## Supplementary data



**Figure S1.** Isolation and purification process of GVs. (A) Pink archaeon *Halobacterium NRC-1* (Halo) before harvest. (B) Separation of buoyant bacterial cells in a separatory funnel. (C) The GVs were isolated from bacteria and floated on the top of the media.



Figure S2. TEM image of GVs. (A) Scale bar =  $1\mu m$  (B) Scale bar = 200 nm.



Figure S3. Size distribution of GVs by dynamic light scattering.



**Figure S4.** Flow cytometric analysis of harvested MSCs. The MSC populations revealed positive expression of CD29, CD90, and negative expression of CD45, CD106.



Figure S5. Quantitative analysis of GV@MSCs after being incubated for different time. \*\*\*, p < 0.001



Figure S6. Confocal images showed GVs are located in endosome. The nuclei are stained with Hoechst 33342 (blue) and the endosomes with LysoSensor Green DND-189 (green). Scale bar =  $3 \mu m$ .



**Figure S7.** Percentages of viable MSCs after being incubated with GVs at different concentrations. ( $OD_{500} = 0.1, 0.25, 0.5, 0.75$  and 1.0) for 10h (5 replicates).



**Figure S8.** Live and dead cell double staining of MSCs after being incubated with GVs for 0 or 12h. Scale bar =  $100 \ \mu m \ (n = 5 \ fields)$ .



Figure S9. Quantitative analysis of migrating MSCs and GV@MSCs with or without SDF-1 $\alpha$ .



**Figure S10.** Quantitative analysis of the differentiation capability of MSCs and GV@MSCs by (A) Oil red, (B) Alizarin red and (C) Alixin blue staining.



**Figure S11.** GVs can be burst by ultrasound *in vivo*. Ultrasonic images of GVs before and after destruction by a high-power ultrasound pulse when being subcutaneously injected GV@MSCs into CIA model rats' lateral malleolus joint ( $1 \times 10^7$  cells per rat).