Supplementary materials for

HDAC5 modulates PD-L1 expression and cancer immunity via the

deacetylation of p65 in pancreatic cancer

Yingke Zhou, Xin Jin, Haixin Yu, Gengdu Qin, Penglin Pan, Jingyuan Zhao, Taoyu Chen, Xueyi Liang, Yan Sun, Bo Wang, Dianyun Ren, Shikai Zhu, Heshui Wu

The file includes:

- Supplementary figures and figure legends
- Supplementary Table S1. Sequence of primers and gene specific shRNAs
- Supplementary Table S2. Information of antibodies
- Supplementary Table S3. Information of chemicals
- Supplementary Table S4. Information of recombinant DNA
- Supplementary Table S5. TCGA samples included in this study
- Supplementary Table S6. Top20 Pathways negatively correlated with HDAC5 expression in the GSEA of TCGA pancreatic cancer dataset

Supplementary figures

Figure S1 Supplementary data to Figure 1

(A) Histogram showing the relative protein level of PD-L1 in three independent replicates of the assay in Figure 1G. (B) Relative protein level of PD-L1 in Figure 1I (n=3).

Fig. S2

Figure S2 Supplementary data to Figure 2

(A-D) PANC-1 cells were treated with indicated chemicals for 24 h, and then were harvest for western blot (A, C) and RT-qPCR, data are shown as mean \pm SD (n= 3, ** P < 0.01, *** P < 0.001) (B, D). (E-F) PANC-1 cells were infected with lenti-virus expressing indicated shRNAs for 48 h. After a 48 h puromycin selection, cells were treated with indicated drugs for 24 h (2.5 μ M Ruxolitinib, 10 μ M JSH-23). Then cells were harvested for western blot (E) and RT-qPCR. Data are shown as mean \pm SD (n = 3, n.s. not significant, ** P < 0.01) (F). (G) Volcano plot depicting the differentially expressed genes (DEGs) in HDAC5 knock-down PANC-1 cells compared to control cells via RNA-seq.

Fig. S3

Figure S3 PKC inhibitor represses PD-L1 expression and p65 acetylation

(A-B) PANC-1 cells were treated with indicated drugs (Staurosporine, 1µM) for 24 h, and then were harvested for western blot (A) and RT-qPCR, data are shown as mean \pm SD (n= 3, *** *P* < 0.001) (B). (C) PANC-1 cells were transfected with indicated plasmids for 48 h, then cells were harvested for co-IP assay. (D) PANC-1 cells were transfected with indicated plasmids, 24 h after transfection, cells were treated with indicated drugs for 24 h, and then were harvest for co-IP assay.

ΙΚβα

ΙΚΚβ

ΙΚΚα

ERK2

HDAC5

ρ-ΙΚΚα/β

37

75

75

-75

-37

PANC-1

-150

Figure S4 Acetylation on K310 of p65 promotes its binding with BRD4

(A) Relative protein level of PD-L1 in Figure 5F (n= 3). (B) Western blot analysis of whole cell lysate (WCL), cytosolic fractionation and nuclear fractionation from PANC-1 cells after the knock-down of HDAC5. (C-E) PANC-1 cells were infected with indicated lenti-virus, after a 48 h puromycin selection, cells were harvested for western blot (C), co-IP (d) and ChIP-qPCR (E), data are shown as mean \pm SD (n= 3, ** P < 0.01). (F) PANC-1 cells were transfected with indicated plasmids for 48 h, and cells were harvested for co-IP analysis. (G-H) PANC-1 cells were infected with lenti-virus expressing indicated shRNAs, and after a 48 h puromycin selection, cells were harvested for RT-qPCR (G) and co-IP analysis (H). Data are shown as mean \pm SD (n= 3, *** P < 0.001).

Figure S5 HDAC5 silence or inhibition sensitize panc-02 derived PDAC mouse model to the treatment of α -PD1

(A-B) Panc 02 cells were infected with lentivirus expressing indicated shRNAs for 48 h. After 48 h puromycin selection, cells were harvested for western blot analysis (A) and RT-qPCR (B). Data are shown as mean \pm SD (n = 3, *** P < 0.001). (C) Schematic diagram depicting the treatment plan for mice bearing subcutaneous Panc 02 tumors. (D) Growth curve of tumors in different groups. Data are shown as mean \pm SD (n = 5), * P <0.05, ** P < 0.01. (E) At the end of the treatment, the numbers of CD45+CD8+ T cells, CD45+CD4+ T cells, and CD11b+Gr1+ myeloid cells that infiltrated in tumors in different treatments were analyzed by FACS. Data are shown as mean \pm SD (n = 5), ** P <0.01, (F-G) PANC-1 cells were treated with indicated drugs for 24 h, and cells were harvested for western blot (f) and RT-qPCR, data are shown as mean \pm SD (n = 3, *** P < 0.001) (g). (H-I) PANC-1 cells were treated with indicated drugs for 24 h, and cells were harvested for co-IP (H) and ChIP-qPCR, data are shown as mean \pm SD (n = 3, *** P < 0.001) (I). (J) FACS analysis of tumor infiltrated CD45+CD8+ T cells, CD45+CD4+ T cells, CD45+CD8+ T cells, CD45+CD8+ T cells, CD45+CD8+ T cells, and CD11b+Gr1+ myeloid cells in indicated treatment group.

Figure S6 Supplementary data to mouse work

(A-B) Genotyping of the autochthonous KPC mouse (*Kras*^{G12D/+}; *LSLTrp53*^{R172H/+}; *Pdx-1-Cre*) used in Figure 6. (C-D) Representative images of immunofluorescence staining of tumor samples in indicated group (C), and the quantification data (D). Data are shown as mean \pm SD (n = 5), n.s. not significant, ** *P* < 0.01, *** *P* < 0.001. (E-F) FACS analysis of tumor infiltrated CD4⁺Foxp3⁺ Treg cells in indicated groups (E) and quantification data (F). Data are shown as mean \pm SD (n = 5), n.s. not significant, *** *P* < 0.001.

Gene	Usage	Forward	Reverse			
GAPDH	RT-aPCR	ACCCAGAAGACTGTGGAT	TTCAGCTCAGGGATGACC			
	1	GG	TT			
CD274	RT-qPCR	GGTGCCGACTACAAGCGA	AGCCCTCAGCCTGACATG			
		AT	TC			
RELA	RT-qPCR	TGGCCCCTATGTGGAGAT	GTATCTGTGCTCCTCTCGC			
HDAC5	RI-qPCR	CTGCGGAACAAGGAGAA GGGAACTCTGGTCC				
IIDACS	KI-qrCK	AG	GCC			
Gapdh	RT-aPCR	AGGTTGTCTCCTGCGACTT	GGGTGGTCCAGGGTTTCT			
	1	СА	TACT			
Hdac5	RT-qPCR	GACCAACCCACTGTGGTG	TCCAGTGTGGCTTTACGA			
		AA	CC			
Cd274	RT-qPCR	AATGCTGCCCTTCAGATC	ATAACCCTCGGCCTGACA			
		AC	ТА			
CD274	ChIP-					
promoter	qPCR	TC	CICIACIGCCCCCTAGAC CA			
CD274	ChIP-					
enhancer	qPCR	GGAGAGGCACTAAGAGG GAAA	AAGCATGAGGAATACGGA AGTCA			
shRNAs		Sequence				
sh-HDAC5-1	CCGGGACTGTTATTAGCACCTTTAACTCGAGTTAAAGGTGCTAATA					
sn-HDAC5-2	CCGGGCTAGAGAAAGTCATCGAGATCTCGAGATCTCGATGACTTTC TCTAGCTTTTT					
sh-p65-1						
	AATCCGTTTT					
sh-p65-2	CCGGCACCATCAACTATGATGAGTTCTCGAGAACTCATCATAGTTG					
1	ATGGTGTTTTT					
sh-HADC3-1	CCGGCCT	TCCACAAATACGGAAATTCT	CGAGAATTTCCGTATTTGT			
		GGAAGGTTT	ТТ			
sh-HADC3-2	CCGGCGGTCTCTATAAGAAGATGATCTCGAGATCATCTTCTTATAG					
	AGACCGTTTTT					

 Table S1. Sequence of primers and gene specific shRNAs

Table S2. Information of antibodies

Antibodies	Source	Identifier	Working dilution	
Dabbit managland anti DD I 1	Cell Signaling	Cat # 13684S; RRID:	1:1000	
Rabbit monocional anti-PD-L1	Technology	AB_2687655		
Rabbit polyclonal anti-Flag-	Drataintach	Cat # 20543-1-AP; RRID:	1:1000	
tag	Proteintech	AB11232216		
Dabbit managland anti EDK2	Cell Signaling	Cat # 9108; RRID:	1:3000	
Rabbit monocional anti-EKK2	Technology	AB_2141156		
Rabbit polyclonal anti-	Alexan	Cat # AB55403; RRID:	1:1000	
HDAC5	Abcam	AB 880353		
Rabbit polyclonal anti-H3K27-	Abaama	Cat# AB4729; RRID:	1,1000	
ac	Abcalli	AB_2118291	1.1000	
Dabbit managland anti n65	Cell Signaling	Cat # 8242S; RRID:	1.2000	
Rabbit monocional anti-p05	Technology	AB_10860244	1.2000	
Rabbit managlanglanti RalP	Cell Signaling	Cat# 10544; RRID:	1,1000	
Rabbit monocional anti-Reib	Technology	AB 2797727	1.1000	
Dabbit polyalonal anti-a Dal	Cell Signaling	Cat# 4727; RRID:	1,1000	
Rabbit polycional anti-e-Rei	Technology	AB_2178843	1.1000	
Pabhit polyalonal anti n52	Cell Signaling	Cat# 4882; RRID:	1,1000	
Rabbit polycional anti-p32	Technology	AB_10695537	1:1000	
Pabhit polyalopal anti n50	Cell Signaling	Cat# 3035; RRID:	1,2000	
Rabbit polycional anti-p50	Technology	AB 330564	1.2000	
Rabbit monoclonal anti-p-	Cell Signaling	Cat# 4060; RRID:	1,1000	
AKT(S473)	Technology	AB_2315049	1:1000	
Rabbit monoclonal anti-p-	Cell Signaling	Cat# 3033; RRID:	1,1000	
p65(S536)	Technology	AB_331284	1:1000	
Rabbit polyclonal anti-p-	Abcam	Cat# ab19/926	1.1000	
p65(S311)	Abcalli		1.1000	
Rabbit acetylated lysine	Cell Signaling	Cat# 9441; RRID:	1.1000	
antibody	Technology	AB_331805	1.1000	
Rabbit monoclonal anti-BRD4	Cell Signaling	Cat# 13440; RRID:	1.800	
	Technology	AB_2687578	1.000	
Rabbit monoclonal anti-	Cell Signaling	Cat# 9167; RRID:	1.1000	
p-STAT1	Technology	AB_561284	1.1000	
Rabbit monoclonal anti-	Cell Signaling	Cat# 2128; RRID:	1.2000	
β-Tubulin	Technology	AB_823664	1.2000	
Rabbit polyclonal anti-	Proteintech	Cat# 17168-1-AP; RRID:	1.1000	
Histone-H3	Troteniteen	AB_2716755	1.1000	
Mouse monoclonal anti-	Cell Signaling	Cat# 4814; RRID:	1.1000	
ΙκΒα	Technology	AB_390781	1.1000	
Mouse monoclonal anti-	Cell Signaling	Cat# 11930; RRID:	1.1000	
ΙΚΚα	Technology	AB_2687618	1.1000	
Mouse monoclonal anti-	Cell Signaling	Cat# 8943; RRID:	1.1000	
ΙΚΚβ	Technology	AB_11024092	1.1000	
Rabbit monoclonal anti-	Cell Signaling	Cat# 2697; RRID:	1.1000	
p- ΙΚΚα/β(S176/180)	Technology	AB_2079382	1.1000	
Mouse anti-rabbit IgG				
(Conformation specific)	Cell Signaling	Cat# 5127; RRID:	1.4000	
monoclonal antibody (HRP	Technology	AB_10892860	1.7000	
conjugate)				
Goat anti-mouse polyclonal	AMSRIO	Cat# BA1050-1; RRID:	1.4000	
antibody		AB_10892412	1.7000	
Rabbit monoclonal anti-	Abcam	Cat# ab194926; RRID:	1:2000	
CD4	11000111	AB_2686917		
Rabbit monoclonal anti-	Cell Signaling	Cat# 12653; RRID:	1.1000	
FOXP3	Technology	AB_2797979	1.1000	

Table S3. Information of chemicals

Chemicals	Source	Identifier		
Ruxolitinib	Tsbiochem	T1829		
JSH-23	Tsbiochem	T1930		
Staurosporine	Tsbiochem	T6680		
LMK235	MedChemExpress	HY-18998		

Table S4. Information of recombinant DNA

Recombinant DNA	Source	Identifier
Flag-HDAC5	Addgene	Cat# 58905
pCMV4-p65	Addgene	Cat# 21966

No	Sample Id	No	Sample Id	No	Sample Id	
1	TCGA-F2-6879	51	TCGA-IB-A5SO	101	TCGA-IB-AAUO	
2	TCGA-HZ-7919	52	TCGA-IB-A5SP	102	TCGA-IB-AAUR	
3	TCGA-HZ-7922	53	TCGA-IB-A5SQ	103	TCGA-IB-AAUS	
4	TCGA-HZ-7925	54	TCGA-IB-A5SS	104	TCGA-2L-AAQE	
5	TCGA-HZ-7926	55	TCGA-IB-A5ST	105	TCGA-2L-AAQI	
6	TCGA-IB-7644	56	TCGA-OE-A75W	106	TCGA-2L-AAQJ	
7	TCGA-IB-7646	57	TCGA-PZ-A5RE	107	TCGA-3A-A9IB	
8	TCGA-IB-7647	58	TCGA-Q3-A5QY	108	TCGA-3A-A9IH	
9	TCGA-IB-7649	59	TCGA-US-A774	109	TCGA-3A-A9IU	
10	TCGA-IB-7651	60	TCGA-US-A779	110	TCGA-FB-AAPS	
11	TCGA-IB-7652	61	TCGA-US-A77E	111	TCGA-HV-AA8X	
12	TCGA-IB-7885	62	TCGA-US-A77G	112	TCGA-LB-A9Q5	
13	TCGA-IB-7886	63	TCGA-HV-A7OL	113	TCGA-RB-AA9M	
14	TCGA-IB-7887	64	TCGA-HZ-A77O	114	TCGA-XD-AAUL	
15	TCGA-IB-7888	65	TCGA-HZ-A77P	115	TCGA-2J-AAB1	
16	TCGA-IB-7889	66	TCGA-IB-A6UF	116	TCGA-2J-AAB4	
17	TCGA-HZ-8001	67	TCGA-IB-A6UG	117	TCGA-2J-AAB6	
18	TCGA-HZ-8002	68	TCGA-LB-A7SX	118	TCGA-2J-AAB8	
19	TCGA-HZ-8003	69	TCGA-RB-A7B8	119	TCGA-2J-AAB9	
20	TCGA-HZ-8005	70	TCGA-US-A776	120	TCGA-2J-AABA	
21	TCGA-IB-7645	71	TCGA-HZ-A77Q	121	TCGA-2J-AABE	
22	TCGA-IB-7890	72	TCGA-HZ-A8P0	122	TCGA-2J-AABF	
23	TCGA-IB-7891	73	TCGA-IB-A7LX	123	TCGA-2J-AABH	
24	TCGA-IB-7893	74	TCGA-IB-A7M4	124	TCGA-2J-AABI	
25	TCGA-IB-7897	75	TCGA-LB-A8F3	125	TCGA-2J-AABK	
26	TCGA-H6-8124	76	TCGA-S4-A8RP	126	TCGA-2J-AABO	
27	TCGA-HZ-8315	77	TCGA-XN-A8T3	127	TCGA-2J-AABR	
28	TCGA-HZ-8317	78	TCGA-XN-A8T5	128	TCGA-2J-AABT	
29	TCGA-HZ-8519	79	TCGA-YB-A89D	129	TCGA-2J-AABU	
30	TCGA-HZ-8636	80	TCGA-YY-A8LH	130	TCGA-2J-AABV	
31	TCGA-HZ-8637	81	TCGA-F2-A8YN	131	TCGA-3A-A9IX	
32	TCGA-IB-8126	82	TCGA-HZ-A8P1	132	TCGA-3A-A9IZ	
33	TCGA-IB-8127	83	TCGA-IB-AAUM	133	TCGA-3A-A9J0	
34	TCGA-F2-A44G	84	TCGA-IB-AAUP	134	TCGA-FB-AAPQ	
35	TCGA-F2-A44H	85	TCGA-IB-AAUT	135	TCGA-FB-AAPU	
36	TCGA-FB-A4P5	86	TCGA-IB-AAUU	136	TCGA-FB-AAPY	
37	TCGA-FB-A545	87	TCGA-Q3-AA2A	137	TCGA-FB-AAPZ	
38	TCGA-H6-A45N	88	TCGA-S4-A8RM	138	TCGA-FB-AAQ0	
39	TCGA-HV-A5A3	89	TCGA-S4-A8RO	139	TCGA-FB-AAQ1	
40	TCGA-HV-A5A4	90	TCGA-YH-A8SY	140	TCGA-FB-AAQ2	
41	TCGA-HV-A5A5	91	TCGA-2L-AAQA	141	TCGA-FB-AAQ3	
42	TCGA-HV-A5A6	92	TCGA-2L-AAQL	142	TCGA-FB-AAQ6	
43	TCGA-HZ-A49G	93	TCGA-3A-A9I5	143	TCGA-HV-AA8V	
44	TCGA-HZ-A49H	94	TCGA-3A-A9I7	144	TCGA-HZ-A9TJ	
45	TCGA-HZ-A49I	95	TCGA-3A-A9I9	145	TCGA-IB-AAUQ	
46	TCGA-HZ-A4BH	96	TCGA-3A-A9IC	146	TCGA-XD-AAUG	
47	TCGA-HZ-A4BK	97	TCGA-3E-AAAY	147	TCGA-XD-AAUH	
48	TCGA-M8-A5N4	98	TCGA-3E-AAAZ	148	TCGA-XD-AAUI	
49	TCGA-FB-A5VM	99	TCGA-F2-A7TX	149	TCGA-Z5-AAPL	
50	TCGA-FB-A78T	100	TCGA-IB-AAUN	1		

Table S5. TCGA samples included in this study

Table S6. Top20 Pathways negatively correlated with HDAC5 expression in the GSEA of

TCGA pancreatic cancer dataset

				NOM p-	
NAME	SIZE	ES	NES	val	FDR q-val
		0.69948	2.1251		0.062428
GO_REGULATION_OF_ADAPTIVE_IMMUNE_RESPONSE	10	554	383	0	206
		0.69419	2.0632		0.095410
GO_REGULATION_OF_LYMPHOCYTE_MEDIATED_IMMUNITY	9	044	77	0	75
		0.72584	1.9704		0.210245
GO_REGULATION_OF_T_CELL_MEDIATED_IMMUNITY	7	79	568	0	19
		0.72824	1.8846	0.001324	0.245700
GO_NUCLEOBASE_CONTAINING_COMPOUND_TRANSPORT	6	55	893	503	5
		0.48549	1.8720	0.005561	0.256721
GO_ADAPTIVE_IMMUNE_RESPONSE	21	57	814	736	02
		0.71677	1.8303	0.006648	0.358446
GO_T_CELL_MEDIATED_CYTOTOXICITY	6	446	968	936	36
		0.71677	1.7940	0.001345	0.473937
GO_REGULATION_OF_T_CELL_MEDIATED_CYTOTOXICITY	6	446	089	895	15
GO_POSITIVE_REGULATION_OF_LEUKOCYTE_MEDIATED_CY		0.70194	1.7898	0.002673	0.422858
ΤΟΤΟΧΙCITY	6	76	837	797	74
		0.70194	1.7879	0.006535	0.402082
GO_POSITIVE_REGULATION_OF_CELL_KILLING	6	76	941	948	83
		0.64395	1.7634	0.007509	0.420184
GO_CELL_KILLING	7	1	822	387	58
GO_REGULATION_OF_LEUKOCYTE_MEDIATED_CYTOTOXICI		0.64395	1.7475	0.006305	0.461274
TY	7	1	206	17	5
GO_ANTIGEN_PROCESSING_AND_PRESENTATION_OF_END		0.78195	1.7426	0.008733	0.459104
OGENOUS_ANTIGEN	4	61	296	625	4
		0.64395	1.7359	0.007905	0.463249
GO_REGULATION_OF_CELL_KILLING	7	1	372	139	36
		0.64395	1.7247	0.010389	0.466168
GO_LEUKOCYTE_MEDIATED_CYTOTOXICITY	7	1	698	61	64
		0.70831	1.7177	0.012362	0.474781
GO_MEMORY	5	72	576	638	6
		0.58436	1.7170	0.011292	0.458317
GO_NEUROTRANSMITTER_METABOLIC_PROCESS	9	62	41	347	22
		0.44217	1.6737	0.015401	0.571121
GO_RESPONSE_TO_GROWTH_FACTOR	21	79	25	54	93
		0.59127	1.6658	0.011378	0.589056
GO_MUSCLE_CELL_DIFFERENTIATION	8	44	747	002	9
		0.80712	1.6198	0.020408	0.794124
GO_NEGATIVE_REGULATION_OF_BLOOD_PRESSURE	3	16	041	163	9
GO_REGULATION_OF_CYSTEINE_TYPE_ENDOPEPTIDASE_AC		0.59265	1.6138	0.031454	0.805498
TIVITY	7	1	635	783	66