
Supplementary Notes

Data preprocessing for TraSig

For the liver data, we used Seurat [12] for data preprocessing. Specifically, we removed low quality

cells by setting cutoffs for parameters “nFeature_RNA” and “percent.mt” and then normalized the

counts using “LogNormalize” option (which composed of first calculating TPM with a scaling factor

of 1e4 and then transforming by natural log).

For the neocortical development data, we used in-house normalization. We first filter out genes not

expressed in any of the cells, then normalizing the counts using TPM with a scaling factor of 1e4

and finally transforming the values using natural log.

For the oligodendrocyte data and the hepatoblast data, we used the “expression” matrices of the

datasets named “oligodendrocyte-differentiation-clusters_marques.rds” and “hepatoblast-differentiation_yang.rds”

from dynverse [4] respectively and did not apply any extra preprocessing steps.

Data preprocessing for SingleCellSignalR and CellPhoneDB

For SingleCellSignalR, we used the same preprocessing procedures as for TraSig. For CellPhoneDB,

given that the authors recommend using un-log transformed data [7], we applied the same prepro-

cessing steps as for TraSig except for the last log transformation step.

Details in dividing edges into discrete bins

Given a continuous pseudo-time assignment in [0, 1], we first round the original pseudo-time to 2

decimal places. This is equivalent to dividing each edge into 101 bins, where the middle 99 bins are

of size 0.01 while the first and the last bins are of size 0.005.

Selecting the best window size for smoothing expressions profiles

We evaluated several options for the size of the sliding window. We compared windows of size: 5,

10, 20, and 30 bins. As expected (Figure S1), the larger the window, the smoother the resulting

expression profiles. However, as the left-most plot of Figure S2 shows, the number of significant

ligand-receptor pairs can decrease as the window size increases though this may be due to the

permutation test which would be less sensitive to individual values when window size is larger. We

1



thus looked for a size in which the number of significant pairs identified stabilizes. The middle and

the right-most plots in Figure S2 present comparisons between the intersection ratio (y axes value)

of significant ligand-receptors for different window sizes (x axis). As can be seen, once we reach 20,

the number seems to stabilize and results are largely similar between 20 with both smaller and larger

sizes.

Figure S1: Expression profiles of an example pair of ligand-receptor under different window sizes for
the liver organoids data. As the window size increases, the expression profiles become smoother.
Note that the total number of sliding window intervals are different under different window sizes.
Please refer to section “Details in calculating sliding window summaries” for details.

Details in calculating sliding window summaries

We implemented different options for sliding window summaries. Each of them differs in the way

dealing with the first few sliding window intervals. When using a window of length L to slide over

N bins, the first sliding window summary is taken over the first bin till the Lth bin. Thus, the total

number of sliding window summaries of size L is N � (L� 1). One may just take these summaries as

the smooth express profile (corresponding to the “discard” option in our implementation). However,

this way of implementation may not be suitable for the cases where most of the information is

allocated near the ends. Because in the common way of implementation as described above, the
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Figure S2: Impact of sliding window size on identified ligand-receptor pairs. Left: Number of
significant ligand-receptors pairs for interacting clusters for different window sizes. Middle: Percent
of significant ligand-receptors found by both window sizes in a pair (x axis) with regard to (w.r.t) all
ligand-receptors found by the smaller window size. Right: w.r.t those found by the larger window
size. The box-plots are generated using the standard definition (center line - median; box limits -
lower and upper quartiles; whiskers - 1.5⇥ interquartile range; points - outliers).

values at the ends (that is, cells closed to nodes in our case) are used fewer times than the values in

the middle. In the output from trajectory inference tools, however, much more cells are assigned to

locations closed to nodes (especially the starting node) than those in the middle.

To make better use of the values closed to the nodes and to obtain a higher resolution summary of

the values around the starting nodes, we also implemented other options for taking sliding window

summaries. The default option is “smallerWindow”, where as described in the Methods, we use

L/2 as the length of the first sliding window and then increase to L when we reach the first L bins.

Another option is “None”, where we use window size of 1 for the first bin, window size of 2 for the

first 2 bins and gradually increase to window size of L for the first L bins. The last option is “parent”,

where we make use of the parenting edge of the edge of interest, and taking average by also using

the cells assigned to the parenting edge. For example, when taking the summary for the first bin, we

also use the cells assigned to the last L� 1 bins in the parenting edge.

We tested different options of sliding window summaries on the liver organoid data and found they

gave overall very similar predictions.

Calculating interaction scores using optimally aligned pseudotime expression

profiles

Other than calculating scores directly using end-to-end alignment of the pseudotime expression

profiles as described in the Methods section, we implemented another option by first obtaining the
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optimal temporal alignment and then calculate the scores based on the aligned profiles, adapted

from [50, 51]. The main steps for the alignment are shown in Figure S3.

Figure S3: Obtain the optimal alignment for every pair of edges / clusters. One of the edge / cluster
is called the reference (ref in the figure) and the other is called the sample. Here we illustrate
the main idea using a single pair of genes. We start with the sliding window summaries of these
genes along pseudotime (left). We first find the B-spline representations of these expresssion profiles
(middle). We finally obtain the optimal alignment between these two edges / cluster by minimizing
the differences between the aligned profiles (right).

For every ligand and receptor in the database and for every edge / cluster, we first find the B-spline

representation of the sliding window summaries. We use the interpolate.splrep function from scipy

package [52], with degrees set as 3 (cubic splines) and the smooth parameter as 10 for the liver

organoid data.

We use dynamic time warping (DTW) to align every pair of edges / clusters for which we will

calculate interactions scores. For each pair of edges / clusters, we use the sender edge / cluster as

reference and align it with the receiver edge / cluster. Specifically, we assume a linear alignment

function for each pair ⌧j(t) =
(t�bj)
aj

, following [50, 51], where t is the time in the reference, j is the

jth pair of edges / clusters and aj and bj are parameters for this function. The objective of this

alignment step is to find the best aj and bj for the jth pair of edges / clusters. Particularly, we find

them by looking at the differences between the aligned expression profiles of the reference (sender)

and the receiver edge / cluster and select the set of aj and bj minimizing the differences.

We focus on the expression differences between ligands in the reference (sender) edge / cluster and

their corresponding receptors in the receiver edge / cluster. For the jth pair of edges / clusters

and for the kth pair of ligand and receptor, we first obtain their aligned expression profiles. Set

sjlk(t) as the expression of the ligand lk at time t, estimated from the corresponding fitted spline.
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Here t 2 [tmin, tmax], the reference interval, and we set tmin as 0 and tmax as the total length

of the sliding window summaries. Similarly, the expression of the ligand’s receptor rk at t0 is

sjrk(t
0), where t0 2 [tmin, tmax]. Then the aligned expression for rk is sjrk(⌧j(t)). The aligned interval

is thus [↵,�], where ↵ = max (tmin, ⌧
�1
j (tmin)) and � = min (tmax, ⌧

�1
j (tmax)). Given the fitted

splines, we can estimate the expression values at any t 2 [↵,�]. We use cosine distance defined

as 1 � lT r
klkkrk to measure the expression differences, where l = {sjlk(↵), ..., s

j
lk
(t), ..., sjlk(�)} and

r = {sjrk(⌧j(↵)), ..., s
j
rk(⌧j(t)), ..., s

j
rk(⌧j(�))}. The overall differences between all pairs of ligands and

receptors for the jth pair of edges / clusters is just the summation over all pairwise distances.

To avoid trivial solutions, we set the following constraints: ↵ > 0, ↵ < � and (��↵)
(tmax�tmin)

� ✏. The

last constraint keeps the overlap between the aligned interval and the reference interval at least ✏.

We use ✏ = 0.5 for the liver organoid data.

For the jth pair of edges / clusters, after we find the optimal alignment function (the function

having the best aj and bj values), we then calculate the interaction score for each ligand-receptor

pair using the expression profiles aligned under this function. When estimate the significance level

using permutation test, we apply the same optimal alignment function to the permuted samples and

calculate interaction scores using the aligned expression profiles.

Other than ligand and receptor pairs, TraSig can also use user-defined gene sets for alignment (for

example, cell cycle marker genes). In this case, the alignment is performed by looking at the gene

expression differences between the same genes in the reference (sender) edge / cluster and in the

receiver edge / cluster.

Assigning sampling time and cell type for clusters output from pseudotime

inference tools

For a cluster / edge, we assign the cell type and sampling time based on the cell type labels and

sampling time assigned to the majority of the cells in the cluster. We applied this to all datasets

except for the cell type labeling of the oligodendrocyte data and hepatoblast data, where we also

note down the cell type labels of all smaller groups that altogether make to 90% of the whole cluster

/ edge, other than the majority group.
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Coloring cells in trajectory plots by expression values

The plots in Figure 4b-d were generated by coloring the cells according to their expression levels of a

certain gene. The darker the color is, the higher the expression level in a cell. For all genes shown

in Figure 4c-d, we set an expression cutoff of 1. The cell is shown as a bigger size if having the

expression above 1 or a smaller size if not expressing the gene at all. The cell size is in the middle if

it expresses the gene but the level is below 1. In addition, the opacity is set to 20% for cells not

expressing the gene.

Use customized databases for SingleCellSignalR and CellPhoneDB

Given we want to use the same database for the comparison among methods and this database is

different from the default databases used by SingleCellSignalR and CellPhoneDB, we need to construct

customized databases for these two methods. Since the default database for SingleCellSignalR is

also based on gene symbols, we just replace the default list of ligand-receptor pairs with ours. This

is less straightforward for CellPhoneDB whose inferences are based on protein-protein interactions.

We follow instructions provided by [7] to prepare this database. Particularly, we first prepare the

“gene_input” by mapping all genes in our database to their UniProt IDs using the conversion lists

provided by [26]. A few genes don’t have corresponding UniProt IDs and are thus removed. For

those genes mapped to multiple UniProt IDs, we keep only one single isoform to avoid duplicates.

We then prepare “protein_input” and “interaction_input” accordingly.

We follow the same steps when we prepare the customized databases for the other database [26] we

use.

Values used to anchor the colormaps for the heatmaps for methods comparison

To enable the comparison between different methods’ output, we set the lower anchor value as the

minimum interaction score (the least number of identified ligand-receptor pairs for a edges / clusters

pair) across all three methods and the higher anchor value as the maximum interaction score (the

largest number of identified ligand-receptor pairs for a edges / clusters pair) across all three methods.

Specifically, the anchor values are set as 0 and 808 for the heatmaps shown in Figure 6 and 0 and

601 for the heatmaps shown in Figure S15.
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GO analysis

We use both ligands and receptors of the identified ligand-receptor pairs as the input gene sets and use

gProfiler for the GO term enrichment analysis [25]. Among all significant GO terms from all cluster

pairs and comparison methods, we select the terms relevant to the biology process of interest for

visualization. For the analysis on the liver organoid development data, we select the terms containing

keywords “endothelial”, “vessel” or “vascular”. For the analysis on the neocortical development

data, we select the terms containing keywords “Axon”, “Nervous”, “Neuroactive”, “axon”, “axonal”,

“brain”, “nervous”, “neuron”, “neuronal”, “synapse”, “Notch”, “calcium”, “fibroblast”, “glial”, “ion”,

“localization”, “migration” ’, “motility”, “neurogenesis”, “neurotrophic”, “pluripotency”, “potentiation”,

“stem”, “synaptic”, “transmission”. For the analysis on the oligodendrocytes data, we select the terms

containing keywords “Development”, “development”, “developmental”, “differentiation”, “formation”,

“localization”, “locomotion”, “migration”, “morphogenesis”, “motility”, “movement”, “multicellular”,

“regeneration”. For the analysis on the hepatoblast data, we select the terms containing keywords

“development”, “developmental”, “differentiation”, “formation”, “localization”, “locomotion”, “migration”,

“morphogenesis”, “motility”, “movement”, “multicellular”, “vascular”, “vessel” and “neurogenesis”.

When too many GO terms selected, we applied extra filtering steps. For the liver organoid data,

we use the set of GO terms with minimum p-value smaller than 1.20508e � 06 in at least one of

the three comparison methods for visualization. For the neocortical development, we list the set

of GO terms with minimum p-value smaller than 5.35648e� 40 in at least one of the two clusters.

For the oligodendrocytes data, we list the set of GO terms with minimum p-value smaller than

2.15260e� 12 in at least one of the two clusters. For the hepatoblast data, we list the set of GO

terms with minimum p-value smaller than 6.14735e� 15 in at least one of the two clusters. For the

analysis on the liver organoid data using the other database [26], we use the set of GO terms with

minimum p-value smaller than 3.97532e� 06 in at least one of the three comparison methods for

visualization.

Unless specified, the p-values listed in the parentheses for the GO terms are the minimum p-values

among all interacting cluster pairs .
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qPCR timelapse experiments for the validation of the assumptions of TraSig for

liver organoids

Human liver organoids were generated as previously described [11] in 48 well plates. The tissues

were harvested and lysed on days 7, 8, 9, 10, and 12 by adding 300µL Trizol (Invitrogen, Cat#

15596018) directly to the tissue culture well, pipetting several times, collecting, and storing at -80°C

to be thawed when ready for extraction. RNA was extracted using the Direct-zol RNA miniprep kit

(Zymo, Cat# R2052) according to manufacturer’s instructions. cDNA was synthesized using the

high Capacity cDNA reverse transcription (Applied Biosystems, Cat# 4368813). qRT-PCR was

performed using the PowerUp™ SYBR™ Green Master Mix intercalating dye (Applied Biosystems™,

Cat# A25742) according to the manufacturer’s instructions with 20ng total cDNA. Expression

was normalized to 18S ribosomal RNA and relative gene expression was calculated using 2���CT

method. Primers used for qRT-PCR are listed in Additional file 2: Table S1.

Supplementary Figures
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Figure S4: DesLO day 11 scRNA-Seq cluster analysis. (a) The tSNE plot showing clustering analysis
of day 11 DesLO scRNA-seq sample revealed 6 distinct clusters, cholangiocyte-, stellate-, endothelial-,
progenitor-, and two hepatocyte-like cell clusters based on differential gene expression. (b) Highly
enriched genes of each cluster are indicated by colored boxes.
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Figure S5: Functional validation of TraSig ligand-receptor signaling predictions. (a) Example of
AngioTool analysis of CD34 vascular network at low vs high CXCL12 and VEGFA loci. (b) Whole
culture image of 8 mm coverslip for 5 inhibition conditions implicated by TraSig ligand-receptor
signaling predictions (representative images of n=2 biological replicates).
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Figure S6: Scores in all edge (cluster) pairs for the example ligand-receptors shown in Figure 3e for
the liver organoid data. These ligand-receptor pairs are significant for some edge (cluster) pairs and
not others. The significant ones, for example, GNAI2-UNC5B in pair 6_11 and TGFB1-CAV1 in
pair 8_11, are often scoring higher than many of the other edge (cluster) pairs.
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a: Interaction pattern between cell clusters revealed by TraSig b: Example enriched GO terms for signals acting on two clusters 

Figure S7: TraSig’s results on the neocortical development data. (a) The strongest interactions
identified are between endothelial cells (edge 18 in E14.5 (top) and edge 39 in P0 (bottom)) and
other groups of cells including interneurons (edge 24 from P0) and radial glial cells (edge 1 from
E14.5). (b) GO term enrichment analysis shows that TraSig identifies interactions specifically related
to cell migration and neuron development.
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Figure S8: Reconstructed trajectory for neocortical development. CSHMM identifies a tree-structured
trajectory that clusters cells to edges based on their expression pattern and relationship to the
expression patterns of prior edges (Methods). Cells are colored by their cell type labels assigned in
the original paper [27] and are shown as dots ordered by their pseudo-time assignment.
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Figure S9: Application of Slingshot and TraSig to the oligodendrocytes development data. (a)
Slingshot pseudotime ordering and trajectory inference. Cells are colored by the labels assigned to
them in the original paper [30]. OPC - Pdgfra+ oligodendrocyte precursors; COP - Differentiation-
committed oligodendrocyte precursors; NFOL - Newly-formed oligodendrocytes; MOL - Mature
oligodendrocytes; the milestones (nodes) output from Slingshot are denoted by M1,M2, ...; we used
dynverse [4] to generate the plot. (b) TraSig interaction scores for edges (clusters) pairs identified by
Slingshot. (c) Enriched GO terms and � log10 p-value for strongly interacting cluster pairs. The first
4 interactions all involve cluster 0, which consists of 72% of MOL cells, 25% of OPC cells and other
minor cell types, as noted by the column name. The next 4 interactions involve cluster 1, composed
of 75% NFOL, 17% of COP cells and other minor cell types.
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Figure S10: Application of Monocle 3 and TraSig to the hepatoblast differentiation data [56]. (a)
Monocle 3 pseudotime ordering and trajectory inference. Cells are colored by the labels assigned
to them in the original paper. We used dynverse [4] to generate the plot. (b) TraSig interaction
scores for edges (clusters) pairs identified by Monocle 3. (c) Enriched GO terms and � log10 p-value
for strongly interacting cluster pairs. The first 3 interactions all involve cluster 1, which consists of
41% of E12.5 cells and 18% of E15.5#cholangiocyte cells and other minor cell types as noted by the
column name. The next 3 interactions involve cluster 2, composed of 45% E10.5 cells, 33% of E11.5
cells and other minor cell types.
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Figure S11: DesLO timelapse bulk RNA analysis of cell population markers and cell-cell signaling.
DesLO samples were generated and their RNA were extracted at days 7, 8, 9, 10, and 12 of culture.
(a) shows the qPCR determined fold-change (over day 7) gene expression of endothelial marker,
ERG; cholangiocyte marker, KRT7; and hepatocyte marker, HAMP. The timelapse data shows
relatively stable expression of ERG, while the aligned temporal emergence of cholangiocyte- and
hepatocyte-like cells (indicated by expression of KRT7 and HAMP, respectively) appear on day 9 of
culture. (b) displays the qPCR fold-change (over day 7) results for signaling pairs INHBE-ENG,
PDGFB-PDGFRB, and DHH-PTCH1 identified by TraSig.
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Without optimal alignment (default) Using optimal alignmenta:
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Counts

Figure S12: We compare TraSig’s inference results on the liver organoid data between the default
option without using optimal alignment and when optimal alignment is applied. (a) Number of
significant ligand-receptor pairs identified between each edges (clusters) pair. The overall interaction
patterns when using or not using optimal alignment are similar. Both heatmaps use the same anchor
values (minimum: 0, maximum: 753) for the colormap. (b) Venn diagrams for the overlap in the
identified ligand-receptor pairs for some representative edges (clusters) pairs. Unaligned: default;
Aligned-fixed: using optimal alignment.
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Without optimal alignment (default) Using optimal alignment (cell cycle genes)a:

b:

Counts

Figure S13: We compare TraSig’s inference results on the liver organoid data between the default
option without using optimal alignment and when optimal alignment is applied. Other than ligands
and receptors, TraSig can also use other genes for alignment. Here we use cell cycle genes as an
example. These cell cycle genes are obtained from the Seurat package [12]. (a) Number of significant
ligand-receptor pairs identified between each edges (clusters) pair. The overall interaction patterns
when using or not using optimal alignment are similar. Both heatmaps use the same anchor values
(minimum: 0, maximum: 753) for the colormap. (b) Venn diagrams for the overlap in the identified
ligand-receptor pairs for some representative edges (clusters) pairs. Unaligned: default; Aligned-fixed:
using optimal alignment.
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Without optimal alignment (default) Using optimal alignment a:

b:

Counts

Figure S14: We compare TraSig’s inference results on the neocortical development data [27] between
the default option without using optimal alignment and when optimal alignment is applied. (a)
Number of significant ligand-receptor pairs identified between each edges (clusters) pair. The overall
interaction patterns when using or not using optimal alignment are similar. Both heatmaps use the
same anchor values (minimum: 0, maximum: 539) for the colormap. (b) Venn diagrams for the
overlap in the identified ligand-receptor pairs for some representative edges (clusters) pairs. Unaligned:
default; Aligned-fixed: using optimal alignment. Note here we performed 10,000 permutations for
both options instead of 100,000 permutations as used for the other results.

18



b: GO terms enrichment comparison c: overlap in identi!ed ligand-
receptor pairs from di"erent methods

-log
10

p

 a: Number of identi!ed ligand-receptor pairs for each cluster pair 
Counts

day 11 day 17day 5 day 11 day 17day 5 day 11 day 17day 5

Figure S15: Results from comparing TraSig with SingleCellSignalR and CellPhoneDB using another
database [26] on the liver organoid data. (a) Heatmaps for scores assigned by the three different
methods for all cluster pairs representing cells sampled at the same time. (b) � log10 p-value for
enriched GO terms related to endothelial cells and vascular development. (c) Venn diagrams for the
overlap in identified ligand-receptor pairs among the three methods. The overlap between TraSig
and SingleCellSignalR is high though roughly 50% of the identified pairs by each method are not
identified by the other.
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