Figure S1: LiCl Treatment Rescues Synaptic Deficit in SSCx of *Tbr1^{layer6}* mutant mice.

Immunofluorescence (IF) was used to detect excitatory (A, C) and inhibitory (B, D) synapses onto dendrites from SSCx of *Tbr1^{wildtype}* (*Ntsr1-cre::tdTomato^{f/+}*; blue), *Tbr1^{layer6}* CKOs (*Tbr1^{ff}::Ntsr1-cre::tdTomato^{f/+}*; red) (n=10 dendrites). Synapses were measured (i) 24 hrs and (ii) 4 weeks after injection with saline or LiCl at P180.

Excitatory synapses were analyzed by VGlut1⁺ boutons and PSD95⁺ clusters co-localizing onto the dendrites from layer 6 neurons of SSCx of *Tbr1^{wildtype}* (red) and *Tbr1^{layer6CKO}* (blue) mice 24 hrs (at P181; A) and 4 weeks (P208; C) after saline and/or LiCl was administered. *Mann-Whitney* ****p < 0.0001, ns = not significant.

Inhibitory synaptic density was measured by VGat⁺ boutons and Gephyrin⁺ clusters co-localizing onto dendrites of SSCx of *Tbr1^{wildtype}* (red) and *Tbr1^{layer6CKO}* mice (blue), 24 hrs (at P181; B) and 4 weeks (P208; D) after saline and/or LiCl was administered. ImageJ software was used to process confocal images for quantification. Two-tailed T-test with *Mann-Whitney* correction was used for pairwise comparisons. *Mann-Whitney* ****p < 0.0001, ns = not significant.

i) In vivo Synapse Analysis at P181, 24hrs After LiCI Treatment

ii) In vivo Synapse Analysis at P208, After LiCI Treatment at P180

C) Excitatory Synapses in the SSCx of Tbr1^{layer6} CKO

Figure S2: LiCl Treatment Results in long-term Restoration of Synaptic Deficit in *Tbr1* Mutants.

Immunofluorescence (IF) was used to detect excitatory (i) and inhibitory (ii) synapses onto dendrites from mPFCx of $Tbr1^{wildtype}$ (Rbp4- $cre::tdTomato^{f/+}$; green), $Tbr1^{layer5}$ CKOs ($Tbr1^{f/f}::Rbp4$ - $cre::tdTomato^{f/+}$; orange) and dendrites from SSCx of $Tbr1^{wildtype}$ (Ntsr1- $cre::tdTomato^{f/+}$; red), $Tbr1^{layer6}$ CKOs ($Tbr1^{f/f}::Ntsr1$ - $cre::tdTomato^{f/+}$; blue) (n=10 dendrites). Synapses were measured 6 months after injection with saline or LiCl at P30.

(i) Excitatory synapses were analyzed by VGlut1⁺ boutons and PSD95⁺ clusters co-localizing onto the dendrites from (A) layer 5 neurons of mPFCx of *Tbr1^{wildtype}* (green) and *Tbr1^{layer5CKO}* (orange), (B) layer 6 neurons of SSCx of *Tbr1^{wildtype}* (red) and *Tbr1^{layer6CKO}* (blue) mice 6 months after saline and/or LiCl was administered. *Mann-Whitney* ****p < 0.0001, ns = not significant.

(ii) Inhibitory synaptic density was measured by VGat⁺ boutons and Gephyrin⁺ clusters colocalizing onto dendrites of (C) mPFCx of *Tbr1^{wildtype}* (green) and *Tbr1^{layer5CKO}* (orange) and (D) SSCx of *Tbr1^{wildtype}* (red) and *Tbr1^{layer6CKO}* mice (blue), 6 months after saline and/or LiCl was administered. Fiji ImageJ software was used to process confocal images for quantification. Twotailed T-test with *Mann-Whitney* correction was used for pairwise comparisons. *Mann-Whitney* ****p < 0.0001, ns = not significant.

i) In vivo Excitatory Synapse Analysis of Tbr1 Conditional Mutant at P210, 6 months After LiCI Treatment

ii) In vivo Inhibitory Synapse Analysis of Tbr1 Conditional Mutant at P210, 6 months After LiCI Treatment

Figure S3: LiCl Restores Dendritic Spine Density Deficit in SSCx of *Tbr1^{layer6}* CKOs at P180.

Ntsr1-cre::tdTomato^{f/+} alleles was used to label the dendrites of layer 6 neurons (A-D). The monochrome tdTomato signal (white) is shown from apical dendrites of saline-injected (A, B) and LiCl injected (C, D) *Tbr1* CKOs at P181. Imaris software (v9.2.1) was used to analyze the dendritic spine density on apical dendrites of *Tbr1*^{layer6} wildtype and *Tbr1*^{layer6CKO} neurons located within layer 5 of SSCx (A-D). Changes in the dendritic spine density were examined at P181 (A-D), 24 hrs after LiCl treatment. (E) Quantification of mature dendritic spines on apical dendrites of *Tbr1*^{layer6} wildtype and *Tbr1*^{layer6} wildtype and

Figure S4: A single LiCl dose restores excitatory synaptic function in SSCx of *Tbr1^{layer6}* CKOs.

(A) Representative traces of miniature excitatory postsynaptic currents (mEPSCs) from P58-95 *Tbr1^{wildtype}* (black) and *Tbr1^{layer6CKO}* (cyan) SSCx layer 6 neurons following saline administration. Scale bars: 20 pA, 100 ms. (B) Left: quantification of mEPSC frequency. Mann-Whitnev ***p = $0.0002 (Tbr I^{wildtype+saline}: 7.33 \pm 1.2 \text{ Hz}, n = 11, Tbr I^{layer6CKO+saline} 2.8 \pm 0.4 \text{ Hz}, n = 8).$ Right: cumulative probability distribution of mEPSC inter-event intervals. Kolmogorov-Smirnov *p = 0.016. (C) Left: quantification of mEPSC amplitude. Mann-Whitney **p = 0.001 (Tbr1^{wildtype}: 7.6 \pm 0.4 pA, n = 11, *Tbr1^{layer6CKO}* 5.5 \pm 0.3 pA, n = 8). Right: cumulative probability distribution of mEPSC amplitude. Kolmogorov-Smirnov p = 0.27. (D) Representative traces of mEPSCs from layer 6 SSCx neurons from P58-95 Tbr1^{wildtype} (green) and Tbr1^{layer6CKO} (purple) treated with 400 mg/kg LiCl at P30. Scale bars: 20 pA, 100 ms. (E) Left: quantification of mEPSC frequency. *Mann-Whitney* p = 0.1 (*Tbr1*^{wildtype+LiCl}: 4.1 ± 1.0 Hz, n = 11, *Tbr1*^{layer6CKO+LiCl} 4.4 ± 0.5 Hz, n = 14). Right: cumulative probability distribution of mEPSC inter-event intervals. Kolmogorov-Smirnov p = 0.7. (F) Left: quantification of mEPSC amplitude. Mann-Whitney p = 0.09(*Tbr1^{wildtype+LiCl*: 6.6 ± 0.6 pA, n = 11, *Tbr1^{layer6CKO+LiCl* 7.5 \pm 0.3 pA, n = 14). Right: cumulative}} probability distribution of mEPSC inter-event intervals. *Kolmogorov-Smirnov* p = 0.54. Boxplots are min to max show all points.

Figure S5: LiCl treatment rescues inhibitory synaptic deficits in SSCx of *Tbr1*^{layer6} CKOs.

(A) Representative traces of miniature inhibitory postsynaptic currents (mIPSCs) from SSCx layer 6 pyramidal neurons from saline treated P58-95 Tbr1^{wildtype} (black) and Tbr1^{layer6CKO} (cyan) mice. Scale bars: 20 pA, 100 ms. (B) Left: quantification of mIPSC frequency from *Tbr1^{wildtype}* (black) and $Tbr1^{layer6CKO}$ (cyan) neurons. Mann-Whitney p = 0.28 ($Tbr1^{wildtype+saline}$: 14.8 ± 3.8 Hz, n = 9, *Tbr1^{layer6CKO+saline* 8.7 \pm 2.4 Hz, n = 8). Right: cumulative probability distribution of mIPSC inter-} event intervals. Kolmogorov-Smirnov *p = 0.01. (C) Left: quantification of mIPSC amplitude. Mann-Whitney p = 0.74 (Tbr1^{wildtype+saline}: 12.2 ± 1.3 pA, n = 9, Tbr1^{layer6CKO+saline} 11.1 ± 0.7 pA, n = 8). Right: cumulative probability distribution of mIPSC amplitude. *Kolmogorov-Smirnov* *p = 0.012. (D) Representative traces of mIPSCs from layer 6 SSCx neurons from LiCl (400 mg/kg) treated P58-95 *Tbr1^{wildtype}* (green) and *Tbr1^{layer6CKO}* (purple) mice. Scale bars: 20 pA, 100 ms. (E) Left: quantification of mIPSC frequency. *Mann-Whitney* p = 0.2 (*Tbr1^{wildtype+LiCl*: 9.5 ± 2.6 Hz, n} = 8. $Tbr 1^{layer6CKO+LiCl}$ 12.8 ± 3.1 Hz, n = 9). Right: cumulative probability distribution of mIPSC inter-event intervals. Kolmogorov-Smirnov *p = 0.01. (F) Left: quantification of mIPSC amplitude. Mann-Whitney p = 0.96 (Tbr1^{wildtype+LiCl}: 12.3 ± 0.6 pA, n = 8, Tbr1^{layer6CKO+LiCl} 12.6 \pm 0.6 pA, n = 9). Right: cumulative probability distribution of mIPSC inter-event intervals. *Kolmogorov-Smirnov* p = 0.99. Boxplots are min to max show all points.

