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1 Surrogates for structural networks: Exponential Distance Rule

In this study we considered AEC-MEG networks as surrogate for structural networks. In order to validate this
choice, since DTT information is not available for this patient cohort, we compared the AEC-MEG networks with a
well-validated model for structural connectivity: the Exponential Distance Rule (EDR) network. Based on animal
studies, the EDR specifies that the weights of structural connections in the brain, w;;, decay exponentially with
distance d;; [1-3], i.e. w;; ~ exp(—ad;;), where « is the decay exponent. Recent studies have repeatedly found that
the EDR also reproduces human DTT data well [4-6]. Thus, we compared AEC-MEG networks to those generated
with the EDR for our 10-patient cohort by calculating the Pearson’s Correlation coefficient between the matrix
entries (see figure S1). We found that the AEC-MEG networks were well fitted (R? = 0.50) by the EDR rule with
decay-exponent o = 0.052. This demonstrates that MEG-AEC networks capture the main elements of structural
connectivity.

2 Optimization of virtual resections

For a given resection size Sk (number of resected nodes), the optimal virtual resection R*(Sg) is the one that
creates the largest reduction in seizure propagation, A% (Sz). Because characterizing all possible virtual resections
is a combinatorial problem that soon looses tractability, alternative approaches are necessary to find the optimal
solution. Therefore, in order to alleviate the exploration of the parameter space, we defined a random search method
that combined structural and dynamical information, and made use of a simulated annealing algorithm. The method
considers a surrogate topological measure for the SI dynamics, which is used to fasten up the exploration of the space
of virtual resections, and the solutions are subsequently refined using the actual SI dynamics. The optimization
method is described in detail below, and a schematic view is given in figure S2.

2.1 Surrogate model

In the SI model, the probability that the infection has reached a certain node ¢ at a given time ¢ decays in an
approximate linear manner with d5°°4[7], where d:°*dis the average distance from the considered node to the seed
(see figure S2). That is,

it = S0 D dig, (S1)
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Figure S1: Validation of AEC-MEG networks as surrogates for structural connectivity. a) Average
Correlation between AEC-MEG and EDR networks for a range of exponent a values. The shaded areas indicate
the standard deviation between the patients. The maximum correlation found is C = 0.71 for a« = 0.052. b)
Illustration of the correlation analysis for the optimal a. To calculate C', the matrices are linearized by stacking
one column after another, and the standard Pearson’s Correlation coefficient is computed. c¢) Average MEG-AEC
network for the patient cohort. d) Average EDR network for the patient cohort corresponding to the optimal «

value.



where d;; is the topological distance between the pair of nodes (7,7) and Sseeq is the number of nodes in the seed

region. d;; is defined as
Wy,

dij = Z In(—), (52)

w
kel 0

where the sum is over the edges in the shortest path between nodes i and j, wy is the weight of edge k and wg
is the minimum non-zero weight, introduced for normalization purposes [7]. The average distance to the seed,
a4 = (N — Sseed)_1 >, d5°°d, where the sum is over nodes that do not belong to the seed and N = 246 is the total
number of nodes in the network (i.e. the number of ROIs), can be used as a topological proxy for the propagation of
the SI dynamics. The topological measure that quantifies the effect of a given virtual resection is thus the increase
in the average distance to the seed:

ARy = di5ed — @seed, (S3)

2.2 Optimization method

In order to find optimal resection strategies, and considering the strong non-linearities present in the model, we
have made use of a probabilistic optimization algorithm, the Simulated Annealing (SA) algorithm [8], to optimize
the effect of virtual resections, for a given number of resected nodes. In order to do so, we employed a four-step
method to find, for each resection size S up to the size of the resection area, Sga, the resection leading to the
maximum decrease in seizure propagation (see figure 52):

1. Firstly, we considered the surrogate model, and used the SA algorithm to maximize ARs. The SA algorithm
is probabilistic, and was therefore run 10 times, yielding a set of surrogate solutions R’fr, with £k =1, ..., 10,
each characterized by its topological effect AR’%, as shown in figure S2a. Figure S3 shows an exemplary case
of the SA optimization search.

2. The topological metric AR+ is only an approximation of the actual effect each resection R has on the
propagation dynamics. Consequently, for each surrogate solution RE, its actual effect was then determined
by estimating I7k€¢ (to) (figure S2b), i.e. seizure propagation on the network once the virtual resection has
taken place.

3. The optimal topological resection of size S, R%-(S), was defined as the one leading to the maximum decrease
in epidemic spreading (figure S2c).

4. Finally, we made use of the SA algorithm again: the optimal topological resection R%-(S) was used as the
initial condition for the search. This time, the algorithm was used to minimize I (to) directly (see figure
S52d). This yielded the final optimal resection R*(.S), with propagation I%(.S).

This method was iterated from S = 1 up to the size of the resection area, S = Sga. Overall, this method allows for
a faster exploration of the parameter space (using the surrogate model), and a posterior refinement of the solution
using the seizure propagation model.

2.3 SA Algorithm

We used a MATLAB implementation of the Simulated Annealing (SA) algorithm (J. Vandekerckhove, general
simulated annealing algorithm, version 1.0.0.0, MATLAB Central File Exchange), adapted for our model (see figure
S53). Starting out with a given selection of nodes for the virtual resection, at each step of the SA algorithm this
set is updated by changing n of the nodes. n follows a power-law distribution to allow for non-linear exploration
of the node-space. This SA algorithm minimizes a cost function, which was defined as the inverse of d5s°¢ for the
surrogate case (step 1 in figure S2), and as the fraction of infected nodes at to, I (to) for the final step (step 4 in
figure 52).

The other parameters of the algorithm were set to default for step 1: initial temperature = 1, stopping tempera-
ture = 1078, annealing function f(7') = 0.87', maximum number of consecutive rejections = 10?, maximum number
of tries within one temperature = 300, maximum number of successes within one temperature = 20. The algorithm
was run 10 times with different (random) initial configurations, and the one with the largest effect was selected.
For step 4, some parameters were changed to allow for a faster approach to the final solution: stopping temperature
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Figure S2: Schematic representation of the Virtual Resection Optimization Method. We used a four step
optimization approach to find the virtual resection that, for a given resection size, minimized seizure propagation.
Firstly (step 1), we used the SA algorithm to find resections that maximized the surrogate measure ARy (eq.
S53). The optimization algorithm was iterated 10 times, yielding a set of 10 possible virtual resections, R’;-(S),
k = 1,..,10, for each resection size. This is depicted in panel (a), where we show d?‘fe‘i as found by the SA
algorithm for VRs of different sizes. In most cases all solutions had the same dzeed and overlap in the figure. For
this case, the seed became completely disconnected for S = 5, which is 1 node less than the size of the RA. Next
(step 2), we calculated the actual effect of each resection R%-(S), Ii(to), as depicted in panel (b), where we show
Ii(tp) for those same resections (error bars indicating the standard deviation among 10 iterations of 10* runs of
the SI dynamics overlapped with data points and are not visible). Panel (c) illustrates the relationship between
the surrogate and actual effects of each resection, i.e. between the topological measure dzeed and dynamical one
Ii(to), for each VR. I(ty) decayed roughly proportionally with d**until it saturated and equaled 0 for complete
seed isolation (in which case d***ddiverged, not shown here). In step 3, the resection leading to the maximum actual
effect for each resection size, R3-(5), was selected as shown in panel (d). Finally, for each resection size separately,
this resection was used as the initial condition for the SA algorithm to minimize seizure propagation, as measured
by Iz (to) (panel (e)). This led to the final optimal resection, R*(.S), characterized by the propagation I} (.S), for
each resection size. In this case, we found that the propagation was stopped for S = 5.

= 107%, annealing function f(7') = 0.67. In this case the algorithm was only run once for each resection size, using
the optimal solution from the surrogate SA method as the seed.

Due to the random nature of the SI dynamics, different realizations with the same seed can lead to different
outcomes. The SA algorithm could thus artificially minimize I(tq) by selecting realizations that, by chance, have a
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Figure S3: Surrogate Simulated Annealing. Here we illustrate the Simulated Annealing (SA) method, for an
exemplary VR of size S = 4, for patient 10. The SA algorithm performs a random search, starting from a random
virtual resection, so that at each step a new resection is calculated by switching some of the selected nodes. The
new resection is then accepted with a probability that depends on the difference of effect between the resections,
so that resections that increase d*°®“have a higher probability of being accepted. This process is iterated until a
stable solution is found. Due to its probabilistic nature, different realizations of the algorithm can lead to different
outcomes, of which the optimal one is selected. In this case, iterations 1, 2, 3, 5 reached the same resection (target
nodes 19, 30, 33, 17) that maximally increased d¢°d.



RA Seed SOZ Seed
Patient Correlation « Correlation & Outcome
P1 0.48* 36.90 | 0.65* 14.75 | NSF
P2 0.62* 24.60 | 0.52%* 19.68 | SF
P3 0.34* 14.75 | 0.30* 14.75 | NSF
P4 0.41%* 49.20 | 0.53* 36.91 | SF
P5 0.40* 9.84 0.49* 9.84 SF
P6 0.36* 4.92 0.53* 9.84 SF
P7 0.14 4.92 0.62* 14.75 | SF
P8 0.43* 49.20 | 0.48* 24.60 | NSF
P9 0.53* 14.75 | 0.53* 14.75 | SF
P10 0.43* 9.85 0.48%* 9.84 SF
Mean (all) 0.41 21.89 | 0.51 16.97
Mean (SF) 0.41 16.87 | 0.53 16.52
Mean (NSF) | 0.42 33.62 | 0.48 18.03

Table S1: Model optimization. For each patient the maximum correlation between the clinical and model seizure
patterns, and the corresponding optimal network connectivity, for the broad-band (BB) networks, is given, both for
the RA and SOZ seeds. The seizure outcome is also indicated. The final three rows indicate the average correlation
and density obtained for the whole population (all), seizure free patients (SF) and not seizure free patients (NSF).
* Indicates a significant correlation (p < 0.05 ).

smaller propagation at ty. Averaging over a large number of realizations (10* in the current case) minimizes this
problem, but it can still occur. To avoid this artificial minimization, after accepting a new virtual resection R the
propagation I (tg) was calculated again with a new simulation of the SI dynamics. In this manner the realizations
that were used to select a resection were not carried over in subsequent iterations. This step was not necessary in
case of the surrogate model since the calculation of ds°? is exact.

3 Reproduction of seizure propagation patterns: Results.

3.1 Optimal correlation for BB networks.

In table S1 we report the optimal correlation found for each patient using the patient-specific BB-connectivity
network, and the corresponding value of the mean connectivity.

3.2 Results for a—band networks.

We report here on the results of the seizure propagation model fit and validation analysis for the a-band networks.
As described in the methods section of the main text, we measured the correlation C' between the SI and SEEG
propagation patterns for different values of the mean network connectivity . The resulting C'(k) curves are shown
in figure S4, in panels (a) and (b) for the RA and SOZ seeds, respectively. As it was the case for the BB networks,
we found a bimodal dependence of C'(k) for most patients, so that there is a maximum for low density values and
another one for large densities. As before, we restricted our considerations to the first maximum, which leads to
networks with only the fundamental connections that are needed to reproduce seizure propagation. Then, we found
the connectivity value Kmax that led to the maximum correlation, independently for each patient. We found that
the model significantly reproduced the seizure propagation patterns for 9 and 10 out of 10 patients for the RA and
SOZ seeds, respectively. The maximum correlation Cp,,x found for each patient is indicated in figure S4 with a
triangle, and the corresponding values are reported in table S2 and figure S5.

We also report in figure S5 the optimal correlation found when using the average a-band network and the fully
connected network. The average values for each group are reported on the main text. Finally, in figure S4c we
show the average model as given by the median correlation of C(k) for all patients, for both the RA and SOZ seeds.
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Figure S4: Reproduction of seizure propagation. Correlation between the modelled and clinically observed
seizure propagation pattern as a function of network density, for each patient, using the RA (panel a) and SOZ
seeds (panel b), for the alpha-band networks. Panel (c) indicates the median curves for each case, as indicated by
the legend. Circles in panels (a) and (b) denote significant correlations (p < 0.05), and the optimal correlation for

each case is marked with a triangle.

RA Seed SOZ Seed
Patient Correlation « Correlation & Outcome
P1 0.49%* 9.84 | 0.61* 24.60 | NSF
P2 0.62* 36.90 | 0.52* 24.60 | SF
P3 0.40* 14.75 | 0.36* 14.75 | NSF
P4 0.44* 36.90 | 0.51* 36.90 | SF
P5 0.39* 9.84 | 0.48* 9.84 SF
P6 0.31* 36.90 | 0.51%* 36.90 | SF
P7 0.06 19.68 | 0.61%* 14.75 | SF
P8 0.33* 9.84 | 0.31%* 9.84 | NSF
P9 0.42%* 14.75 | 0.42* 19.68 | SF
P10 0.31%* 19.68 | 0.35* 19.68 | SF
Mean (all) 0.38 20.90 | 0.47 21.15
Mean (SF) 0.36 24.90 | 0.49 23.19
Mean (NSF) | 0.41 11.50 | 0.43 16.39

Table S2: Model optimization. For each patient, the maximum correlation between the clinical and modelled
seizures patterns, and the corresponding optimal network connectivity, for the a—band networks, is given for the
RA and SOZ seeds. The seizure outcome is also indicated. The final three rows indicate the average correlation
and density obtained for the whole population (all), seizure free patients (SF) and not seizure free patients (NSF).
* Indicates a significant correlation (p < 0.05 ).
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Figure S5: Reproduction of seizure propagation patterns. Panels (a) and (c) show the average maximum
correlation Ci,q, achieved by the individual a-band networks (o, red circles), and the average AB one (AV-BB,
black squares), and the correlation found for the fully connected network (FCN, blue diamonds), respectively for
the RA and SOZ seeds. Panels (b) and (d) show the corresponding Kmayx for the individual (AB, red circles) and
average (AV-AB, black squares) networks. Significant correlations (p < 0.05) are indicated by a filled marker. NFS
patients are indicated by red labels.
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Figure S6: Analysis of VR results. (a) Dependence of the normalized size of the 90% and 100% resections
(respectively sgg and $199) on the number of links of the resection area, Ega. (b) Dependence of the normalized
effect of the 1-node resection on Egra. Solid lines indicate the fits to all data points, and dashed lines the fits
without the outlier case, for both panels.

4 Analysis of VR results

Figure S6 reports the dependence of the normalized size of the 90% and 100% (panel a) and of the normalized effect
of the 1-node resection (panel b) on the number of links of the resection area, Egra. Fra combines the effect of the
size and connectivity of the resection area. We found that sgg and s1gg correlated positively and significantly with
Era (r(8) = 0.81, p = 0.005 and r(8) = 0.61, p = 0.07, respectively for sgg and s1g9) although the correlation was
only significant for sgg. We analyzed whether this effect was led by the outlier case with largest Ega by removing it
from the correlation analysis. The results (r(7) = 0.85, p = 0.004 and r(7) = 0.64, p = 0.06, respectively for sgg and
$100) indicate that this was not the case case. ir; correlated negatively and significantly with Fra (r(8) = —0.71,
p = 0.02), and the effect was also not led by the outlier case (r(7) = —0.65, p = 0.05). Thus, larger or more densely
connected epileptogenic regions would require larger minimal resections, as expected.
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