Supplementary Information for Transgenic expression of *Nix* converts genetic females into males and allows automated sex sorting in *Aedes albopictus*

Célia Lutrat, Roenick P. Olmo, Thierry Baldet, Jérémy Bouyer and Eric Marois

Correspondence: Célia Lutrat Email: <u>celia.lutrat@outlook.com</u> Eric Marois Email: <u>e.marois@unistra.fr</u>

This PDF file includes:

Supplementary Notes 1 and 2 Supplementary Figures 1 to 4 Supplementary Tables 1 to 6

Other supplementary materials for this manuscript include the following:

Supplementary Data 1 (separate file): Model output from all statistical analyses and performance assessment

Supplementary Data 2 (separate file): Wing length measurements (Fig. 3b)

Supplementary Data 3 (separate file): qPCR data (Fig. 4)

Supplementary Data 4 (separate file): COPAS data for SM9 line (Fig. 6a)

Supplementary Data 5 (separate file): COPAS data for 1.2G line (Fig. 6b)

Supplementary Data 6 (separate file): COPAS data for 3.1G line (Fig. 6c)

Supplementary Note 1: Sequence of the *Ae. albopictus* genomic region amplified for cloning *Nix* promoter.

In the sequence below, *Nix* promoter sequence is included in the 1,916 bp sequence highlighted in grey, the 5' UTR sequence of the *Nix* gene is not highlighted, while the ATG start codon is highlighted in blue.

TCGCATTTTATGAGTAAAGGCCCATTACTCATATATGGGTAAAGTGCTTTTTG TAAAAAATGAGTAAATCGATTTACTCATAAATTATAATTTCACCGTGTTTACT TTTCGTCTTTTGTTATATTTTTGAACTGTTAACTATTTTGTATTTATCATTTAAT TCATACAAAATTTTGCGTTTATTTGTAGTTTATTGCAATCTACGAAAATTATT AATGAATTTTTACATGTTTCAAATACTCTTAATCATTTTCCTCCTGGAAAACA GACCTTCCGAGACGTAGCTCTTTGAAGTTTTCATAATGATCCATGTATGAAAT TTTCCCCTCCGGCTGTTGTTCATCGCGCAGTTGTTCCTGTTCTTCCGTTCCTCG TTCTTCCGGCGCTTGAAGCCTTGGTGCAGTCGGAACTGTGGAAAAGACTGAT ATATTTTATTTCACGGTCGTTAATGAAAATGATGCTGTCACTATGGAACTTA CCTGCAAATTCCATGCTTTTGTAGCCTTTCTTGTAGCTCCACATGATGATTTGT TGCTCCTGTATTATCTTCGAGTACCAAACCTTGTGAAACGGAAATAATCCATC GTAAATGAAAATTGAACGGTATCAATTTATCCAGGAAGTACTTACCGATTAA AATATCAATGTATTTGGGAACCTCGACTCTAATCCGCGTGGGAATCCGATGG ACGCGGTATCGGTCATTGAACCCGATGCTGAAGGGCCTCGACTGGCTATAGC GGTGCCGTGAAAATCAAAATATCTAAAATTTCCCGATAGTGTTATGATCAGG GGATCCGCATGCGGCAAGGTAGGCCTACTGCTCATCTTTTGCGAGTGTGTTAG TGTGACTGGCAACGCGACCAGAAGTCTAGTCGAATCCTGCTTGGAAATCGGT TTGTTTTGTCGATGGGGGGGGGGCCCGCGAAATCGCATTGTGTTGTTTGGGAAGG CCCGCTCGATGCATGTTAGGTAGGCGTAGTTTGTTCGAGTTTGACGTGCCTGC ACCCTCCCTGGTTATGATGGCGCACTAATGCATTCCGAGAAAAGTTGCTAACT TGAAAATTTTCATCCAAATATGGGTAAGTTCATTTACCCATGTTTGGGTATAG CGATTTTACCTATAATATGGGCAAATTTGACCGTTTTTCAAAGGTATATTTTA CCCATATTATGGGTAATGCATATGAAACCCAAATATGGGTAAATCAACTACT GATCTATGGGTAAACTGATCTTAGCGTGTATGTTTCACACGTGACATTCACTG GTTTTACAATTGGCTTCTTTAGCAGTGTTGGGATAATTCCATATTATGAATCT GCATGCCAAACTGGGCCGAAATCCAAATTTTCATCAATTTTGGTGCACGGGA ACCTATTTAAATATCAATTTGAAGTTTGTATGGGAGCGATTTGTCGAATCACC CCTCGTTGCATTTTGTACTGGGCGGAGCTGTCAAACAGTTGCCTAGCTGTCAA AAGGTGATTTCGAATAATCTCTTTGAAATTGATTTTAGGTATCAAAATAAAGT TCTAAAAATCTGAAAAAAATCATAGTGGCTCAGAAAAAGGTGCTCTTTCGTA TAAAATCAAAAATGAACACTTTTTTCAAAATTTAAAAACCCAATTTTCGCAA ATCTATAGGGCTCTGCACGAAGTTCTCTCCCCTCTTTCGCTCTCATTGAGATT TTGTAAACAACAAGGCCAGGAAATGTCAAAATCCCATACAAAATCAAAACA GTGCAGTGCCCTATATGTAAAACACATCACTCCGACGTGTAAATTTTTTGAG TGTTGATTTAATCAAAGTGAATAAAAATATTAGTTTTATGACATACTTGTTTT CTGAGTGTAGCAAAAATATGAAAACACATTTTTGTACTTTGAATGTTAAGCGT GTATGCTTTTTGTGTCAATATGTCAATTGTTAAACCCCATGTTAATAGTTTTAAT TTTTTTTAATCAAATTCTTTTTTTAAGTA<mark>ATG</mark>

Supplementary Note 2: Male-specific amplification pattern of one of the copies of the *myo-sex* orthologue.

PCR amplification was performed using primers Myosex369-F and Myosex369-R targeting the end of the first intron of *myo-sex*. The expected product with this primer pair was 997 bp as provided below. The discovered male-specific product carries a 664 bp deletion (highlighted in grey) and is present in genetic males only.

AGGCCATACTAACCTTCCGTAAATCACGCGGTTGGCCACTACCGTCAGCACC ACGATAATGCTGAGTACAAAATTTAGATTTCTTCAACGTGTTGTACAAAATAC AAAAGCGCGATCGCTCGAGGGCTAAGAATTAATGAAGAAAATTGCAAATCA ATTACATATTTATACAAAATCATAACAATAGGTATAGATGTTTGCAAAGATGT TCGTTGACAGCTTGAATCTCGAAACAGAGATGAATAGATTGAACTATAAAAC AAACTCGATCAAAAATAACACAGCGTAACAAAAATAACTTTTTGTATGTCTC TAGAGCAAACTTACGTGTCTCCGAAGGATTTTGGGCCGCTGAATCCGAATCT GGGCTCAGATTTGCTCTAACACGTCACAATTTTGAGCTATACCTCAATTTATA GGGCAAAATATGCGATTTTGGGCTTTTTTGACTGCAAGCCATTAAGCAAGGA AATATTTTTTTAAGCAATCAAAAGGTTAATTGGTCAATTAACATCTAAATTAC GACTCATGCAAAATATTTCGTTTTACCAAATCGAATTTGATAGTTTTAAGCGA TTTATGTTAGGTACGATATTTCCCATATAAGTCAGCCTCCAAAAGTTGCATGC AAGTTTTCATGCTAACATAAAATGCTTAAATCCATCAAATTTGATTAGGTAAA ACGAAATATTTTGCATGAGTCGTTAATTTAGATGTTAGTTGACCAATTAACCT TTTGATTGCTTAAAAAAAATATTTCCTTGCTTAATGGCTTGCAGTCAAAAAAG CCCAAAATCGCATATTTTGCCCTATAAATTGAGGTATAGCTCAAAATTGTGAC GTGTTAGAGCAAATCTAAGCCCGGATTCGGATTCAGCGGCCCAAAATCCTTC **GGAGACACATAAGTTTGCTCTTGAGACAAAAAAATGTTGCGCTGTGTAATC** TGTTAAAAACATTGTCCTACATTTTTTGCGCTCCATTGTTACTTCATTGTAT

Supplementary Figure 1: Intersex phenotypes in SM9 line prior to purification. The two pupae on the left side of the picture are a control male and a control female from SM9 line. All four pupae on the right are representative GFP-expressing intersex individuals with deformed genitalia found in the SM9 line prior to elimination of additional non-fully masculinizing transgene insertions. Pictures were taken under a binocular microscope with white light.

Supplementary Figure 2: Detection of lines composed exclusively of genetic females in lines carrying the Nix-OpIE2-GFP plasmid. a) PCR amplification of genomic DNA from pooled phenotypic males using primers EM1926-EM1927. This primer pair is located within the second intron of Nix, absent from our construct, and thus amplifies only DNA from genetic males. Genomic DNA was extracted from pooled pupae and analysed in the following order: WT females ("F", negative control), WT males ("M", positive control), SM9 partially masculinized female ("9*"), males or pseudo-males from selected lines arising from injection of the first OpIE2-GFP -marked Nix expressing plasmid (numbers 2 to 12), negative control without DNA template ("T-"). This PCR allowed identification of line SM9 as composed exclusively of genetic females. b) Screening of 10 SM9 individual males (labelled 1 to 10) with primer pair Nix-833F-Nix-833R amplifying any Nix-bearing genomic DNA¹ and primer pair EM1926-EM1927 for endogenous Nix only. The following controls were used: "M" is WT male positive control, "F" is WT female negative control, "p" is the pooled SM9 male DNA from top panel, and "T-" is a negative control without template DNA. This PCR confirmed that all phenotypic males in the SM9 line were pseudo-males. PCR products were resolved on a 0.8% agarose gel with 0.2μ g/mL ethidium bromide.

Supplementary Figure 3: Gallery of male SM9 pupae arising from CRE-injected embryos, showing local demasculinization in the posterior pole. All adults that emerged from these pupae had male heads and female genitalia. Pictures were taken under a binocular fluorescence microscope using a GFP filter.

Supplementary Figure 4: Sex-specific *fruitless* and *doublesex* splicing patterns.

mRNAs from WT male, WT female, SM9 pseudo-male, 1.2G pseudo-male, 2.2G pseudo-male, and 3.1G pseudo-male pupae were extracted, reverse-transcribed into cDNA, which was used for PCR. Products were resolved on a 1.5% agarose gel with $0.2\mu g/mL$ ethidium bromide. Left side: RT-PCR with *fruitless* sex-specific primers for which the male product is expected at 987 bp and the female product at 2010 bp. Right side: RT-PCR with *doublesex* primers, for which the male product is expected at 620 bp and the female product at 1062 bp.

Name	5' – 3' sequence	Use
EM1926	CCCTCAATTTTCCGCCAACTATT	655bp amplicon in intron 2 for
EM1927	AATCTTTGGTGCGCCGTGTC	detection of endogenous Nix
Myosex369-F	AGGCCATACTAACCTTCCGT	Genomic amplification of a
Myosex396-R	ATACAATGAAGTAACAATGGAGCG	non-coding part of the myo-sex
		copy from scaffold 369 (end of
		intron 1).
EM2145	CAAGTTGGTGACGATCCCGA	For RT-qPCR of mRNA from
EM2146	GTTGGGTAGAGCAACGGTGA	<i>myo-sex</i> orthologues
EM2147	CGCCGGAAAAACGTATCCACT	For RT-PCR of mRNA from
EM2148	GCTGGTTCCAGGTTAGTTGG	LOC115254984, a candidate
		<i>myo-fem</i> orthologue
EM2149	CCCGTGCTGAAGAGTTGGAG	For RT-PCR of mRNA from
EM2150	GTGGACAGACGTTGCTTAGT	LOC115254986, a candidate
		<i>myo-fem</i> orthologue
EM2151	GTAGGCATCTACGAGCCCAA	For RT-PCR of mRNA from
EM2152	CCAACCTGTACCACTGGCTT	LOC109402113, a candidate
		<i>myo-fem</i> orthologue
EM2153	CATTGGAAACATTCCCGCCG	For RT-PCR or RT-qPCR of
EM2154	ACTGCCGGTTTCACATCACA	mRNA from <i>Nix</i>
EM2170	ACGTGCCGAAGAATTGGAAG	For RT-qPCR of mRNA from
EM2171	TTCTAAGGCAACACACTTCTGA	LOC109402113, putative myo-
		<i>fem</i> orthologue
EM2174	CGTGCCACCCTTCTTGGTAA	For RT-qPCR of mRNA from
EM2175	CCTCCAACTCTTCTGCACGG	LOC115254984, candidate
		<i>myo-fem</i> orthologue

Supplementary Table 1: Sequences of primers used in this study.

Line	Replicate	Males	Females
WT	1	125	116
WT	2	128	128
WT	3	74	67
SM9	1	936	745
SM9	2	677	590
SM9	3	430	308
1.2G	1	889	1027
1.2G	2	477	423
1.2G	3	1787	1802
3.1G	1	1246	1224
3.1G	2	339	306
3.1G	3	887	641

Supplementary Table 2: Sex ratios of transgenic versus WT lines

Line	Replicate	Number failed	Number successed
WT	1	55	31
WT	2	38	36
WT	3	79	11
SM9	1	35	41
SM9	2	34	65
SM9	3	50	14

Supplementary Table 3: Flight ability of SM9 transgenic pseudo-males versus WT males.

Replicate	Line	Larvae	Eggs
1	WT	373	641
2	WT	150	309
3	WT	115	201
1	SM9	138	286
2	SM9	82	147
3	SM9	153	264

Supplementary Table 4: Hatching rate of eggs from the SM9 versus WT lines

Replicate	Line	Number of
		progeny
1	WT	2224
2	WT	1400
3	WT	1581
1	SM9	2013
2	SM9	1479
3	SM9	858

Supplementary Table 5: Fertility of the SM9 versus WT lines

Comparison	Replicate	Number of	Number
		progeny	transgenic
			progeny
SM9 vs WT	1	22	364
SM9 vs WT	2	129	1912
SM9 vs WT	3	211	1540
SM9 vs WT	4	57	421
SM9 vs WT	5	157	1401
1.2G vs WT	1	586	2681
1.2G vs WT	2	530	4296
1.2G vs WT	3	474	3571
1.2G vs WT	4	187	1875
3.1G vs WT	1	16	281
3.1G vs WT	2	99	1042
3.1G vs WT	3	71	895
3.1G vs WT	4	175	1165
3.1G vs WT	5	73	710

Supplementary Table 6: Competitiveness of transgenic versus WT males