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VARIANT CURATION OF ALZHEIMER’S DISEASE ASSOCIATED GENES 
 

• APP Chr21 g.(26253828_30011000)dup. 

Duplication of the APP. Locus have been reported as disease causing for Alzheimer’s Disease (AD)[1] 
 

• PSEN1 NM_000021, c.349C>G (p.Pro117Ala)  

Variant previously reported in a Colombian family with early onset AD[2]. 
 

• PSEN1 NM_000021, c.356C>T (p. Thr119Ile) – Figure S16 

Variant previously described as pathogenic. Identified in Argentine[3] and Korean patients with AD[4] 
 

• PSEN1 NM_000021, c.428T>C (p. Ile143Thr) – Figure S16 

Variant previously described as pathogenic. Reported in multiple cohorts from different ancestries. 
European ancestry in Belgium[5] France[6] and Sweden[7]. Asian ancestry in Japan[8] and China[9]. It had 
also been previously reported in another Colombian family[10]. 
 

• PSEN1 NM_000021, c.485T>G (p. Ile162Ser) – Figure S16 

ACMG classification: Cosegregation with disease in multiple family members – Figure S16 (ACMG criterion 
PP1). Absent in population databases – ExAC and 1000 Genomes project (ACMG criterion PM2). More 
than 300 variants in PSEN1 have been reported and pathogenic variants in PSEN1 are the most common 
cause of familiar early onset Alzheimer's disease (https://www.alzforum.org/mutations/psen-1) (ACMG 
criterion PP2). Predicted to be damaging by three computational algorithms (SIFT CADD and PolyPhen-2) 
(ACMG criterion PP3) → Likely pathogenic (II) 
Guerreiro algorithm for PSEN1 and PSEN2 variant classification[11].: Classified as Definite Pathogenic 
since there are more than three cases of individuals with AD carrying this PSEN1 variant in the same family 
 

• PSEN1 NM_000021, c.488A>G (p. His163Arg) – Figure S16 

Variant previously described as pathogenic. Reported in multiple cohorts from different ancestries, 
including Americans and Canadians[12], French[13], Japanese [14], Polish[15], Spanish[16], Turkish[17], 
and Chinese[18].   
 

• PSEN1 NM_000021, c.667C>A (p. Gln223Lys) – Figure S16 

ACMG classification: Cosegregation with disease in multiple family members – Figure S16 (ACMG criterion 
PP1). Absent in population databases – ExAC and 1000 Genomes project (ACMG criterion PM2). Novel 
missense change at an amino acid residue where a different missense change determined to be 
pathogenic has been seen before[19,20](ACMG criterion PM5). More than 300 variants in PSEN1 have 
been reported and pathogenic variants in PSEN1 are the most common cause of familiar early onset 
Alzheimer's disease (https://www.alzforum.org/mutations/psen-1) (ACMG criterion PP2). Predicted to be 
damaging by three computational algorithms (SIFT CADD and PolyPhen-2) (ACMG criterion PP3) → Likely 
pathogenic 
Guerreiro algorithm for PSEN1 and PSEN2 variant classification[11]: Classified as Definite Pathogenic since 
there are more than three cases of individuals with AD carrying this PSEN1 variant in the same family 
 



• PSEN1 NM_000021, c.782C>T (p.Val261Ala) 

ACMG classification: Absent in population databases – ExAC and 1000 Genomes project (ACMG criterion 
PM2). Novel missense change at an amino acid residue where a different missense change determined to 
be pathogenic has been seen before[16,21,22] (ACMG criterion PM5). More than 300 variants in PSEN1 
have been reported and pathogenic variants in PSEN1 are the most common cause of familiar early onset 
Alzheimer's disease (https://www.alzforum.org/mutations/psen-1) (ACMG criterion PP2). Predicted to be 
damaging by three computational algorithms (SIFT CADD and PolyPhen-2) (ACMG criterion PP3) → Likely 
pathogenic 
Guerreiro algorithm for PSEN1 and PSEN2 variant classification[11]: Classified as probably pathogenic as 
the variant is seen in a single case, it is absent from population databases, it is conserved between PSEN1 
and PSEN2 and other pathogenic variants have been described in the same residue. 
 

• PSEN1 NM_000021, c.791C>T (p. Pro264Leu) – Figure S16 

Variant previously described as pathogenic. Reported in multiple cohorts from different ancestries, 
including French[23], British[24] and descendants of the United Kingdom[25], Turkish[17], and 
Japanese[26].  
 

• PSEN1 NM_000021, c.839A>C (p.Glu280Ala) 

Pathogenic variant widely described in Colombian cohorts and a Japanese family[14,27] 
 

• PSEN1 NM_000021, c.851C>T (p.Pro284Leu) – Figure S16 

Variant previously described as pathogenic. Reported in a Japanese patient with spastic paraparesis and 
cotton wool amyloid beta plaques[28].  
 

• PSEN1 NM_000021, c.1247T>C (p.Ile416Thr) 

Identified in a Colombian family with early onset AD[29]. 
 

• PSEN2 NM_000047, c.487C>T (p.Arg163Cys) – Figure S21 

ACMG classification: Previously described in cases with AD. While absent in controls (ACMG criterion 
PS4)[30]. Absent in population databases – ExAC and 1000 Genomes project (ACMG criterion PM2). 
Variants in PSEN2 are a cause of genetic Alzheimer's disease (https://www.alzforum.org/mutations/psen-
1) (ACMG criterion PP2). Predicted to be damaging by three computational algorithms (SIFT, CADD and 
PolyPhen-2) (ACMG criterion PP3) → Likely pathogenic 
Guerreiro algorithm for PSEN1 and PSEN2 variant classification[11]: Classified as probably pathogenic as 
the variant is three or more unrelated cases while absent in population databases[30]. 
 
 
VARIANT CURATION OF FTLD-ALS ASSOCIATED GENES 
 

• MAPT NM_005910, c.902C>T (p.Pro301Leu) – Figure S23 

Variant previously described as pathogenic. Reported in multiple cohorts from different ancestries, 
including Dutch[31], French[32], Spanish[33], Japanese[34], and Chinese[35].  
 

• MAPT NM_005910, c c.1189C>T (p.Pro397Ser) – Figure S23 

Variant previously described as pathogenic. Reported in a cohort of Spanish ancestry[36] 
 



• GRN NM_002087, c.709-2A>G (p.Ala237fs) – Figure S29 

Variant previously described as pathogenic. Reported in multiple cohorts from different ancestries[37,38].  
 

• TBK1 NM_002087, c.1257_1258del (p.Val421Cfs*26) – Figure S26 

Loss of function in TBK1 is a known mechanism for disease[39] (ACMG criterion PVS1). Variant previously 
documented in Amyotrophic Lateral Sclerosis online (ALS) patients from cohort of European descent[40] 
(ACMG criterion PS4). Absent in population databases – ExAC and 1000 Genomes project (ACMG criterion 
PM2). Variant causes a premature stop codon (ACMG criterion PM4)→ Pathogenic 
 

• TBK1 NM_002087, c.1717C>T (p.Arg573Cys) – Figure S26 

This variant has previously been reported as dominant non-benign in exome sequencing of ALS 
patients[41](ACMG criterion PS4). Located in a mutational hotspot or well-studied functional domain 
[42,43] (ACMG criterion PM1). Missense change at an amino acid residue where a different missense 
change determined to be pathogenic has been seen before[44,45] (ACMG criterion PM5). Segregation 
data suggests pathogenicity in homozygous carriers (ACMG criterion PP1). Predicted to be damaging by 
three computational algorithms (SIFT, CADD and PolyPhen-2) (ACMG criterion PP3). → Pathogenic 
 

• TARDBP NM_007375, c.881G>T (p.Gly294Val)  

Variant previously described as pathogenic for ALS. Reported in multiple cohorts from different ancestries, 
including Italian[36] Morrocan[47,48] and Australian[49] 
 

• TARDBP NM_007375, c.1147A>G (p.Ile383Val) – Figure S28 

Variant previously described as pathogenic. Reported in multiple cohorts from different ancestries, 
including Sardinian[50], Taiwanese[51], and a cohort of general European descent[40].  
 
 
VARIANT CURATION OF ALS ASSOCIATED GENES 
 

• ANXA11, NM_001157 c. 904C>T (p.Arg302Cys) 

This variant been reported in individuals with ALS from different cohorts [52,53](ACMG criterion PS4). It 
is localized in the stabilizing N-terminal segment, where impairs protein function[54] (ACMG criterion 
PM1). Low rate of benign mutations in a gene associated with the phenotype[55] (ACMG criterion PP2) 
Predicted damaging by multiple computational methods (CADD, PolyPhen-2, and SIFT) (ACMG criterion 
PP3) → Pathogenic  
 

• FIG4 NM_014845 c.122T>C (p.Ile41Thr) 

The Ile41Thr mutation found in this population has been the most frequent missense mutation associated 
with CMT4J, an autosomal recessive subtype of Charcot-Marie-Tooth disorders[56]. 
 

• HNRNPA2B1, NM_001157 c.965G>A (p.Gly322Glu) 

ACMG classification:  
Located in domain has been shown to lead to fibril formation and cause ALS [57,58](ACMG criterion PM1). 
Absent in population databases – ExAC and 1000 Genomes project (ACMG criterion PM2). Low rate of 
benign mutations[55] (ACMG criterion PP2). Predicted damaging by multiple computational methods 
(PolyPhen-2, and SIFT) (ACMG criterion PP3) → Likely Pathogenic 
 



• SOD1 NM_000454, c.63C>G (p.Phe21Leu) 

Cell biology studies indicate pathogenicity of this variant [59,60](ACMG criterion PS3). Phe21Leu was 
reported in a study on ALS in an Italian population[61](ACMG criterion PS4) . Not present in ExAC database 
(ACMG criterion PM2). Missense variants at Phe21 (misreported in some early papers as being Phe20) 
have been reported previously in ALS patients[62](ACMG criterion PM5). Low rate of benign mutations in 
a gene associated with the phenotype[55](ACMG criterion PP2). Predicted damaging in two 
computational methods (CADD and PolyPhen-2)(ACMG criterion PP3) → Pathogenic 
 

• TUBA4A NM_006000, c.820C>G (p.Pro274Ala) – Figure S32 

Cosegregation with disease in family members of two independent families– Figure S32 (ACMG criterion 
PP1). Deleterious variation in this gene has been associated with sporadic and familiar ALS[63–65] (ACMG 
criterion PP2). Predicted damaging by two computational methods (CADD and PolyPhen-2) (ACMG 
criterion PP3) Absent in population databases – ExAC and 1000 Genomes project (ACMG criterion PM2). 
→ Likely pathogenic 
 

• TUBB4A NM_006087, c.811G>A (p.Ala271Thr) 

Previously described as pathogenic for autosomal dominant motor neuron disease [Clinvar 
RCV000077783.3] 
 

• UBQLN2 NM_001344, c.724G>A (p.Ala242Thr) – Figure 34 

Variant located in STI1 domain, demonstrated to be important for interaction with chaperone proteins 
and implicated in pathogenesis[66] (ACMG criterion PM1) Absent in population databases – ExAC and 
1000 Genomes project (ACMG criterion PM2). Gene with low rate of benign mutations [55](ACMG 
criterion PP2). Predicted damaging by multiple computational methods (CADD, PolyPhen-2 and SIFT) 
(ACMG criterion PP3) → Likely pathogenic 
 
 
VARIANT CURATION OF GENES ASSOCIATED WITH OTHER NEURODEGENERATIVE DISEASES: 
 

• CSF1R NM_001288705, c.2068G>A (p.Gly690Ser) – Figure S36 

This variant is located in the protein kinase domain, which is a hotspot for deleterious mutation 
[67](ACMG criterion PM1). CSF1R has over 60 missense variants reported as pathogenic in patients with 
Hereditary diffuse leukoencephalopathy with spheroids (HDLD) and cancer predisposition[55] (ACMG 
criterion PP2). This variant is predicted as damaging by two computational methods (CADD and PolyPhen-
2) (ACMG criterion PP3). The patient’s phenotype is highly specific for this gene; recurrent malignancies 
and early onset dementia with neuropathology confirmation of the HDLD diagnosis (ACMG criterion PP4). 
Family history of dementia and cancer, but with no cosegregation data available for analyses. There is not 
enough evidence to use the ACMG criteria to declare the variant pathogenic, but the highly specific 
phenotype of the patient and the family history suggests this variant to be a good candidate to test other 
family members.  
 

• DNAJC5 NM_025219, c.347T>G (p.Leu116Arg) – Figure S35 

DNAJC5 has been implicated as pathogenic for neuronal ceroid lipofuscinosis of adult onset (CLN4B) 
with a low rate of benign variation(ACMG criterion PP2). Functional studies of the residue Leu116 support 
the pathogenicity of variants in that residue[68](ACMG criterion PS3). Leu116Arg is located in a mutational 
hotspot for CLN4B [69–71] (ACMG criterion PM1). Leu115Arg and Leu116del mutations were originally 
discovered in a study done on a Czech family along with data from previous patients collected from the 



Netherlands, USA, Canada, France, Italy, Germany, Austria, Belgium and Poland[72] (ACMG criterion 
PM5). Absent in population databases – ExAC and 1000 Genomes project (ACMG criterion PM2). Predicted 
to be at least possibly damaging by multiple computational methods (CADD, PolyPhen-2 and SIFT) (ACMG 
criterion PP3). The phenotype and cosegregation of the variant with the illness supports the diagnosis of 
CLN4B and pathogenicity of the variant (ACMG criteria PP4 and PP1-S) → Pathogenic 
 

• LRRK2 NM_198578, c.4334C>G (p.Ser1445Cys) 

Functional studies have demonstrated that Ser1445 is one of LRRK2 autophosphorylation sites, where 
missense mutations are deleterious[73–75] (ACMG criterion PS3). Located in the Roc (GTP-ase like) 
domain which is a mutational hotspot (Uniprot database Q5S007 and [76]) (ACMG criterion PM1). Absent 
in population databases – ExAC and 1000 Genomes project (ACMG criterion PM2). Predicted as damaging 
by two computational methods (CADD and PolyPhen-2) (ACMG criterion PP3) → Likely pathogenic 
 

• LRRK2 NM_198578, c.6055G>A (p.Gly2019Ser) 

The G2019S mutation has been discovered to be the most frequent cause of autosomal dominant PD in 
many genome and exome sequencing studies within a wide variety of populations [77–79]. 
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