Environ Health Perspect

DOI: 10.1289/EHP9752

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Deep Ensemble Machine Learning Framework for the Estimation of PM_{2:5} Concentrations

Wenhua Yu, Shanshan Li, Tingting Ye, Rongbin Xu, Jiangning Song, and Yuming Guo

Table of Contents

Table S1. The model hyper-parameters and computing cost information for study models.

Table S2. The variables information and sources.

Table S3. The seasonal distribution of daily average $PM_{2.5}$ (µg/m³) from 2015 to 2019 in Italy.

Table S4. The distribution comparison between observed PM_{2.5} concentration and estimated PM_{2.5} by RF, XGBoost, SL, and DEML in Italy from 2015 to 2019.

Figure S1. R^2 for each monitoring station based on predicted and observed PM_{2.5} from 2015 to 2019 in Italy.

Figure S2. Italian regional distribution in Cluster-based spatial Cross-validation.

Figure S3. The dissimilarity index (DI) of the spatial locations in Italy with the ground stations in a specific day.

Figure S4. PM_{2.5} imputation performance of the RF, XGBoost, and DEML by PM₁₀ from 2015 to 2019 in Italy.

Figure S5. The evaluation of the importance of the explanatory variables in PM_{2.5} estimation by RF and XGboost from 2015 to 2019 in Italy.