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HIS Supplementary Material provides a detailed evaluation 

of the impact of image size and downscaling factor on 

performance, compares our approach to baseline classical 

classification methods, and explores the effect of additional 

aggregation methods.  

 

I. VALIDATION AND TRAINING SET CONTENT 

The number of samples obtained and used in the training 

and validation sets for the four different approaches (Table 

S1). 

II. THE EFFECT OF IMAGE SIZE AND DOWN-SCALE FACTOR 

Our dataset is composed out of three types of image sizes 

with the same resolution: 1024X1360, 1548x2070, and 

3096X4140. Table S2 shows the breakdown of the metrics for 

the different methods. As the downscaling factor (the ratio 

between the initial area and the final area) is larger, the accuracy 

is lower. For downscaling factors larger than 10, the accuracy 

is lower than 80% (Fig. S1A). Moreover, as the image is larger, 

and thus contains more patches, the accuracy is larger (Fig. 

S1B).  

III. AGGREGATION METHODS 

Besides the majority vote aggregation patches shown in the 

manuscript (Table I, Figure 3), we have implemented more 

approaches. First, we examined the effect of different 

thresholds, that is, the label assigned to the image was positive 

if the number of patches that were predicted to be positive was 

larger than a certain threshold. Figure S2A shows the resulting 

ROC curve for the two cropping approaches. Taking a threshold 

that is not 0.5 (the majority vote case) does not improve the 

results. We also used an aggregation based on the mean. The 

probability for an image to be positive was the mean of the 

patches probabilities, and the label was positive if the averaged 

probability was above half. Finally, we applied a hierarchical 

clustering approach. We built an agglomerative hierarchical 

cluster tree using MATLAB 'linkage', divided the patches into 

two clusters accordingly, and assigned the image label as 

positive if the averaged probability over the biggest cluster was 

more than half. All approaches yielded the same TNR and 

similar TPR (Fig. S2B). 

IV. COMPARISON TO BASELINE METHODS USING WELL KNOWN 

GLOBAL FEATURES 

To benchmark our results, we implemented classification 

based on linear discriminant analysis, logistic regression, and 

linear SVM, based on textural properties of the image. We used 

a set of 20 well-known textural features [1], [2]: 

 

 

1. Autocorrelation =∑ ∑ 𝑖 ∙ 𝑗 ∙ 𝑃(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

. 

Autocorrelation is a measure of the coarseness of an image 

and evaluates the linear spatial relationships between 

texture primitives. 

2. Cluster Prominence =∑ ∑ (𝑖 + 𝑗 − 𝜇𝑥(𝑖) − 𝜇𝑦(𝑗))
4 ∙

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

𝑃(𝑖, 𝑗). 
Cluster Prominence is a measure of the skewness and 

asymmetry of the GLCM. A higher values implies more 

asymmetry about the mean while a lower value indicates a 

peak near the mean value and less variation about the mean. 

3. Cluster Shade =∑ ∑ (𝑖 + 𝑗 − 𝜇𝑥(𝑖) − 𝜇𝑦(𝑗))
3 ∙

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

𝑃(𝑖, 𝑗). 
Cluster Shade is a measure of the skewness and uniformity 

of the GLCM. A higher cluster shade implies greater 

asymmetry about the mean. 

4. Contrast =∑ ∑ |𝑖 − 𝑗|2 ∙ 𝑃(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

. 

Contrast is a measure of the local intensity variation, 

favoring values away from the diagonal. A larger value 

correlates with a greater disparity in intensity values among 

neighboring voxels. 

5. Correlation =
∑ ∑ 𝑖∙𝑗∙𝑃(𝑖,𝑗)

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

−𝜇𝑥(𝑖)−𝜇𝑦(𝑗)

𝜎𝑥(𝑖)∙𝜎𝑦(𝑗)
 

Correlation is a value between 0 (uncorrelated) and 1 

(perfectly correlated) showing the linear dependency of 

gray level values to their respective voxels in the GLCM. 

6. Difference entropy =∑ 𝑝𝑥−𝑦(𝑖) ∙ 𝑙𝑜𝑔2(𝑝𝑥−𝑦(𝑖))
𝑁𝑔−1

𝑖=0
. 

Difference Entropy is a measure of the 

randomness/variability in neighborhood intensity value 

differences. 

7. Difference variance =∑ 𝑖2 ∙ 𝑝𝑥−𝑦(𝑖)
𝑁𝑔−1
𝑖=0

. 

Difference Variance is a measure of heterogeneity that 

places higher weights on differing intensity level pairs that 

deviate more from the mean. 
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8. Dissimilarity =∑ ∑ |i − j| ∙ 𝑃(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

. 

Dissimilarity measures the relationship between 

occurrences of pairs with similar intensity values and 

occurrences of pairs with differing intensity values. 

9. Energy =∑ ∑ 𝑃(𝑖, 𝑗)2
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

. 

Energy is a measure of homogeneous patterns in the image 

(Energy is equal to 1 for a constant image). A greater 

Energy implies that there are more instances of intensity 

value pairs in the image that neighbor each other at higher 

frequencies. The property Energy is also known as textural 

uniformity, uniformity of energy, and angular second 

moment (ASM). 

10. Entropy =−∑ 𝑃(𝑖, 𝑗) ∙ 𝑙𝑜𝑔2(𝑃(𝑖, 𝑗))
𝑁𝑔−1

𝑖=0
. 

Entropy is a measure of the randomness/variability in 

neighborhood intensity values. 

11. Homogeneity =∑ ∑
𝑃(𝑖,𝑗)

1+(𝑖−𝑗)2

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

. 

Homogeneity is a measure of the local homogeneity of an 

image. IDM weights are the inverse of the Contrast weights 

(decreasing exponentially from the diagonal in the 

GLCM). 

12. Informational Measure of Correlation (IMC) 

=
−∑ 𝑃(𝑖,𝑗)∙𝑙𝑜𝑔2(𝑃(𝑖,𝑗))

𝑁𝑔−1

𝑖=0
−𝐻𝑋𝑌

max⁡{𝐻𝑋,𝐻𝑌}
. 

Informational measure of Correlation is the correlation 

between the probability distributions 

of 𝑖 and 𝑗 (quantifying the complexity of the texture), using 

mutual information 

13. Inverse Difference Moment Normalized (IDMN) 

=∑ ∑
𝑃(𝑖,𝑗)

1+(
|𝑖−𝑗|2

𝑁𝑔
2 )

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

. 

IDMN (inverse difference moment normalized) is a 

measure of the local homogeneity of an image. IDMN 

weights are the inverse of the Contrast weights (decreasing 

exponentially from the diagonal in the GLCM). Unlike 

Homogeneity, IDMN normalizes the square of the 

difference between neighboring intensity values by 

dividing over the square of the total number of discrete 

intensity values. 

14. Inverse Difference Normalized (IDN) =∑ ∑
𝑃(𝑖,𝑗)

1+(
|𝑖−𝑗|

𝑁𝑔
)

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

. 

IDN (inverse difference normalized) is another measure of 

the local homogeneity of an image. Unlike Homogeneity, 

IDN normalizes the difference between the neighboring 

intensity values by dividing over the total number of 

discrete intensity values. 

15. Maximum Probability =max⁡{𝑃(𝑖, 𝑗)}. 
Maximum Probability is occurrences of the most 

predominant pair of neighboring intensity values. 

16. Sum average =∑ 𝑖 ∙
2𝑁𝑔
𝑖=2

𝑝𝑥+𝑦(𝑖). 

Sum Average measures the relationship between 

occurrences of pairs with lower intensity values and 

occurrences of pairs with higher intensity values. 

17. Sum entropy =−∑ 𝑝𝑥+𝑦(𝑖) ∙ 𝑙𝑜𝑔2(𝑝𝑥+𝑦(𝑖))
2𝑁𝑔
𝑖=2

. 

Sum Entropy is a sum of neighborhood intensity value 

differences. 

18. Sum variance =∑ ∑ (𝑖 + ∑ 𝑝𝑥+𝑦(𝑖) ∙
2𝑁𝑔
𝑖=2

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

𝑙𝑜𝑔2(𝑝𝑥+𝑦(𝑖)))
2 ∙ 𝑝𝑥+𝑦(𝑖). 

Sum Variance is a measure of groupings of voxels with 

similar gray-level values. 

19. Smoothness =∑ ∑
𝑃(𝑖,𝑗)

(1+∑ ∑ (𝑖−𝜇𝑥(𝑖))
2∙𝑃(𝑖,𝑗)

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

)

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

. 

Smoothness is a property measured by the number of 

derivatives it has that are continuous. 

20. Variance =∑ ∑ (𝑖 − 𝜇𝑥(𝑖))
2 ∙ 𝑃(𝑖, 𝑗)

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

. 

Variance is a measure, which puts relatively high weights 

on the elements that differ from the average value of 

𝑃(𝑖, 𝑗). 
 

 

Where,  

 

𝑃(𝑖, 𝑗) - (𝑖, 𝑗)th entry in at the co-occurrence matrix. 

𝑝𝑥(𝑖) -  𝑖the entry in the marginal-probability matrix obtained 

by summing the rows of 𝑃(𝑖, 𝑗), = ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔
𝑗=1

. 

𝑝𝑦(𝑗) -  𝑗the entry in the marginal-probability matrix obtained 

by summing the columns of 𝑃(𝑖, 𝑗), = ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔
𝑖=1

. 

𝑝𝑥+𝑦(𝑘) = ∑ ∑ 𝑃(𝑖, 𝑗), 𝑖 + 𝑗 = 𝑘, 𝑘 = 2,3, … ,2𝑁𝑔
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

. 

𝑝𝑥−𝑦(𝑘) =

∑ ∑ 𝑃(𝑖, 𝑗), |𝑖 − 𝑗| = 𝑘, 𝑘 = 0,1, … , 𝑁𝑔 − 1
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

. 

𝑁𝑔 – Number of distinct gray levels in the quantized image. 

𝜇 – be the mean of 𝑃(𝑖, 𝑗). 
𝜇𝑥(𝑖) = ∑ ∑ 𝑖 ∙ 𝑃(𝑖, 𝑗)⁡𝑗𝑖  - be the mean of row 𝑖. 

𝜇𝑦(𝑗) = ∑ ∑ 𝑗 ∙ 𝑃(𝑖, 𝑗)⁡𝑗𝑖  - be the mean of column 𝑗. 

𝜎𝑥(𝑖) = ∑ ∑ (𝑖 − 𝜇𝑥)
2 ∙ 𝑃(𝑖, 𝑗)⁡𝑗𝑖   - be the standard deviation of 

row 𝑖. 
𝜎𝑦(𝑗) ⁡= ∑ ∑ (𝑗 − 𝜇𝑦)

2 ∙ 𝑃(𝑖, 𝑗)⁡𝑗𝑖   - be the standard deviation of 

column 𝑗. 

𝐻𝑋𝑌 = −∑ ∑ 𝑃(𝑖, 𝑗) ∙ log⁡(𝑝𝑥(𝑖) ∙ 𝑝𝑦(𝑗))
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

. 

𝐻𝑋 =⁡−∑ 𝑝𝑥(𝑖) ⁡ ∙ 𝑙𝑜𝑔2(𝑝𝑥(𝑖)⁡)
𝑁𝑔
𝑖=1

. 

𝐻𝑌 = ⁡−∑ 𝑝𝑦(𝑗) ⁡ ∙ 𝑙𝑜𝑔2(𝑝𝑦(𝑗)⁡)
𝑁𝑔
𝑗=1

. 

 

 

Each image is represented as a vector in this texture vector 

space. The training was done using MATLAB Classification 

Learner using LDA, LR, and linear SVM classification models. 

The training and validation sets were identical to the ones used 

to train and validate the DCNN described in the manuscript. 

The training was done using 5-fold cross-validation. Estimating 

the accuracy distribution was done by bootstrapping each 

model against the validation set 10000 times. The p-value is the 

probability of getting an accuracy that is higher than the 

corresponding DCNN accuracy. The results are summarized in 

Table S3. 

V. ADDITIONAL PERFORMANCE MEASURES 

Additional performance measures to the ones shown in 

table I in the manuscript (Table S4). 
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Fig. S1. The effect of downscaling factor (A), and image size (B) on the accuracy for the various methods.  

Fig. S2. The effect of different aggregation methods. (A) The results of assigning the image label as positive if the 

number of positive patches is larger than a threshold fraction. The circles are the majority vote case - the threshold 

fraction is half. (B) Overlay of the results for a majority vote, hierarchal clustering, and mean approach. 
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NUMBER OF TRAINING AND VALIDATION GENERATED IMAGE PATCHES 

Original Image Final DCNN input image size 

Training Set Validation Set 

Active EoE Non-EoE Active EoE Non-EoE 
 

 

Full Image 1000x1000 (Downscale) 147 147 63 63 

Full Image 224x224 (Downscale) 147 147 63 63 

Patch = 448x448 224x224 (Downscale) 4130 4159 478 497 

Patch = 224x224 224x224 14109 14365 1626 1692 

 
TABLE S1. The number of samples obtained and used in the training and validation sets for the four different approaches. 

WHOLE IMAGE PREDICTION FOR THE DIFFERENT IMAGE SIZES 

Image Size Original Image Final DCNN input image size 
Active  

EoE  

(TPR) 

Non- 

EoE  

(TNR) 

ACC 

 
Predicted  

Prevalence  

(PP) 
 

1024X1360 Full Image 1000x1000 (Downscale) 75% 93.75% 84.3% 0.40 

1024X1360 Full Image 224x224 (Downscale) 62.5% 87.5% 75.0% 0.37 

1024X1360 Patch = 448x448 224x224 (Downscale) 75.0% 81.2% 78.1% 0.46 

1024X1360 Patch = 224x224 224x224 87.5% 56.2% 71.8% 0.65 

1548X2070 Full Image 1000x1000 (Downscale) 78.9% 97.3% 88.1% 0.40 

1548X2070 Full Image 224x224 (Downscale) 68.4% 86.8% 77.6% 0.40 

1548X2070 Patch = 448x448 224x224 (Downscale) 86.8% 86.8% 86.8% 0.5 

1548X2070 Patch = 224x224 224x224 81.5% 81.5% 81.5% 0.4 

3096X4140 Full Image 1000x1000 (Downscale) 55.5% 100% 77.7% 0.27 

3096X4140 Full Image 224x224 (Downscale) 55.5% 100% 77.7% 0.27 

3096X4140 Patch = 448x448 224x224 (Downscale) 77.7% 100% 88.8% 0.38 

3096X4140 Patch = 224x224 224x224 77.7% 100% 88.8% 0.38 

 

TABLE S2. Whole image classification results for four downscale and/or crop approaches. The validation cohort of images (n = 63 active EoE; n = 63 non-EoE) 

was the same for each of the classifiers. True positive rate (TPR; number of images classified as active EoE / number of active EoE images x 100), true negative 
rate (TNR; number of images classified as non-EoE / number of non-EoE images x 100), accuracy (number of images accurately classified as either active EoE or 

non-EoE / total number of images x 100), and predicted prevalence (total number of images classified as active [i.e., true positive + false positive number of images] 

/ total number of images) for each method are shown. DCNN, deep convolutional neural network. ACC, accuracy. 
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WHOLE IMAGE TRAINING AND PREDICTION  
OF THREE DIFFERENT BASELINE CLASSIFICATION LEARNERS  

(LINEAR DISCRIMINANT ANALYSIS/ LOGISTIC REGRESSION/ LINEAR SVM) 

Original Image Image size 

Active  

EoE  
(TPR) 

Non- 

EoE  
(TNR) 

ACC 

 

Predicted  

Prevalence  
(PP) 

 

Full Image 1000x1000 (Downscale) 65.0% / 63.3% / 66.6% 77.7% / 79.3% / 73.0%  71.4%  (P = 0.0001) / 

 71.4%  (P = 0.0001) /  
69.8% (P < 0.0001) 

0.43 / 0.42 / 0.46 

Full Image 224x224 (Downscale) 63.4% / 63.4% / 52.3% 66.6% / 68.2% / 66.6% 65.0% (P = 0.0009) /  
65.8% (P = 0.0001) /  

59.5% (P < 0.0001) 

0.48 / 0.47 / 0.42 

Patch = 448x448 224x224 (Downscale) 57.7% / 57.5% / 53.3% 72.8% / 73.8% / 72.0% 65.4% (P = 0.0002) /  
65.8% (P = 0.0004) /  

62.8% (P < 0.0001) 

0.42 / 0.41 / 0.40 

Patch = 224x224 224x224 52.5% / 51.9% / 48.5% 66.9% / 67.9% / 73.4% 59.9% (P < 0.0001) /  
60.0% (P < 0.0001) /  

61.2% (P = 0.0002) 

0.42 / 0.41 / 0.37 

 

TABLE S3. Whole image classification results for four downscale and/or crop approaches. The training cohort of images training (n = 147 active EoE; n = 147 
non-EoE), and the validation cohort of images (n = 63 active EoE; n = 63 non-EoE) was the same for each of the classifiers.  

Training is performed on 3 different classification baseline learners with 5-fold cross-validation, which protects against overfitting by portioning the training data 

set in 5-folds and estimating the model accuracy (number of images accurately classified as either active EoE or non-EoE / total number of images x 100)) on each 
fold, true positive rate (TPR; number of images classified as active EoE / number of active EoE images x 100), true negative rate (TNR; number of images classified 

as non-EoE / number of non-EoE images x 100), test accuracy (number of images accurately classified as either active EoE or non-EoE / total number of images 

x 100), and predicted prevalence (total number of images classified as active [i.e., true positive + false positive number of images] / total number of images) for 
each method are shown. DCNN, deep convolutional neural network. ACC, accuracy. 

 

WHOLE IMAGE PREDICTION 

Original Image Final DCNN input image size Recall Precision F1-Score 

Full Image 1000x1000 (Downscale) 74.6% 95.9% 0.83 

Full Image 224x224 (Downscale) 65.1% 85.4% 0.73 

Patch = 448x448 224x224 (Downscale) 82.5% 86.6% 0.84 

Patch = 224x224 224x224 82.5% 78.7% 0.80 

 

TABLE S4. Whole image classification results for four downscale and/or crop approaches. The validation cohort of images (n = 63 active EoE; n = 63 non-EoE) 

was the same for each of the classifiers. Recall (number of images classified as active EoE / number of active EoE images x 100), Precision (number of images 

actually are active EoE / number of images classified as active EoE x 100), F1-score (a weighted average of the precision and recall, formulated as = 2 * Precision 

* Recall / (Precision + Recall)). DCNN, deep convolutional neural network. 
 


