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A generating function is a clothesline on which
we hang up a sequence of numbers for display.

Herbert S. Wilf, Generatingfunctionology

Theoretical results

Probability Generating Functions (PGF)

Recall that for a random variable, X, its probability
generating function (PGF) in the variable z is

GX(z) := EX
[
zX
]
.

Some useful elementary properties of GX are that:

• GX(1−) = 1.

• G′X(1−) = µ where µ is the expected value of X.

• σ2 = G′′X(1−) +G′X(1−)− (G′X(1−))2 where σ2 is
the variance of X.

• GS(z) = GN (GX(z)) if S =
∑N
i Xi for IID Xi and

has GX1+···+Xn(z) = GX(z)n as a special case.

Consequently, a generating function H(z) which has
positive coefficients with a finite sum, induces a distri-
bution with PGF G(z) := H(z)/H(1−). In this case,
we refer to H(1−) as the normalising constant.

Properties of the negative binomial
distribution

Consider a negative binomially (NB) distributed ran-
dom variable, X ∼ NegBinom(r, p). Its probability
mass function (PMF) is:
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P(X = n) =

(
n+ r − 1

n

)
(1− p)rpn

The parameters r and p can be expressed in terms of
the mean, µ, and variance, σ2, as:

p =
σ2 − µ
σ2

and r =
µ2

σ2 − µ
. (1)

The probability generating function (PGF), G(z; p, r)
for this random variable is:

G(z; p, r) =

(
1− p
1− pz

)r
where

p =
σ2 − µ
σ2

and r =
µ2

σ2 − µ
.

(2)

It is stated in the Methods section of the main text, if H
has a negative binomial distribution, then conditioning
on each of the observations leaves it with a negative
binomial distribution. To see this, note both λ- and
ψ-events do not influence H, hence conditioning upon
them does not alter the distribution of H. Moreover, as
the family of negative binomial PGFs is closed (up to
a multiplicative constant) under both scaling of z and
partial derivatives with respect to z, it can be shown
by induction that:

∂nzG(z; p, r) = rn̄
(

p

1− p

)n
G(z; p, r + n),

where xn̄ := x(x+1) . . . (x+n−1) is the rising factorial
(a.k.a. the Pochhammer function). The corresponding
result for scaling z is the following:

G(αz; p, r) =

(
1− p

1− pα

)r (
1− pα
1− pαz

)r
=

(
1− p

1− pα

)r
G(z; pα, r).
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Fig A: Birth-death model of transmission and obser-
vation with scheduled samples. In addition to unsched-
uled sampling which occurs continuously, we consider sched-
uled sampling where at predetermined times a binomial sample
of the infectious population is removed. This corresponds to
a cross-sectional study of prevalence. (A) The vertical lines
indicate the timing of the scheduled samples: the dashed line
(at time t7) is an unsequenced sample which observed two in-
fectious individuals, the solid line (at time t11) is a sequenced
sample. (B) The transmission tree corresponding to the real-
isation of the birth-death process, which appears in Panel A.
(C) The reconstructed tree with sequenced observations on its
leaves and the unsequenced observations as a point process.
The example in this figure differs from Fig 1 of the main text
in that here none of the unscheduled samples have been aggre-
gated, the scheduled data has been generated as part of the
observation process.

These results are important for conditioning the distri-
bution of H on both ρ- and ω-events.

Useful results for birth-death processes

Here we describe some results from the existing liter-
ature modified to match the notation and model we
have adopted in the current work. Note that here we
use forward-time in all equations, ie time is measured
from the origin of the process to the present. First we
have a couple of results adapted from Theorem 3.1
of [1]. Consider the birth-death process (and notation)
described in the Methods section of the main text, the
probability that an individual, alive at time t, will gen-
erate no ψ-, ω- or ρ-sampled observations by time T
when there is a ρ-sampling event. Let p0(u) denote this
probability where u := T − t, then p0 must satisfy the
following differential equation:

p0(0) = z and
dp0

du
= µ− γp0(u) + λp0(u)2,

where the value of z will typically be 1 − ρ to denote
the probability that the lineage was not ρ-sampled at
time T . The solution is:

p0(u, z) =
x1(x2 − z)− x2(x1 − z)e−

√
∆u

(x2 − z)− (x1 − z)e−
√

∆u
(3)

where

x1 =
γ −
√

∆

2λ
, x2 =

γ +
√

∆

2λ
,

γ = λ+ µ+ ψ + ω and ∆ = γ2 − 4λµ.

(4)

In a similar manner, the probability of there being ex-
actly one ρ-sampled lineage and no sampled extinct lin-
eages, the function p1(u), satisfies the differential equa-
tion:

p1(0) = 1− z and

dp1

du
= −γp1(u) + 2λp0(u)p1(u).

(5)

Note that for this equation, the initial condition is 1−
z since it will typically be used to indicate that the
lineage was ρ-sampled at time T . Using the definitions
in Equation (4), the solution is:

p1(u, t) =
(1− z)∆

λ2

e−
√

∆u

((x2 − z)− (x1 − z)e−
√

∆u)2
. (6)

These results were used in [2] to derive the generating
function, M(t, z), for the number of lineages that do
not appear in a phylogeny during an interval of time
without any observed events. The following result is
adapted from Proposition 4.1 of [2]. Consider the
process described in the Methods section of the main
text, during a period of time [a, b] during which there
are k lineages and no observed events, if the probability
generating function for the number of lineages which do
not appear in the phylogeny is initially F (z), then the
generating function satisfies the following PDE:
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M(a, z) = F (z) and

∂tM = (µ− γz + λz2)∂zM + k(2λz − γ)M
(7)

The solution to this is:

M(t, z) = F (p0(b− t, z))
(
p1(b− t, z)

1− z

)k
.

Unsequenced samples correspond to partial
derivatives

First, we consider the case of unscheduled, unsequenced
samples, which remove one H-lineage and occur with
rate ω. Let M(z) be the generating function for the
number of H-lineages prior to an observation. The j-th
term of this series is hjz

j , where hj is the probability
that the number of H-lineages is j. We want to find the
corresponding term after one of the lineages has been
removed at random. Since there are j lineages, there are
j ways to sample one lineage, and upon sampling it is
removed from the population (which then only has j−1
lineages.) Therefore, the term hjz

j becomes ωjhjz
j−1

(ie it forms the (j − 1)-th term of the resulting gen-
erating function). Summing over j we find that the
resulting generating function is equal to ω∂zM(z). Se-
lecting one of the lineages corresponds to the operation
of pointing in combinatorics, [3], which would mean we
take the partial derivative, ∂z and then multiply by z.
However, since we remove the lineage after selecting it,
the results differ by a factor of z

For scheduled unsequenced samples, eachH-lineage is
sampled (and removed) with probability ν, or remains
with probability 1 − ν. Consider the case where ∆H
of the H-lineages have been sampled. If there were j
lineages to start with, the probability of sampling ∆H
is: (

j

∆H

)
ν∆H(1− ν)j−∆H

=
1

(∆H)!
(j)∆Hν

∆H(1− ν)j−∆H ,

where (x)n = x(x−1) . . . (x−n+1) is the Pochhammer
symbol. As above, we can then write down the terms
of the generating function after the scheduled sampling
event and sum over j to find the new generating func-
tion,

ν∆H

(∆H)!
∂∆H
ẑ Mi(ẑ)|ẑ=(1−ν)z

where ∂nz indicates the n-th partial derivative.

Statistics of H via the generating functions Mi

The following equations describe the application of the
properties above to the generating function for H. Con-
sider the partial derivatives of Mi (which become rel-

evant in the next section). Let A = x2 − x1e
−
√

∆u,

B = 1 − e−
√

∆u and C = x2e
−
√

∆u − x1 in the expres-
sion for p0 from Equation (3), we get the following form
which simplifies some subsequent calculus:

p0(u, z) =
x1(x2 − z)− x2(x1 − z)e−

√
∆u

(x2 − z)− (x1 − z)e−
√

∆u

=
x1x2(1− e−

√
∆u) + (x2e

−
√

∆u − x1)z

(x2 − x1e−
√

∆u)− (1− e−
√

∆u)z

=
x1x2B + Cz

A−Bz

(8)

The expression for p1 from Equation (6) can also be
expressed in terms of A and B in a convenient form:

p1(u, z)

1− z
=

∆

λ2

e−
√

∆u

((x2 − z)− (x1 − z)e−
√

∆u)2

=
∆e−

√
∆u

λ2

1

(A−Bz)2
,

(9)

In subsequent calculations we will need the partial
derivatives (with respect to z) for both p0 and p1/(1−z)
which are:

∂zp0(u, z) =
CA+ x1x2B

2

(A−Bz)2
and

∂2
zp0(u, z) =

2B(CA+ x1x2B
2)

(A−Bz)3
.

(10)

and

∂z

(
p1(u, z)

1− z

)
=

∆e−
√

∆u

λ2

2B

(A−Bz)3
and

∂2
z

(
p1(u, z)

1− z

)
=

∆e−
√

∆u

λ2

6B2

(A−Bz)4
.

(11)

We also have the following:

M(u, z) =F (p0(u, z))

p1(u, z)

1− z︸ ︷︷ ︸
R(u,z)


k

∂zM(u, z) =F ′(p0(u, t))∂zp0(u, z)R(u, z)k+

F (p0(u, z))kR(u, z)k−1∂zR(u, z)

∂2
zM(u, z) =

F ′′(p0(u, z))(∂zp0(u, z))2R(u, z)k+

F ′(p0(u, z))(∂2
zp0(u, z))R(u, z)k+

2F ′(p0(u, z))(∂zp0(u, z))kR(u, z)k−1∂zR(u, z)+

F (p0(u, z))k(k − 1)R(u, z)k−2(∂zR(u, z))2+

F (p0(u, z))kR(u, z)k−1∂2
zR(u, z)

(12)

Although Equation (12) appears messy, the number of
expressions that need to be evaluated can be reduced
using Equations 10 and 11.
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Computational results

Simulation parameters

The parameters (in Table 1 of the main text) used to
simulate datasets were chosen to be representative of
estimates for the first SARS-CoV-2 epidemic wave in
Australia. Following [4] we assume an infectious pe-
riod of 10 days, and extract their mean estimate of R0

for the Australian outbreak as 1.85 using Webplotdig-
itizer 4.5 [5]. To accurately represent the amount of
unsequenced pathogen diversity, we set the (sequenced)
sampling rate equal to the ratio of sequenced samples
and cumulative case counts (with a 10 day offset to ac-
count for the incubation period and reporting delay)
over the time-period analysed in [4] (until 11 March
2020), where we took cumulative case counts from [6].
This results in ψ = 0.008 ≈ 9/1071. From the average
duration of infectiousness we see that

µ+ ψ + ω =
1

10

when using days as our unit of time. From the equation
of R0 we have

R0 =
λ

µ+ ψ + ω
= 1.85.

Finally, since only genomic data was used in this
analysis we allow for the possibility of occurrence data
and, where necessary to facilitate comparison, sched-
uled samples. We assumed that half of the unsequenced
samples were observed:

ω

ω + µ
= 0.5.

Solving the equations above gives us the parameter
values listed in Table 1. When benchmarking against
ODE approximation we added a single sequenced sched-
uled sample (ρ = 0.5) at the end of the simulation (at
the 35 day mark) so the evaluation of the likelihood
would require all relevant subexpressions to be evalu-
ated. For the subsequent investigation of the coverage
properties of the credible intervals we simulated data
sets for a duration of 50 days. Both of these values are
similar to the estimated outbreak durations reported
by [4].

Simulation and selection of truncation
parameter

To compare the computational cost of evaluating the
ODE approximation, [2], with our TimTam approach,
we simulated datasets of varying size and measured
the time it took to evaluate the log-likelihood for these
datasets using each algorithm. This also demonstrates
the degree to which the two approximations agree on
the value of the log-likelihood.

We simulated 10000 realisations of the birth-death
process using the parameters shown in Table 1 of the
main text. Each simulation was started with a single
infectious individual and terminated at time t = 35,

at which point there is a scheduled sequenced sam-
pling event with probability ρ = 0.5. These simulations
where then filtered to get a more uniform distribution
of dataset sizes. This was done by selecting the first
simulation which contained a number of events which
fell in a variety of ranges: 1–10, 11–20, etc, up to 491–
500. Any intervals that did not contain a simulation
with one of these sizes was left empty. This filtering
process left 38 simulated data sets.

The ODE approximation has a truncation parameter
which needs to be set to a large value but for which
no selection criterion has been provided. To select the
truncation parameter, starting from a value of 10 we in-
creased it in increments of 10 until a value was reached
where an additional increment did not change the value
of the log-likelihood by more than 0.1%. If no such
value was reached below a threshold of 210 then this
simuation was removed from the test set. The result-
ing truncation parameter selected for each simulation
is shown in Fig B. The selected truncation parameter
tends to grow linearly with the number of observations
in the dataset.
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Fig B: The truncation parameter required by the
ODE approximation grows approximately linearly
with the size of the dataset. Each point in the scatter
plot shows the size of the truncation parameter for a simulated
dataset. The solid line shows a linear least squares fit.

Model validation and computational
complexity

Fig C shows the relationship between the size of the
data set considered and the average of the two log-
likelihood calculations.

Our TimTam approximation was implemented in
Haskell and the criterion library was used to estimate
the average evaluation time (estimated by evaluating
the log-likelihood for 5 seconds and counting the num-
ber of evaluations). For the ODE approximation we
used the Cython implementation from [2] and used the
Python Standard Library timeit module to estimate
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Fig C: The likelihood decreases approximately lin-
early with the size of the dataset. The size of the sim-
ulated dataset and the associated likelihood (when calculated
as a mean of the two methods considered).

the average evaluation time (averaged over 10 repli-
cates). We are most interested in the computational
complexity of the algorithms in terms of the size of the
dataset they are applied to. Because the implementa-
tions are in different languages, an absolute compari-
son is difficult (although since Cython and Haskell are
used, they should give a reasonable indication of the
performance that could be achieved with a low-level
language).

To model the computational complexity of the like-
lihoods we fit a linear model to the logarithms of the
evaluation times and the size of the dataset. Thus, if
n is the size of the dataset, the time to evaluate the
log-likelihood, teval, we have teval ∝ na. An estimate of
a ≈ 1 suggests a linear complexity and an estimate ≈ 2
a quadratic complexity. The average evaluation times
and the model fit are shown in Fig 3 of the main text.

Using TimTam, the estimated value of the exponent
of the fitted model is 1.02 with a 95% confidence interval
of (1.01, 1.03). Using the ODE approximation it is 2.05
with a 95% confidence interval of (1.94, 2.16). For both
algorithms smaller datasets appear as outliers (likely
due to the computational overhead of the programs.)
We repeated the estimation process with robust lin-
ear regression (using rlm from the MASS package in
R), under this model the exponent was 1.02, (1.01, 1.02)
for the TimTam likelihood and 2.05, (1.94, 2.17) for the
ODE approximation.

Parameter identifiability and aggregation
scheme

In the simulation study of the effects of aggregation of
observations described in the main text we used MCMC
to characterise the posterior distribution. For each
dataset a single chain was run for 5.001 × 106 itera-
tions using a Gaussian kernel with a standard devia-

tion of 0.01. The first thousand samples were removed
as burn-in and the samples were thinned by a factor of
1000 leaving 5000 samples. Convergence was assessed
via visual inspection of the traces. The effective sample
size was greater than 200; diagnostics were computed
using coda [7].

The joint distribution of the posterior samples condi-
tional upon the unscheduled dataset are shown in Fig D
and for the scheduled dataset obtained via aggregation
in Fig E.

Fig D: Posterior distribution conditioned upon un-
scheduled observations. A scatter plot of samples from the
posterior distribution showing their pairwise correlation. Given
the death rate, µ, the posterior distribution given unscheduled
observations has a well-defined maximum.

Repeated simulation to test credible
interval coverage

A simulation study was carried out to test whether the
95% credible intervals (CI) of the birth rate, λ, and
the prevalence at the present, H(tN ), contain the val-
ues from the simulation. Since these are credible inter-
vals (not confidence intervals) in general they will not
contain the simulation parameters with the correct fre-
quency. However, since we have used a uniform prior
over the full support of the parameters, the posterior
is proportional to the likelihood. In a large-sample set-
ting, we would expect the CI to behave similarly to a
confidence interval and contain the simulation param-
eters with approximately the correct frequency. The
birth rate is used instead of the reproduction number
because it is ill-defined in the case of the aggregated
data. This is because there the scheduled events arise
from post processing of the data, ie the binning of sam-
ples, instead of being generated by the sampling model.

Fig F shows 95% CI for the proportional error in the
estimate of the prevalence at the present. Of 100 repli-
cates, 92 and 89 of the CIs contained the true preva-
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Fig E: Posterior distribution conditioned upon ag-
gregated observations. A scatter plot of samples from the
posterior distribution showing their pairwise correlation. Given
the death rate, µ, the posterior distribution (from aggregated
unscheduled observations) has a well-defined maximum.

lence from the simulation using the unscheduled and
aggregated data respectively. Fig G shows the 95% CI
for the estimate of the prevalence and the true preva-
lence in the simulation using either the unscheduled or
aggregated data. Figs H and I show the 95% credible
intervals for the estimate of the parameters. Of the 100
replicates 95 and 99 of the CIs contained the true birth
rate. For the unscheduled data, the sampling rate and
occurrence rate where contained in 94 and 97 of the CIs
respectively.
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Fig F: The 95% range of proportional error in the
estimates of the prevalence across the replicates. The
top panel shows the results using the unscheduled observations.
The bottom panel shows the results when these unscheduled
events are aggregated and treated as scheduled observations.
The dashed line corresponds to zero error. The estimates are
ordered by final prevalence in the simulation demonstrating
that for larger outbreaks the proportional error is smaller.
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Fig G: The 95% credible interval for the prevalence
estimate and the true prevalence in that simulation.
The line segments show the credible interval and the black
dots the true prevalence at the end of the simulation. The top
panel shows the results using the unscheduled observations.
The bottom panel shows the results when these unscheduled
events are aggregated and treated as scheduled observations.
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Fig H: Estimates of the birth, sampling and occur-
rence rates across the replicates using the simulated
unscheduled observations. The line segments show the
95% credible intervals for the estimates. The dashed horizon-
tal lines indicate the true value of the rate used to simulate the
data.

7



B
irth rate

U
nsequenced probability

S
equenced probability

0.1

0.2

0.3

0.2

0.4

0.6

0.00

0.02

0.04

0.06

0.08

Replicate

Fig I: Estimates of the birth rate, and sequenced and
unsequenced sampling probabilities across the repli-
cates using the aggregated observations. The line seg-
ments show the 95% credible intervals for the estimates. The
dashed horizontal lines indicate the true value of the rate used
to simulate the data. There is no dashed line for the probabil-
ities because they are not well-defined.
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Fig J: The mean-squared-error in the estimate of the
prevalence (as a proportion of the true prevalence)
is smaller for larger datasets. There is a point in this
graph for each simulation used in the credible interval calibra-
tion example. The top panel shows the decreasing error using
the unscheduled data and the bottom panel shows the decreas-
ing error using the aggregated data.
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