA-BCL2MChEMBL and FA-45 

BCL2MChEMBL) were then used to build binary classification models. 46 

Binary classification BA set (BAClass) and FA Set (FAClass). The 1570 BA-BCL2MChEMBL 47 

compounds were divided into actives and non-actives (inactives) on the basis of a biological activity 48 

cutoff value of 1 μM (pAct = 6). Consequently 1167 were labeled actives as displayed Ki, Kd, IC50, 49 

or EC50 values lower than 1 μM; whereas non-actives (Ki, Kd and IC50, or EC50 ≥ 1 μM) resulted to 50 

be 403. To balance actives and inactives ratio (actives/inactives = 2.90), further 923 molecules 51 

tagged as BCL2M were retrieved from PubChem (PC dataset) repository (geneID: 596). Cleaning 52 

of the PC dataset as above described led to a BCL2MPC dataset of 602 unique compounds that were 53 

merged with the BCL2MChEMBL dataset leading to a more balanced actives/inactives ratio of 1.19 54 

with 1180 active and 992 inactive compounds, respectively. A total number of 2172 datapoints was 55 

compiled for the BAClass. In a similar fashion way the FA-BCL2MChEMBL were classified into 56 

actives and inactives leading to a fully balanced training set composed of 32 active and 32 inactive 57 

molecules.  58 

QSAR models building. QSAR were developed with ML techniques considering either 59 

classification methods. Molecular descriptor and fingerprints (DESCs and FPs) as calculated by 60 

means of RDKit (see experimental) were used as independent data (XDESCs and XFPs) in the 61 

following classification models’ derivation, furthermore a combination of DESCs and FPs as a 62 

unique hybrid molecular descriptor (Hybrid) matrix were also used. 63 

Evaluation of classification models. Several ML classification models were built with K-nearest 64 

neighbors (KNN) and logistic regression (LR), gradient bosting (GB), support vector machine 65 

(SVM) and random forest (RF) using as dependent variable vector the above defined datasets 66 

BAClass and FAClass datasets. Considering seven ML algorithm for each dataset a total of forty-two 67 
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classification models were derived as datasets’ compounds were represented with FPs, DESCs and 68 

Hybrid (Table S1-S6). 69 

As many of the under building models using default Hyperparameters settings displayed good 70 

values of accuracy (ACC) and Matthews correlation coefficient (MCC), to save computation time 71 

no hyperparameters’ optimization was applied. As alternative to the model’s optimization six 72 

further final consensus models were built, by means of the voting classifier utility of scikit-learn 73 

(sklearn) library [1] with the soft voting switch [2] (Table S7). 74 

All consensus models showed a good propensity to classify actives from inactives, in particular FPs 75 

derived models displayed higher ACC and MCC values than those obtained with DESCs. In 76 

particular, the models obtained with the Hybrid combination displayed the highest internal stability 77 

and predictive power. 78 

Molecular docking assessment. Any molecular docking program should to be evaluated for its 79 

ability in reproducing experimental co-crystallized complexes (when available). In this case as 80 

venetoclax was used as reference compound four complexes of it with wild type and mutate form of 81 

Bcl-2 were used (pdb entry codes: 6O0K, 6O0L, 6O0M_2 and 6O0P). To select the best performing 82 

docking program (DP) smina [3] and Plants [4] were selected as free for academics and among the 83 

most used. Based on the available feature (F) and scoring function (FS) nine different DP/F/FS 84 

combination were applied. On the basis of a random self-docking procedure [5] the smina program 85 

with the VINA scoring function as proved to be the most effective in reproducing the venetoclax 86 

experimental co-crystallized poses in four different complexes (Table S11). 87 

As the lead compound IS21 was found to display to be active against the three Bcl-2 family proteins 88 

(Bcl-2, Bcl-xL and Mcl-1) a further assessment was performed for the Smina program by using 89 

complexes with a ligand able to bind all the three proteins. A survey on ChEMBL revealed 90 

navitoclax as tested for either Bcl-2 [6], Bcl-xL [6] or Mcl-1 [7], and being navitoclax structurally 91 

related to venetoclax the co-cristallized complexes with Bcl-2 (pdb entry code 6QGH) and Bcl-xL 92 

(pdb entry code 4QNQ) were retrieved from PDB. Docking assessment by means of re-docking and 93 

cross-docking experiments was run on the 6QGH and 4QNQ confirming the Smina/VINA 94 

combination the most suitable one (Tables S12 and S13). 95 

Computational procedures 96 

Data collection and pruning. All BCL2M records were retrieved from ChEMBL and PubChem. 97 

Human apoptosis regulator Bcl-2 bioactivity records, referred with the target identifier. The initial 98 

BCL2MChEMBL dataset was then subjected to a pruning procedure as following: 99 

• compounds whose biological activity value was not expressed in IC50, Ki, EC50, GI50, Kd, or 100 

biological data outside typical range were deleted; 101 
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• duplicates were aggregated by including only average pAct values showing standard 102 

deviations lower than 0.5; 103 

• mixtures, inorganics, and organometallics were removed; 104 

• all biological activities were converted into molar unit and transformed in logarithm scale by 105 

the p function (pAct = log([M]-1); 106 

• elimination of records  flagged with alerts as “outside typical range” and “nonstandard unit 107 

of type” in the “data_validity_comment” field 108 

The cleaned BCL2MChEMBL dataset was divided into subsets: the binding assay set (BA) and the 109 

functional assay one (FA). The two sets (BA-BCL2M and FA-BCL2M) were then used to build 110 

binary classification and regression models. 111 

Binary classification BA set (BAClass) and FA Set (FAClass). The BA-BCL2M compounds were 112 

divided into actives and non-actives (inactives) on the basis of an arbitrary pAct values of 6 (1 µM). 113 

In a similar fashion way the FA-BCL2M were classified into actives and inactives.  114 

Molecule numerical representation. To build the QSAR models molecules were described in 115 

chemical and molecular representation using, molecular descriptors (DESCs, chemical description) 116 

and molecular fingerprints (Fps, structural description), respectively. DESCs and Fps were 117 

calculated by means of the RDKit python library (v. 2017.09.1). In particular Morgan type 118 

fingerprints were used by setting to 2048 the number of bits while using radius 3. Whereas all 200 119 

RDKit descriptors were calculated for each molecule and scaled by means of the min-max method. 120 

DESCs and Fps were finally organized in matrixes to be used as independent data (XDESCs and XFPs) 121 

in the classification and regression models’ derivation. 122 

QSARs’ building. All the steps related to the development of QSAR classification models and their 123 

VS application implemented in the Python version 3.5 programming environment using anaconda. 124 

The related code was written and executed in the jupyter-notebook [1] platform by including several 125 

libraries. Among the latter can be listed:  numpy [2] and scipy [3] for numerical computing, pandas 126 

[4, 5] for data wrangling, scikit-learn for ML erlaboration, matplotlib [6] and plotly [7] for graphical 127 

output, RDKit and openbabel [8] for cheminformatics handlings.  128 

For each QSAR classification models, was used as independent data the matrix above defined 129 

(XDESCs or XMFPs) with nohyperparameter optimization.  130 

Classification modeling. Several binary classification models [9] were built with the following ML 131 

algorithms K-nearest neighbors (KNN) and logistic regression (LR), using as dependent variable 132 

vector the above defined datasets BAClass and FAClass datasets. 133 

Models’ performance internal evaluation. To evaluate the QSAR models generalization ability in 134 

predicting biological profile of new chemical entities, K-Fold cross validations were run for BA and 135 
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FA datasets. In particular, the leave half out method (LHO) was used and repeated for 100 136 

iterations. 137 

Finally, 1000 rounds of Y-scrambling were performed to assess any lack of chance correlation 138 

between.  139 

Virtual screening. A database of about 1 million of compound was retrieved from a commercial 140 

vendor (VITAS-M) and subjected to the best QSAR models to rank the molecules and select the 141 

most promising as potential BCL2M (Table S11).   142 

Molecular docking. All docking simulation were carried out with two free for academia programs, 143 

Smina and Plants considering all the possible combination of scoring function and minimization 144 

features (Table S15). 145 

Selection of experimental Bcl-2 complexed with venetoclax for docking assessment. From a 146 

survey in the PDB database a list of four complexes (wild type and three mutated Bcl-2 proteins) of 147 

Bcl-2/venetoclax were found available (PDB entry codes: 6O0K, 6O0L, 6O0M_2 and 6O0P, Table 148 

S16) 149 

The Structures were loaded in UCSF Chimera and aligned by means of the matchmaker module 150 

(mmaker). 151 

Preparation of the selected proteins for the docking assessment. The selected complexes subjected 152 

to a cleaning protocol similarly as described (8-11). The cleaned complexes were then added of 153 

hydrogen with the addh module and geometrically optimized with a short single point minimization 154 

with the embedded AMBER minimization core and the ff14SB force field with 1000 steepest 155 

descent steps and 100 of conjugate gradient steps. The parameters of the complexed ligands were 156 

calculated applying the embedded antechamber module using the generalized force field (GAFF), 157 

using Gasteiger charges. At the end of the minimization all the complexes were realigned and stored 158 

in PDB and MOL2 formats files. Each of all the minimized and aligned complexes were then 159 

separed into protein and ligand (venetoclax). PDBQT file were generated from MOL2 by means of 160 

command line tools available fromAutoDock Tools 1.56 (ADT). 161 

Molecular docking settings. Either Smina or Plants require to define the space to run the docking. 162 

To this, as all the complexes contained a well superimposed venetoclax conformation, the 163 

coordinate of just on venetoclax was used to define the docking space. To run the docking 164 

configuration files were prepared for either Smina (Table S17) and Plants (Table S18). For Plants 165 

the binding site center (bindingsite_center 9.0 3.0 -7.0) it was defined by the reference.pdb center of 166 

mass, while the binding site radius (bindingsite_radius 21.0) was calculated adding 5Å to the half of 167 

the longer dimension of the least box containing the reference.pdb file itself. 168 
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Docking affinities as calculated by the programs were stored and root mean square deviation 169 

(RMSD) were evaluated by means of the pkcombu program and used to calculate the docking 170 

accuracies. 171 

IS20 and IS21 were docked into 6QGH (Bcl-2) and 4QNQ (Bcl-xL) proteins, and due to the lack of 172 

any complex of Mcl-1 with navitoclax the pdb entry code 6YBL was retrieved as co-cristallized 173 

with the a ligand structure closest to that of venetoclax. The latter was used to predict the IS20 and 174 

IS21 binding conformations into Mcl-1. Due to the high flexibility of the Bcl-2 family proteins 175 

three further complexes of Bcl-2, Bcl-xL and Mcl-1 complexed with BH3 were also retrieved 176 

(4B4S, 4QVF and 6QFI, respectively) to explore for alternative binding modes (Tables S12 and 177 

S13). 178 

Structure preparation of interesting active compounds. The structure of IS21, IS20, IS1, ISQ, ISP, 179 

IS9, IS27 and IS36 were available in SMILES format and then were converted into PDB and MOL2 180 

(for docking with Plants) formats files with openbabel 2.41 using the –gen3D option. Finally, the 181 

PDBQT (for docking with smina) formats were obtained by means of the ADT command line tools. 182 

Pharmacokinetic 183 

In vivo experiments. To evaluate the pharmacokinetic profile of IS20 and IS21, C57/Bl6 mice were 184 

intraperitoneally injected with a single dose of IS20 or IS21 (100 mg/kg) dissolved in 10% DMSO, 185 

30% PEG400 (Sigma-Aldrich) and 60% NaCl. Mice were sacrificed starting from 15 min to 24 h 186 

after injection. Blood samples were collected by cardiac puncture, centrifuged at 3,000 g for 10 min 187 

at 4 °C and the obtained plasma was stored at -80 °C until the analysis performed by liquid 188 

chromatography tandem mass spectrometry (LC–MS/MS). Given that the two compounds were 189 

singularly administered to the animals for the pharmacokinetic studies, IS20 was used as internal 190 

standard (IS) for IS21 and vice versa. Internal Standard Working Solutions (IS-WS) were prepared 191 

by adding appropriate volumes of the stock solutions to 50 mL of 0.1% formic acid (Fluka, Milan, 192 

Italy) in methanol:acetonitrile (50:50, v/v, Sigma-Aldrich), in order to reach a final concentration of 193 

50 ng/mL. The solutions were maintained at -20 °C.  194 

LC-MS/MS Analysis. 40 µL of mouse plasma were mixed with 160 µL of IS-WS. The mixture was 195 

vortex mixed for 1 min and centrifuged at 12,000 g for 10 min at 4 °C. The supernatant was 196 

collected and 8 µL were injected into the LC–MS/MS system. The HPLC equipment consists of a 197 

Series 200 Micro-LC Pump and a Series 200 autosampler from Perkin Elmer (Norwalk, CT, USA). 198 

A triple quadrupole mass spectrometer, AB-Sciex API2000 (Toronto, ON, Canada) was used for 199 

detection. The analytes were analyzed using a C18 phase Kinetex column (10 cm x 2.1 mm ID) from 200 

Phenomenex (Torrance, CA, USA) packed with core–shell particles of 2.6 µM. The mobile phases 201 

were (A) acetonitrile and (B) water, both containing 0.1% formic acid, at a flow rate of 0.25 mL/ 202 
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min and were entirely transferred into the mass spectrometer source. Gradient elution was as 203 

follows: increase of the organic phase from 60 to 80% in 0.8 min, then to 90% in the following 1.2 204 

min and linearly to 100% in 2 min. Finally, after 3.9 min of 100%, the column was led to the 205 

original conditions in 2.5 min to enable equilibration of the column.  206 

Both analytes were detected in positive ionization with a capillary voltage of 5500 V, nebulizer gas 207 

(air) at 40 psi, turbo gas (nitrogen) at 70 psi and 400 °C. The other ion source parameters were set 208 

as follows: curtain gas (CUR) 18 psi; collision gas (CAD) 6 psi; declustering potential (DP) 80 V, 209 

entrance potential (EP) 12 V. 210 

The quantitative data were acquired using Multi Reaction Monitoring (MRM) acquisition mode. 211 

Two MRM transitions (precursor ion>fragment ion) were selected for the analytes. For IS20 212 

transitions were m/z 692.3 > 407.3 and 692.3 > 161.1, collision energy (CE) was set at 30 and 52 213 

eV while collision cell exit potential (CXP) was at 19 and 8 V for the two transitions, respectively. 214 

For IS21 transitions were m/z 706.3 > 421.3 and 706.3 > 160.7, collision energy (CE) was set at 30 215 

and 51 eV while collision cell exit potential (CXP) was at 21 and 6 V for the two transitions, 216 

respectively. 217 

The analytical method was validated according to FDA guidelines for bioanalytical method 218 

validation. Linearity, recovery, matrix effect, precision, accuracy, limits of detection (LODs) and 219 

lower limits of quantification (LLOQs) were evaluated. 220 

Calibration standard solutions were prepared in blank plasma by spiking 25 µL of a standard 221 

mixture at appropriate concentration to 40 µL of plasma and by adding 140 µL of methanol:  222 

acetonitrile (50:50, v/v). Calibrators were then treated similarly to the animal samples. The 223 

calibration range was 5 to 7500 ng/mL and the calibrators were prepared at nine level of 224 

concentration. Precision, recovery and accuracy were evaluated at three level of concentrations (25, 225 

25, 5000 ng/mL) and resulted within the acceptable limits.  226 

The limit of detection (LOD) was defined as the lowest concentration with a signal-to-noise (S/N) 227 

ratio greater than 3. The limit of quantification (LOQ) was defined as the concentration at which 228 

both precision (RSD%) and accuracy were less than 20%. LOQ resulted to be 2 ng/mL while LOD 229 

was 0.5 ng/mL.  230 

The validated method was then successfully applied in measuring IS20 and IS21 following drug 231 

administration in mice plasma to support the pharmacokinetic study (Figure S8A,B).  232 

 233 

 234 

 235 

 236 
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SUPPLEMENTARY TABLES 

Table S1. Accuracy (ACC) and Matthews correlation coefficient (MCC) for the ML models 
developed with FAClass dataset and DESCs. 

ML method Fitting Cross-Validation 
ACC MCC ACC MCC 

RandomForest 0.99 0.97 0.83 0.62 
GradientBoosting 0.99 0.97 0.87 0.71 

SVM_linearL1 0.79 0.55 0.73 0.41 
SVM_linearL2 0.79 0.54 0.77 0.51 

LogisticRegressionL1 0.87 0.71 0.81 0.59 
LogisticRegressionL2 0.91 0.80 0.79 0.53 

KNeighbors 0.88 0.74 0.81 0.60 

 

Table S2. Accuracy (ACC) and Matthews correlation coefficient (MCC) for the ML models 
developed with FAClass dataset and FPs. 

ML method Fitting Cross-Validation 
ACC MCC ACC MCC 

RandomForest 1.00 1.00 0.83 0.62 
GradientBoosting 1.00 1.00 0.83 0.62 

SVM_linearL1 0.88 0.74 0.79 0.53 
SVM_linearL2 0.95 0.89 0.83 0.62 

LogisticRegressionL1 0.96 0.92 0.83 0.62 
LogisticRegressionL2 1.00 1.00 0.83 0.62 

KNeighbors 0.91 0.80 0.84 0.65 
 237 

Table S3. Accuracy (ACC) and Matthews correlation coefficient (MCC) for the ML models 
developed with FAClass dataset and Hybrid (see text). 

ML method Fitting Cross-Validation 
ACC MCC ACC MCC 

RandomForest 1.00 1.00 0.85 0.68 
GradientBoosting 1.00 1.00 0.85 0.68 

SVM_linearL1 0.84 0.67 0.77 0.50 
SVM_linearL2 0.97 0.94 0.81 0.59 

LogisticRegressionL1 0.96 0.92 0.80 0.56 
LogisticRegressionL2 1.00 1.00 0.83 0.62 

KNeighbors 0.91 0.80 0.80 0.56 
 238 

Table S4. Accuracy (ACC) and Matthews correlation coefficient (MCC) for the ML models 
developed with BAClass dataset and DESCs. 

ML method Fitting Cross-Validation 
ACC MCC ACC MCC 
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RandomForest 0.96 0.92 1.00 1.00 
GradientBoosting 0.96 0.91 0.98 0.95 

SVM_linearL1 0.95 0.90 0.96 0.92 
SVM_linearL2 0.95 0.89 0.96 0.91 

LogisticRegressionL1 0.95 0.89 0.96 0.91 
LogisticRegressionL2 0.95 0.89 0.96 0.91 

KNeighbors 0.95 0.91 0.97 0.93 
 239 

Table S5. Accuracy (ACC) and Matthews correlation coefficient (MCC) for the ML models 
developed with BAClass dataset and FPs. 

ML method Fitting Cross-Validation 
ACC MCC ACC MCC 

RandomForest 1.00 1.00 0.96 0.91 
GradientBoosting 0.97 0.93 0.95 0.90 

SVM_linearL1 0.98 0.96 0.95 0.91 
SVM_linearL2 0.98 0.96 0.95 0.91 

LogisticRegressionL1 0.99 0.98 0.95 0.91 
LogisticRegressionL2 1.00 1.00 0.96 0.92 

KNeighbors 0.97 0.93 0.95 0.89 
 240 

Table S6. Accuracy (ACC) and Matthews correlation coefficient (MCC) for the ML models 
developed with BAClass dataset and FPs. 

ML method Fitting Cross-Validation 
ACC MCC ACC MCC 

RandomForest 1.00 1.00 0.96 0.92 
GradientBoosting 0.97 0.95 0.96 0.91 

SVM_linearL1 0.98 0.96 0.95 0.90 
SVM_linearL2 0.99 0.97 0.95 0.91 

LogisticRegressionL1 0.99 0.98 0.96 0.91 
LogisticRegressionL2 1.00 1.00 0.96 0.91 

KNeighbors 0.97 0.93 0.95 0.89 

 

Table S7. Accuracy (ACC) and Matthews correlation coefficient (MCC) for the ML models 
developed with the soft voting classifier. 

Model combination Fitting Cross-Validation 
ACC MCC ACC MCC 

FAClass dataset and DESCs 0.97 0.94 0.83 0.62 
FAClass dataset and FPs 1.00 1.00 0.81 0.60 

FAClass dataset and Hybrid 1.00 1.00 0.84 0.65 
BAClass dataset and DESCs 0.97 0.95 0.96 0.89 

BAClass dataset and FPs 0.99 0.96 0.96 0.90 
BAClass dataset and Hybrid 0.99 0.98 0.96 0.91 
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 241 

Table S8. List of 49 screened compounds. In bold are reported the 8 most effective compounds. 242 

*Two most characterized compounds (IS20 and IS21).  243 

ARBITRARY CODE VITAS-M ID ARBITRARY CODE VITAS-M ID 
IS1 STK066520 IS29 STL341576 
IS3 STK893094 IS30 STK541283 
IS5 STK145249 IS31 STK549022 
IS6 STK398814 IS32 STL049462 
IS7 STL168349 IS33 STL052557 
IS8 STL168606 IS34 STK550725 
IS9 STL481050 IS35 STK145055 
IS10 STL481045 IS37 STL429533 
IS11 STK060635 ISA STK366292 
IS13 STK595018 ISB STK367596 
IS14 STK548699 ISC STK394848 
IS15 STK673714 ISD STK362856 
IS16 STL057856 ISE STK146847 
IS17 STL052719 ISF STL132867 
IS18 STK551574 ISG STK194419 
IS19 STK554551 ISH STK192532 

 IS20 * STK569102 ISI STK389854 
 IS21 * STK570207 ISL STK332010 
IS23 STK584185 ISO STL380528 
IS24 STK593354 ISP STL181070 
IS25 STK597501 ISQ STL173124 
IS26 STK792977 ISR STK117446 
IS27 STL333693 ISS STK115790 
IS28 STL337517 IST STK237001 

  ISU STK237006 
 244 

  245 
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Table S9. Predicted docked energy by the VINA scoring function for IS21 as docked into Bcl-2, 
Bcl-xL and Mcl-1 proteins extracted from complexes containing small molecule ligands (pdb entry 
codes: 6QGH, 4QNQ and 6YBL) and from complexes containing the BIM BH3 a-helix (pdb entry 
codes: 4BAS, 4QVF and 6QFI). 

Bcl Protein Type pdb entry 
code 

Docking Energy 
(kcal/mol) 

KD1 
(µM) 

IS21 IS20 IS21 IS20 

Bcl-2 
6QGH -8.64 -8.29 

0.32 0.19 4B4S -7.86 -7.40 
Average -8.25 -7.85 

Bcl-xL 
4QNQ -8.67 -8.25 

0.42 0.51 4QVF -8.26 -8.16 
Average -8.46 -8.21 

Mcl-1 
6YBL -7.65 -7.53 

3.90 1.16 6QFI -8.09 -6.93 
Average -7.87 -7.23 

 246 

Table S10. ADMET parameter as calculated by mean of the swissadme web too l [13]. 247 
Molecule IS20 IS21 venetoclax 
MW 692.24 706.27 868.44 
#Heavy atoms 47 48 61 
#Aromatic heavy atoms 23 23 27 
Fraction Csp3 0.31 0.33 0.38 
#Rotatable bonds 12 13 14 
#H-bond acceptors 8 8 9 
#H-bond donors 1 1 3 
MR 188.2 193.01 246.7 
TPSA 164.62 164.62 183.09 
MLOGP 3.1 3.69 3.22 
ESOL Log S -8.9 -9.26 -9.78 
ESOL Solubility (mg/ml) 0.000000872 0.000000389 0.000000144 
ESOL Solubility (mol/l) 1.26E-09 5.5E-10 1.65E-10 
ESOL Class Poorly soluble Poorly soluble Poorly soluble 
Silicos-IT Solubility (mol/l) 1.14E-11 4.72E-12 4.45E-14 
Silicos-IT class Insoluble Insoluble Insoluble 
GI absorption Low Low Low 
BBB permeant No No No 
Pgp substrate Yes Yes Yes 
CYP1A2 inhibitor No No No 
CYP2C19 inhibitor Yes Yes No 
CYP2C9 inhibitor No No No 
CYP2D6 inhibitor No Yes No 
CYP3A4 inhibitor No No No 
log Kp (cm/s) -4.67 -4.36 -5.79 
Lipinski #violations 1 1 2 
Synthetic Accessibility 5.77 5.89 6.05 
 248 
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Table S11. Root mean squared deviations (RMSD) in the re-docking assessment of venetoclax in 249 
four experimental complexes (wild type and three mutated Bcl-2 proteins). The mean values are 250 
also reported. 251 

PDB ID 

Smina 
Plants 

VINA VINARDO AD4_SCORING 

BD* BDMin
** BD BDMin BD BDMin PLP PLP95 CHEMPLP 

6O0K 1.33 1.31 1.32 1.32 1.32 1.31 1.69 1.59 6.78 

6O0L 1.61 1.62 1.65 1.63 1.65 1.66 1.59 1.79 1.70 

6O0M 1.15 1.16 1.20 1.24 1.16 1.74 2.34 2.08 2.16 

6O0P 1.25 1.25 1.24 1.25 1.26 1.10 0.63 1.25 5.57 

Mean 1.34 1.34 1.35 1.36 1.35 1.45 1.56 1.68 4.05 

*BD: Best Docked conformation; **BDMin: minimized BD; VINA, VINARDO, 
AD4_SCORING are the scoring function available in smina; PLP, PLP95 and CHEMPLP 
are the scoring function available in Plants. 

 252 

Table S12. Re-docking assessment for the Smina molecular docking program for the navitoclax 253 
Bcl-2 and Bcl-xL complexes. Root mean squared deviations (RMSD) and their mean values are also 254 
reported. 255 

scoring pdb entry code ECRD ECRD Min RCRD RCRD Min Ligand Protein 

AD4_SCORING 

6QGH 6QGH 2.21 1.39 3.09 3.38 
4QNQ 4QNQ 5.04 5.19 3.37 3.46 

Average 3.62 3.29 3.23 3.42 
Docking Accuracy 25 50 25 25 

VINA 

6QGH 6QGH 2.31 1.34 2.55 4.00 
4QNQ 4QNQ 1.94 1.59 1.35 3.95 

Average 2.12 1.46 1.95 3.97 
Docking Accuracy 75 100 75 25 

VINARDO 

6QGH 6QGH 2.24 1.15 5.36 5.68 
4QNQ 4QNQ 1.41 1.41 1.16 5.18 

Average 1.82 1.28 3.26 5.43 
Docking Accuracy 75 100 50 0 

ECRD: experimental conformation re-docking; ECRD: experimental conformation re-
docking after minimization; RCRD: random conformation re-docking; docking; RCRD: 
random conformation re-dockin after minimization; VINA, VINARDO, AD4_SCORING are 
the scoring function available in smina; pdb entry code: PDB codes for Bcl-2 and Bcl-xL 
proteins co-crystallized with navitoclax 
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Table S13. Cross-docking assessment for the Smina molecular docking program for the navitoclax 256 
Bcl-2 and Bcl-xL complexes. Root mean squared deviations (RMSD) and their mean values are also 257 
reported 258 

scoring pdb entry code ECRD ECRD Min RCRD RCRD Min Ligand Protein 

AD4_SCORING 

6QGH 4QNQ 4.11 4.54 3.83 5.51 
4QNQ 6QGH 2.37 2.37 2.80 3.49 

Average 3.24 3.45 3.31 4.50 
Docking Accuracy 25 25 37.5 12.5 

VINA 

6QGH 4QNQ 1.53 1.53 1.71 3.83 
4QNQ 6QGH 2.31 1.67 4.69 3.22 

Average 1.92 1.60 3.20 3.52 
Docking Accuracy 75 100 50 25 

VINARDO 

6QGH 4QNQ 1.41 1.88 1.56 3.95 
4QNQ 6QGH 1.46 2.60 4.15 3.65 

Average 1.43 2.24 2.85 3.80 
Docking Accuracy 100 75 50 25 

ECCD: experimental conformation cross-docking; ECCD: experimental conformation 
cross-docking after minimization; RCCD: random conformation cross-docking; docking; 
RCCD: random conformation cross-docking after minimization; VINA, VINARDO, 
AD4_SCORING are the scoring function available in smina; pdb entry code: PDB codes 
for Bcl-2 and Bcl-xL proteins co-crystallized with navitoclax 

 259 

Table S14. Docking energies (kcal/mol) for IS21, IS20, IS1, ISQ, ISP, IS9, IS27 and IS36 into wild 
type and three mutated Bcl-2 proteins. As comparison the SPR experimental KD1 are also 
displayed. 

Cmpd KD1
* Docking energies (kcal/mol) into PDB IDs (BCL-2) 

6O0K (WT) 6O0L (G101V) 6O0M (F104L) 6O0P(G101A) 
IS21 0.19 -8.7 -8.9 -9.0 -8.7 
IS20 0.32 -8.3 -7.2 -8.2 -8.3 
IS1 0.48 -8.5 -7.5 -7.7 -8.4 
ISQ 0.53 -8.5 -8.6 -8.6 -8.8 
ISP 0.77 -8.3 -8.1 -8.6 -8.3 
IS29 3.40 -8.1 -7.9 -8.2 -8.3 
IS9 4.00 -7.4 -6.7 -7.0 -6.8 

IS27 4.60 -7.9 -7.7 -8.4 -7.6 
 260 

261 
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Table S15. List of used combinations for the docking experiments. 262 

# Docking Combination Software Scoring 
Function 

Minimization feature 

1 Smina/AD4_SCORING/Raw Smina Autodock 4 no 
2 Smina/AD4_SCORING/Min Smina Autodock 4 yes 
3 Smina/VINA/Raw Smina Vina no 
4 Smina/VINA/Raw Smina Vina yes 
5 Smina/VINARDO/Raw Smina Vinardo no 
6 Smina/VINARDO/Raw Smina Vinardo yes 
7 Plants/PLP Plants PLP - 
8 Plants/PLP95 Plants PLP95 - 
9 Plants/CHEMPLP Plants ChemPLP - 
 
 
Table S16. PDB codes for the co-crystallized venetoclax/Bcl-2 complexes. 

PDB entry code Mutation Reference 
6O0K Wild Type [12] 
6O0L G101V [12] 
6O0M F104L [12] 
6O0P G101A [12] 

 263 

Table S17. Setting for Smina.  
autobox_ligand = reference.pdb 
autobox_add = 5 
cpu = 12 
exhaustiveness = 32 
min_rmsd_filter = 2 
num_modes = 100 
For the minimization feature the minimize_iters = 1000 key was used 
 264 

Table S18. Setting for Plants (example for chemplp scoring function). 
# scoring function and search settings 
aco_ants 20 
scoring_functionchemplp 
outside_binding_site_penalty 50.0 
enable_sulphur_acceptors 0 
ligand_intra_score clash2 
search_speed speed1 
outside_binding_site_penalty 50.0 
flip_amide_bonds 1 
flip_planar_n 1 
force_flipped_bonds_planarity 0 
force_planar_bond_rotation 1 
rescore_mode simplex 
flip_ring_corners 0 
chemplp_clash_include_14 1 
chemplp_clash_include_HH 0 
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plp_steric_e -0.4 
plp_burpolar_e -0.05 
plp_hbond_e -2.0 
plp_metal_e -4.0 
plp_repulsive_weight 0.5 
plp_tors_weight 1.0 
chemplp_weak_cho 1 
chemplp_charged_hb_weight 2.0 
chemplp_charged_metal_weight 2.0 
chemplp_hbond_weight -3.0 
chemplp_hbond_cho_weight -3.0 
chemplp_metal_weight -6.0 
chemplp_plp_weight 1.0 
chemplp_plp_steric_e -0.4 
chemplp_plp_burpolar_e -0.1 
chemplp_plp_hbond_e -0.1 
chemplp_plp_metal_e -1.0 
chemplp_plp_repulsive_weight 1.0 
chemplp_tors_weight 2.0 
chemplp_lipo_weight 0.0 
chemplp_intercept_weight -20.0 
# binding site definition 
bindingsite_center 9.0 3.0 -7.0 
bindingsite_radius 21.0 
# output 
write_protein_conformations 0 
write_protein_bindingsite 0 
write_protein_splitted 0 
write_rescored_structures 1 
write_multi_mol2 1 
write_ranking_links 1 
write_ranking_multi_mol2 0 
write_per_atom_scores 1 
write_merged_ligand 0 
write_merged_protein 0 
write_merged_water 0 
keep_original_mol2_description 1 
merge_multi_conf_output 1 
merge_multi_conf_character . 
# write single mol2 files (e.g. for RMSD calculation) 
write_multi_mol2 0 
write_ranking_links 1 
# cluster algorithm 
cluster_structures 100 
cluster_rmsd 2.0 

265 
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SUPPLEMENTARY FIGURES 266 

Figure S1. (A) Docked conformation of IS21 into the wild type Bcl-2. (B) structure-based 
superimposed IS21 docked conformation in the wild type and three mutated Bcl-2 proteins. (C) 
Venetoclax experimental bound conformation as in the wild type Bcl-2 (pdb id 6O0K). (D) 
structure-based overlapped experimental bound conformations of venetoclax as in wild type and 
three mutated Bcl-2 proteins (pdb ids: 6O0K (WT), 6O0L (G101V), 6O0M (F104L) and 
6O0P(G101A).  

 267 

  
A C 

  

B D 
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IS21 BH3 Venetoclax 

Figure S2. Docked conformation of IS21 (green colored carbon atoms) into wild type Bcl-2 
compared to experimental venetoclax bound conformation (orange colored carbon atoms) BH3 α-
helix (light gray colored ribbon and carbon atoms) is also show as extracted from 5VAX pdb entry. 

 268 

   
IS21 BH3 Venetoclax 

Figure S3. Docked conformation of IS21 (green colored carbon atoms) into wild type Bcl-2 
compared to experimental venetoclax bound conformation (orange colored carbon atoms and 
golden surface) as found in the 6O0k pdb entry. BH3 α-helix (light gray colored ribbon and carbon 
atoms) is also show as extracted from 5VAX pdb entry. The Bcl-2 is also showed as colored by 
atom type. 

 269 
 270 
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IS20 IS20 and venetoclax Venetoclax 

Figure S4. Docked conformation of IS20 (cyan colored carbon atoms) into wild type Bcl-2 
compared with the experimental bound conformation of venetoclax (orange colored carbon atoms) 
as found in the 6O0k pdb entry. The Bcl-2 is also showed as colored by atom type 

 

  

  

A                                                                       B 

Figure S5. (A) IS21 docked conformation into Bcl-2 protein extracted from 6QGH. (B) IS21 
docked conformation into Bcl-2 protein extracted from 4BAS. 
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Figure S6. (A) Bcl-xL protein complexed with Navitoclax (pdb id 4QNQ). (B): Bcl-xL protein 
complexed with BIN BH3 (pdb id 4QVF). (C) IS21 docked conformation into Bcl-xL protein 
extracted from 4QNQ. (D) IS21 docked conformation into Bcl-xL protein extracted from 4QVF. 
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Figure S7. (A) Mcl-1 protein complexed with Navitoclax (pdb id 6YBL). (B) Mcl-1 protein 
complexed with BIN BH3 (pdb id 6QFI). (C) IS21 docked conformation into Bcl-2 protein 
extracted from 6YBL. (D) IS21 docked conformation into Mcl-1 protein extracted from 6QFI. 

 

 271 
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 286 

Figure S8. (A) Biopharmaceutical profile of IS20 (grey line) and IS21(black line). Graph showing 287 
the more rapid adsorption of IS21 respect to IS20 in mice plasma following drug administration at 288 
100 mg/kg. (B) Biopharmaceutical profile of IS21. Graph showing the measure of IS21 in mice 289 
plasma following drug administration at 50 mg/kg. (A-B) Data are reported as mean ± SD peak of 290 
IS20 or IS21 (Conc. µM) at different times (n = 3).  291 
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Figure S9. (A) SPR experiments were carried out on Bcl-2, Bcl-xL and Mcl-1 (ligands) 337 

immobilized on COOH5 sensorchips, using venetoclax (ABT-199) as analyte.  (B) Western blot 338 

analysis of Bcl-2, Bcl-xL and Mcl-1 proteins expression in M14, H1299, HCT116 and MDA-MB-339 

231 cell lines. Reported images are representative of two independent experiments with similar 340 

results. HSP72/73 is shown as loading and transferring control. 341 
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Figure S10. Effect of IS20 and IS21, on viability, clonogenic ability, sphere formation, 369 

apoptosis and autophagy of A375 cells (20 μM for 72 h). (A) Analysis of cell viability by MTT 370 

assay after treatment with IS20 or IS21. The results are reported as “viability of treated 371 

cells/viability of control cells (Ctrl)” × 100. (B) Quantification of clonogenic ability after treatment 372 

with IS20 or IS21. Results are reported as percentage of clonogenicity of treated versus untreated 373 

cells (Ctrl). (C) Quantification of tumor sphere formation after treatment with IS20 or IS21. Results 374 

are reported as percentage of tumor sphere formation of treated versus untreated cells (Ctrl). (B-C) 375 

Data are reported as mean ± SD of three independent experiments. p-values were calculated 376 

between control (Ctrl) and treated cells, ** p < 0.001 and *** p < 0.0001. (D) Western blot analysis 377 

of PARP1 cleavage (cl. PARP) and LC3B-I and LC3B-II levels after treatment with IS20 or IS21. 378 

Reported images are representative of two independent experiments with similar results. HSP72/73 379 

and Actin are shown as loading and transferring control. 380 

 381 

      A                                                                            B 382 
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 390 

Figure S11. Effect of IS20, IS21, ABT-263 and ABT-199 on viability, apoptosis and autophagy 391 

of M14 cells (20 μM for 72 h). (A) Analysis of cell viability by MTT assay in M14 cells treated 392 

with IS21, ABT-199 or ABT-263  (20 μM for 72 h). (B) Western blot analysis of PARP1 cleavage 393 

(cl. PARP) and LC3B-I and LC3B-II levels in M14 melanoma cell line treated with IS21, ABT-199 394 

or ABT-263 (20 μM for 72 h). Reported images are representative of two independent experiments 395 

with similar results. HSP72/73 and Actin are shown as loading and transferring control. (B-C) The 396 

results are reported as “viability of treated cells/viability of control cells (Ctrl)” × 100. Data are 397 

reported as mean ± SD of three independent experiments.  398 

 399 
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 422 

Figure S12. Effect of IS21, ABT-199 and ABT-263 on A375 in vivo tumor growth. (A) Analysis 423 

of in vivo tumor growth in nude mice injected with A375 cells and treated with vehicle, IS21, ABT-424 

199 or with ABT-263 at the indicated concentrations for two weeks. Experiments were repeated 425 

twice. 4 animals/group. * p < 0.01, ** p < 0.001, *** p < 0.0001. (B) Representative images of 426 

explanted tumors of two independent experiments. The scale bar represents 1 cm. (C) Analysis of 427 

tumor weight after the in vivo experiment performed as reported in (A). ** p ≤ 0.001 calculated as 428 

the mean of two experiments. (D) Analysis of mice weight after the in vivo experiment performed 429 

as reported in (A). (A,C,D) Data are reported as mean ± SD of two independent experiments.  430 
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