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A Backward-in-time inner products

In this appendix we provide an elementary derivation of (24) which is key to our estimates

of inner products involving the stopped backward-in-time transition operator T tA∪B. For the

purposes of this derivation we assume that X(t) is a discrete time process (so that t is a non-

negative integer) with probability density p(x(1)|x(0)) for transition from x(0) to x(1) and

stationary density π. The steady state backward-in-time process X(−t) then has transition

density

q(x(0)|x(1)) =
p(x(1)|x(0))π(x(0))

π(x(1))
. (S1)
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From this expression we immediately find that

π(x(t))q(x(t− 1)|x(t))q(x(t− 2)|x(t− 1)) · · · q(x(0)|x(1))

= π(x(0))p(x(t)|x(t− 1))p(x(t− 1)|x(t− 2)) · · · p(x(1)|x(0)) (S2)

relating the steady state backward-in-time path density to the steady state forward-in-time

path density. Therefore, for any path function F (x(0), x(1), . . . , x(t)) and any density µ

(equivalent to π) we find (recalling that here w = π/µ) that

∫
E [F (X(0), X(−1), . . . , X(−t)) |X(0) = x]µ(x)dx

=

∫
F (x(0), . . . , x(−t))

w(x(0))
π(x(0))q(x(−1)|x(0)) · · · q(x(−t)|x(−t+ 1))dx(0) · · · dx(−t)

=

∫
F (x(t), . . . , x(0))

w(x(t))
π(x(t))q(x(t− 1)|x(t)) · · · q(x(0)|x(1))dx(t) · · · dx(0)

=

∫
E
[
F (X(t), X(t− 1), . . . , X(0))

w(X(t))

∣∣∣∣X(0) = x

]
w(x)µ(x)dx. (S3)

We will use (S3) to find an expression for

〈g, T −tA∪Bf〉 =

∫
E
[
g(x)f(X(−(T−A∪B ∧ t))) |X(0) = x

]
µ(x)dx (S4)

in terms of the forward-in-time process. If we choose

F (X(0), X(−1), . . . , X(−t)) = g(X(0))f(X(−(T−A∪B ∧ t))), (S5)

then

〈g, T −tA∪Bf〉 =

∫
E [F (X(0), X(−1), . . . , X(−t)) |X(0) = x]µ(x)dx. (S6)

In terms of the forward process

F (X(t), X(t− 1), . . . , X(0)) = f(X(SA∪B(t)))g(X(t)), (S7)
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where we remind the reader of (25):

SA∪B(t) = max{s ≤ t : X(s) ∈ A ∪B}

with SA∪B(t) = 0 if X(s) /∈ A ∪B for all 0 ≤ s ≤ t.

Applying (S3) with this choice of F yields (24):

〈
g, T −tA∪B f

〉
=

∫
E
[
f(X(SA∪B(t)))

g(X(t))

w(X(t))

∣∣∣∣X(0) = x

]
w(x)µ(dx).

B A formula for the reactive current

It has been shown1 that for a diffusion with generator

Lf(x) =
∑
j

bj(x)
∂f

∂xj
(x) +

1

2

∑
ij

aij(x)
∂2f

∂xi∂xj
(x) (S8)

the reactive current is the vector field given by

(JAB)i = q+(x)q−(x)Ji +

π(x)q−(x)
∑
j

aij(x)
∂q+
∂xj

(x)− π(x)q+(x)
∑
j

aij(x)
∂q−
∂xj

(x), (S9)

where J is the equilibrium current:

Ji = π(x)bi(x)−
∑
j

∂[πaij]

∂xj
(x). (S10)

To project the current onto a CV space of interest, we take the dot product with ∇θ for any

smooth CV θ and, using the identity

Ji · ∇f(x) =
π(x)

2

(
Lf(x)− L†πf(x)

)
, (S11)
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which follows from direct manipulations, we can write

JAB · ∇θ(x) =
π(x)

2

(
q−(x)L[q+θ](x)− q+(x)L†π[q−θ](x)

)
(S12)

for x ∈ (A∪B)c. This formula is not useful computationally since it still contains a backward-

in-time generator. To compute statistics from data, we need to formulate their estimators

as expectations against the stationary distribution since this (1) permits the use of the

adjoint relation to clear away backward transition operators and (2) is consistent with our

reweighting scheme. To this end, we define the projected reactive current as

JθAB(s) =

∫
JAB(x) · ∇θ(x)δ(θ(x)− s)dx = lim

|ds|→0

1

|ds|

∫
{θ(x)∈ds}

JAB(x) · ∇θ(x)dx, (S13)

where ds ∈ (A ∪B)c is an infinitesimal region of CV space with s ∈ ds, and {x : θ(x) ∈ ds}

does not intersect A∪B. Using (S12) and the fact that Lq+ = 0 and L†πq− = 0 on (A∪B)c,

we have

JθAB(s) = lim
|ds|→0

1

|ds|

∫
1{θ(x)∈ds}

π(x)

2

(
q−(x)L[q+θ](x)− q+(x)L†π[q−θ](x)

)
dx

= lim
|ds|→0

1

|ds|

∫
1{θ(x)∈ds}

π(x)

2

(
q−(x)L[q+θ](x)− q−(x)Lq+(x)θ(x)

− q+(x)L†π[q−θ](x) + q+(x)L†πq−(x)θ(x)
)
dx. (S14)

Writing this expression in terms of the transition operator and canceling terms, we find that

JθAB(s) = lim
t,|ds|→0

1

2t |ds|

∫
1{θ(x)∈ds}π(x)

(
q−(x)T t[q+θ](x)− q−(x)T tq+(x)θ(x)

− q+(x)(T t)†π[q−θ](x) + q+(x)(T t)†πq−(x)θ(x)
)
dx

= lim
t,|ds|→0

1

2t |ds|

∫
π(x)q−(x)

(
1{θ(x)∈ds}

(
T t[q+θ](x)− T tq+(x)θ(x)

)
+
(
T t[q+θ 1{θ∈ds}](x)− T t[q+1{θ∈ds}](x)θ(x)

) )
dx, (S15)
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where the second equality follows from the definition of the adjoint (T t)†π.

Expression (S15) for JθAB(s) can be directly translated into an estimator for computing

from short-trajectory data:

JθAB(s) ≈ 1

2t|ds|

M∑
i=1

q+(X(i)(t))
(
θ(X(i)(t))− θ(X(i)(0))

)
×q−(X(i)(0))1θ∈ds(X

(i)(0))w(X(i)(0))

+
1

2t|ds|

M∑
i=1

q+(X(i)(t))
(
θ(X(i)(t))− θ(X(i)(0))

)
×q−(X(i)(0))1θ∈ds(X

(i)(t))w(X(i)(0)). (S16)

Finally, without affecting the t → 0 limit, we can stop our trajectories when they exit or

enter A ∪B, yielding the estimator

JθAB(s) ≈ 1

2t|ds|

M∑
i=1

q+(X(i)(t ∧ TA∪B))
(
θ(X(i)(t ∧ TA∪B))− θ(X(i)(0))

)
×q−(X(i)(0))1θ∈ds(X

(i)(0))w(X(i)(0))

+
1

2t|ds|

M∑
i=1

q+(X(i)(t))
(
θ(X(i)(t))− θ(X(i)(SA∪B(t)))

)
×q−(X(i)(SA∪B(t)))1θ∈ds(X

(i)(t))w(X(i)(0)) (S17)

which, in our experience, outperformed (S16) for larger values of t. Note that we could have

canceled additional terms in (S15) to yield a more concise estimator. However, we found

that the estimator (S17) gave less noisy results.

C Reactive current on a CV space

We now establish that our projected reactive current gives the flux over surfaces in CV

space. We assume that our CVs are smooth and that, for some subset Cθ of CV space with
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smooth boundary, the set C = {x : θ(x) ∈ Cθ} contains A and does not intersect B. We

will establish that for such a subset,

∫
∂Cθ

JθAB(s) · nCθdσCθ =

∫
∂C

JAB · nCdσC . (S18)

Here nCθ is the outward pointing normal vector to the boundary ∂Cθ of Cθ, nC is the normal

vector to the boundary ∂C of C, σCθ is the surface measure on ∂Cθ and, σC is the surface

measure on ∂C. The significance of (S18) is that it shows that our definition of JθAB preserves

reactive flux across surfaces in the CV space so that statistics of reactive paths could, in

principle, be computed directly from JθAB.

Let fδ be a smooth function on CV space that is equal to 1 on Cθ and equal to 0 for x a

distance of more than δ from Cθ. Applying the divergence theorem and integrating by parts

we find that

∫
∂Cθ

JθAB(s) · nCθdσCθ =

∫
Cθ

divJθAB(s)ds

= lim
δ→0

∫
fδ(s) divJθAB(s)ds

= − lim
δ→0

∫
JθAB(s) · ∇fδ(s)ds. (S19)

Inserting our definition of JθAB we find that

∫
∂Cθ

JθAB(s) · nCθdσCθ = − lim
δ→0

∑
j

∫ ∫
JAB(x) · ∇θj(x)δ(θ(x)− s)∂fδ(s)

∂sj
dxds

= − lim
δ→0

∑
j

∫
JAB(x) · ∇θj(x)

∂fδ
∂sj

(θ(x))dx. (S20)

Using the chain rule the last expression can be rewritten as

∫
∂Cθ

JθAB(s) · nCθdσCθ = − lim
δ→0

∫
JAB(x) · ∇fδ(θ(x))dx. (S21)
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Integrating by parts, taking the δ → 0 limit, and applying the divergence theorem again

yields (S18).

D Rate and Current Estimators for Long Lag Times

The estimators for the reaction rate and the reactive current presented in the main text

incur significant bias at longer lag times. Here, we derive estimators which at all lag times

converge to the TPT quantities with perfect sampling, committors, and change of measure.

We introduce the notation

S+
A∪B(t) = min{s ≥ t : X(s) ∈ A ∪B} (S22)

S−A∪B(t) = max{s ≤ t : X(s) ∈ A ∪B} (S23)

for forward and backward stopping times starting at time t.

For the reaction rate estimator, we start with equation (32). Because X(0) is integrated

over the stationary distribution, we can shift the term inside the expectation by an arbitrary

time s. Averaging over 0 ≤ s < τ then yields

RAB = lim
t→0

1

t

∫
(T tq2+(x)− q+(x)T tq+(x))q−(x)π(dx)

= lim
t→0

1

t

∫
E[q+(X(t))(q+(X(t))− q+(X(0)))q−(X(0)) | X(0) = x]π(dx)

= lim
t→0

1

t

∫
E[q+(X(s+ t))(q+(X(s+ t))− q+(X(s)))q−(X(s)) | X(0) = x]π(dx)

= lim
t→0

1

t

∫
1

τ

∫ τ

0

E[q+(X(s+ t))(q+(X(s+ t))− q+(X(s)))

q−(X(s)) | X(0) = x]ds π(dx)

= lim
t→0

1

t

∫
1

τ

∫ τ

0

E[q+(X(τ ∧ S+
A∪B(s+ t)))(q+(X(s+ t))− q+(X(s)))

q−(X(0 ∨ S−A∪B(s))) | X(0) = x]ds π(dx) (S24)
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where (S24) follows from (S3) and the equations solved by the forward and backward com-

mittors. This suggests the estimator

RAB ≈
1

τ

∑
i

τ
∆
−1∑

p=0

q+(X(i)(τ ∧ S+
A∪B((p+ 1)∆)))(q+(X(i)((p+ 1)∆))− q+(X(i)(p∆)))

q−(X(i)(0 ∨ S−A∪B(p∆)))w(X(i)(0)).

(S25)

In contrast to the estimator in equation (33), we have taken the limit over the sampling

interval ∆ rather than the lag time, which is now τ in this expression. This is the same as

the approximation made in equation (14).

To further relate this estimator to equation (33), we manipulate it to obtain a similar

form. To do that, we require two identities. First, we express forward stopping times in

terms of backward stopping times. We can derive this by case analysis (Figure S8):

1. If X(0 ∨ S−A∪B(s)) /∈ A ∪ B, then X(r) /∈ A ∪ B for 0 ≤ r ≤ s. This condition is

equivalent to that of X(s ∧ S+
A∪B(0)) /∈ A ∪B.

2. If X(0 ∨ S−A∪B(s)) ∈ A ∪B and X(s) ∈ A ∪B, the process stopped immediately.

3. If X(0∨S−A∪B(s)) ∈ A∪B and X(s) /∈ A∪B, the process hit A∪B after propagating

backward in time. The time 0∨S−A∪B(s) can be found by finding a time r ∈ [0, s) such

that X(t) /∈ A ∪B for all times t ∈ (r, s].

Together, for all s ≥ 0, this yields

f(X(0 ∨ S−A∪B(s))) = 1(A∪B)c(X(s ∧ S+
A∪B(0)))f(X(0)) + 1A∪B(X(s))f(X(s))

+ lim
t→0

1

t

∫ s

0

1(A∪B)c(X(s ∧ S+
A∪B(r + t)))1A∪B(X(r))f(X(r)) dr

≈ 1(A∪B)c(X(s ∧ S+
A∪B(0)))f(X(0)) + 1A∪B(X(s))f(X(s))

+

s
∆
−1∑

p=0

1(A∪B)c(X(s ∧ S+
A∪B((p+ 1)∆)))1A∪B(X(p∆))f(X(p∆)).

(S26)
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Second, we have the identity

S+
A∪B(r) = lim

t→0
S+
A∪B(s+ t) ≈ S+

A∪B(s+ ∆) if X(s ∧ S+
A∪B(r)) ∈ (A ∪B)c and s ≥ r. (S27)

This follows from the definition of the stopping time: S+
A∪B(r) = min{t′ ≥ r : X(t′) ∈ A∪B},

and so if X(t′) /∈ A ∪ B for r ≤ t′ ≤ s, then min{t′ ≥ r : X(t′) ∈ A ∪ B} = min{t′ > s :

X(t′) ∈ A ∪B}.
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We now apply equations (S26) and (S27) to equation (S25), yielding

RAB ≈
1

τ

∑
i

τ
∆
−1∑

p=0

q+(X(i)(τ ∧ S+
A∪B(0)))(q+(X(i)((p+ 1)∆))− q+(X(i)(p∆)))

1(A∪B)c(X
(i)(p∆ ∧ S+

A∪B(0)))q−(X(i)(0))w(X(i)(0))

+
1

τ

∑
i

τ
∆
−1∑

p=0

q+(X(i)(τ ∧ S+
A∪B((p+ 1)∆)))(q+(X(i)((p+ 1)∆))− q+(X(i)(p∆)))

1A∪B(X(i)(p∆))q−(X(i)(p∆))w(X(i)(0))

+
1

τ

∑
i

τ
∆
−1∑

p=0

p−1∑
r=0

q+(X(i)(τ ∧ S+
A∪B((r + 1)∆)))(q+(X(i)((p+ 1)∆))− q+(X(i)(p∆)))

1(A∪B)c(X
(i)(p∆ ∧ S+

A∪B((r + 1)∆)))1A∪B(X(i)(r∆))

q−(X(i)(r∆))w(X(i)(0))

=
1

τ

∑
i

τ∧S+
A∪B(0))

∆
−1∑

p=0

q+(X(i)(τ ∧ S+
A∪B(0)))(q+(X(i)((p+ 1)∆))− q+(X(i)(p∆)))

q−(X(i)(0))w(X(i)(0))

+
1

τ

∑
i

τ
∆
−1∑

p=0

q+(X(i)(τ ∧ S+
A∪B((p+ 1)∆)))(q+(X(i)((p+ 1)∆))− q+(X(i)(p∆)))

1A∪B(X(i)(p∆))q−(X(i)(p∆))w(X(i)(0))

+
1

τ

∑
i

τ
∆
−2∑

r=0

τ∧S+
A∪B((r+1)∆)

∆
−1∑

p=r+1

q+(X(i)(τ ∧ S+
A∪B((r + 1)∆)))

(q+(X(i)((p+ 1)∆))− q+(X(i)(p∆)))

1A∪B(X(i)(r∆))q−(X(i)(r∆))w(X(i)(0))

=
1

τ

∑
i

q+(X(i)(τ ∧ S+
A∪B(0)))(q+(X(i)(τ ∧ S+

A∪B(0)))− q+(X(i)(0)))q−(X(i)(0))w(X(i)(0))

+
1

τ

∑
i

τ
∆
−1∑

r=0

q+(X(i)(τ ∧ S+
A∪B((r + 1)∆)))(q+(X(i)(τ ∧ S+

A∪B((r + 1)∆)))− q+(X(i)(r∆))

1A∪B(X(i)(r∆))q−(X(r∆))w(X(i)(0)) (S28)
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This is equation (33) with an additional term

1

τ

∑
i

τ
∆
−1∑

r=0

q+(X(i)(τ ∧ S+
A∪B((r + 1)∆)))(q+(X(i)(τ ∧ S+

A∪B((r + 1)∆)))− q+(X(i)(r∆)))

1A∪B(X(i)(r∆))q−(X(i)(r∆))w(X(i)(0))

(S29)

which adds the contributions from trajectories leaving A ∪ B within the lag time τ , which

becomes significant at longer lag times since a larger portion of the trajectories hit (or start

in) and then exit A ∪B.

We proceed analogously for the reactive current estimator. We start with expression (35)

and integrate to obtain

JθAB(s) = lim
t,|ds|→0

1

2t|ds|

∫
(T t[θq+](x)− θ(x)T tq+(x))1{θ∈ds}(x)q−(x)π(dx)

+ (T t[1{θ∈ds}θq+](x)− θ(x)T t[1{θ∈ds}q+](x))q−(x)π(dx)

= lim
t,|ds|→0

1

2t|ds|

∫
E[q+(X(r + t))(θ(X(r + t))− θ(X(r)))q−(X(r))

(1{θ∈ds}(X(r + t)) + 1{θ∈ds}(X(r))) | X(0) = x]π(dx)

= lim
t,|ds|→0

1

2t|ds|

∫
1

τ

∫ τ

0

E[q+(X(r + t))(θ(X(r + t))− θ(X(r)))q−(X(r))

(1{θ∈ds}(X(r + t)) + 1{θ∈ds}(X(r))) | X(0) = x]dr π(dx)

= lim
t,|ds|→0

1

2t|ds|

∫
1

τ

∫ τ

0

E[q+(X(τ ∧ S+
A∪B(r + t)))(θ(X(r + t))− θ(X(r)))

q−(X(0 ∨ S−A∪B(r)))(1{θ∈ds}(X(r + t))− 1{θ∈ds}(X(r))) | X(0) = x]dr π(dx),

(S30)
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which suggests the estimator

JθAB(s) ≈ 1

2τ |ds|
∑
i

τ
∆
−1∑

p=0

q+(X(i)(τ ∧ S+
A∪B((p+ 1)∆)))(θ(X(i)((p+ 1)∆))− θ(X(i)(p∆)))

q−(X(i)(0 ∨ S−A∪B(p∆)))(1{θ∈ds}(X
(i)((p+ 1)∆)) + 1{θ∈ds}(X

(i)(p∆)))w(X(i)(0)).

(S31)

We note that if we integrate over s and substitute θ(x) = q+(x), we obtain the reaction rate

estimator (S25). As with equation (S25), this estimator converges to the reactive current

with perfect sampling, committors, and change of measure. In comparison to equation

(37), we find that this estimator has larger variance with limited data. This results from

the contribution of θ(X(i)((p+ 1)∆)) − θ(X(i)(p∆)) being assigned locally to X((p + 1)∆)

and X(p∆), whereas equation (37) assigns θ(X(i)(τ ∧ S+
A∪B(0))) − θ(X(0)) to X(0) and

θ(X(τ))−θ(X(0∨S−A∪B(τ))) to X(τ) which leads to mixing over longer length scales. Thus,

when using (S31), we recommend smoothing the reactive current vector field using a kernel

density estimate. Specifically, to estimate the reactive current at a point s, we evaluate

∫
e−|s−s

′|2/2σ2
JθAB(s′)ds′∫

e−|s−s′|2/2σ2ds′
, (S32)

where σ is chosen to be the smallest value where the vector field is smooth.

Using equations (S26) and (S27), we can express this estimator using a similar procedure
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as above for the rate as

JθAB(s) ≈ 1

2τ |ds|
∑
i

q+(X(i)(τ ∧ S+
A∪B(0)))q−(X(i)(0))w(X(i)(0))

τ∧S+
A∪B(0)

∆
−1∑

p=0

(θ(X(i)((p+ 1)∆))− θ(X(i)(p∆)))

(1{θ∈ds}(X
(i)((p+ 1)∆)) + 1{θ∈ds}(X

(i)(p∆)))

+
1

2τ |ds|
∑
i

τ
∆
−1∑

r=0

q+(X(i)(τ ∧ S+
A∪B((r + 1)∆)))q−(X(i)(r))1A∪B(X(i)(r∆))w(X(i)(0))

τ∧S+
A∪B((r+1)∆)

∆
−1∑

p=r

(θ(X(i)((p+ 1)∆))− θ(X(i)(p∆)))

(1{θ∈ds}(X
(i)((p+ 1)∆)) + 1{θ∈ds}(X

(i)(p∆))). (S33)

Likewise, by expressing the forward stopping time in terms of the backward stopping time

as

f(X(τ ∧ S+
A∪B(s))) = 1(A∪B)c(X(s ∨ S−A∪B(τ)))f(X(τ)) + 1A∪B(X(s))f(X(s))

+ lim
t→0

1

t

∫ τ

s

1(A∪B)c(X(s ∨ S−A∪B(r − t)))1A∪B(X(r))f(X(r)) dr

≈ 1(A∪B)c(X(s ∨ S−A∪B(τ)))f(X(τ)) + 1A∪B(X(s))f(X(s))

+

τ
∆∑

p= s
∆
+1

1(A∪B)c(X(s ∨ S−A∪B((p− 1)∆)))1A∪B(X(p∆))f(X(p∆))

(S34)

for s ≤ τ and using the identity

S−A∪B(r) = lim
t→0

S−A∪B(s− t) ≈ S−A∪B(s−∆) if X(s ∨ S−A∪B(r)) /∈ A ∪B and s ≤ r (S35)
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we obtain

JθAB(s) ≈ 1

2τ |ds|
∑
i

q+(X(i)(τ))q−(X(i)(0 ∨ S−A∪B(τ)))w(X(i)(0))

τ∑
p=

0∨S−
A∪B(τ)

∆
+1

(θ(X(i)(p∆))− θ(X(i)((p− 1)∆)))

(1{θ∈ds}(X
(i)(p∆)) + 1{θ∈ds}(X

(i)((p− 1)∆)))

+
1

2τ |ds|
∑
i

τ
∆∑
r=1

q+(X(i)(r∆))1A∪B(X(i)(r∆))q−(X(i)(0 ∨ S−A∪B((r − 1)∆)))w(X(i)(0))

r∑
p=

0∨S−
A∪B((r−1)∆)

∆
+1

(θ(X(i)(p∆))− θ(X(i)((p− 1)∆)))

(1{θ∈ds}(X
(i)(p∆)) + 1{θ∈ds}(X

(i)((p− 1)∆))).

(S36)

The reactive current estimator (37) is obtained by averaging the first term of equation

(S33) together with the first term of equation (S36), after performing the approximations

1{θ∈ds}(X
(i)(s)) ≈ 1{θ∈ds}(X

(i)(0)) and 1{θ∈ds}(X
(i)(s)) ≈ 1{θ∈ds}(X

(i)(τ)) for the terms from

equations (S33) and (S36), respectively. The terms that we gain here relative to (37) in the

main text are similar in origin to those introduced into the reaction rate estimator in this

section. For equation (S33), they account for the portions of the trajectories which leave

A ∪ B within τ ; the same holds for equation (S36), but for the time-reversed trajectory. In

effect, equation (37) ignores half the contribution of the trajectories which hit A ∪ B and

half the contribution of the time-reversed trajectories which hit A ∪B.
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Figure S1: EMUS asymptotic variance for REUS PMFs.
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Figure S2: REUS PMFs.
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Figure S3: Difference between DGA with the modified distance basis set without the α
helix resampling and REUS.
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Figure S4: Difference between the PMF from DGA with the distance indicator basis set
and the PMF from REUS.
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Figure S5: Difference between the PMF from DGA with the TICA indicator basis set and
the PMF from REUS.
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Figure S6: Difference between the PMF from DGA with the modified distance basis set and
the PMF from REUS.
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Figure S7: DGA backward committors. Left, middle, and right columns are computed with
the modified distance, distance indicator, and TICA indicator basis sets, respectively. Top,
middle, and bottom rows are computed with lag times of 0.5, 2.5, and 7.5 ns, respectively.

X(s)

X(0)
(A ∪ B)c

X(s)

X(0)

A ∪ B

(A ∪ B)c
X(0)

X(s)
(A ∪ B)c

A ∪ B

Case 1 Case 2 Case 3

Figure S8: Case analysis for expressing the backward stopping time in terms of forward
stopping times.
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