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1 Bayesian modelling for functional connectivity1

1.1 Clustering with latent block model2

Mathematically, we denote the community memberships (also called the latent labels) of the nodes3

as a vector z = (z1, . . . , zN) such that zi ∈ {1, · · · , K} denotes the community containing node i.4

Each zi independently follows the categorical (one-trial multinomial) distribution:5

zi ∼ Categorical(1; r = {r1, · · · , rK}), (1.1)

where rk is the probability of a node being assigned to community k and
∑K

k=1 rk = 1. The categorical6

probability can be expressed using the indicator function Ik(zi) as7

p(zi|r, K) =
K∏
k=1

r
Ik(zi)
k ,where Ik(zi) =

{
1, if zi = k

0, if zi 6= k
. (1.2)

This implies that the N dimensional vector z is generated with probability8

p(z|r, K) =
K∏
k=1

r
mk(z)
k , (1.3)

where mk(z) =
∑N

i=1 Ik(zi). The latent allocation parameter vector r = (r1, · · · , rK) is assumed to9

have a K-dimensional Dirichlet prior with density10

p(r|K) = N(α)
K∏
k=1

rαk−1
k , (1.4)

where the normalization factor is N(α) =
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)
. In this work we suppose αk = 1 for k =11

1, . . . , K, so that the prior for r is uniform on the K-simplex. Edges between nodes are represented12

using an adjacency matrix x ∈ <N×N . We define a block xkl comprised of weighted edges connecting13

the nodes in community k to the nodes in community l. The likelihood of the latent block model14

can be expressed as15

p(x|π, z, K) =
∏
k.l

p(xkl|πkl, z, K), (1.5)

and the likelihood in specific blocks can be expanded as16

p(xkl|πkl, z, K) =
∏
{i|zi=k}

∏
{j|zj=l}

p(xij|πkl, z, K), (1.6)

where π = {πkl} is a K ×K model parameter matrix.17

1.2 The latent block model with weighted edges18

The block model parameter in block kl is πkl = (µkl, σ
2
kl) and each xij in the block kl follows a19

Gaussian distribution conditional on z under the model K, that is20

xij|πkl, z, K ∼ N (µkl, σ
2
kl).

The parameter vectors πkl = (µkl, σ
2
kl) are assumed to independently follow the conjugate Normal-21

Inverse-Gamma (NIG) prior πkl ∼ NIG(ξ, κ2σ2
kl, ν/2, ρ/2). That is, µkl ∼ N (ξ, κ2σ2

kl) and σ2
kl ∼22

IG(ν/2, ρ/2). The density of the Inverse-Gamma distribution IG(α, β) has the general formula p(x) =23

βα

Γ(α)
x−(α+1)e(−β

x
), where α and β are hyper-parameters.24

We define skl(x) to be the sum of the edge weights in the block kl and qkl(x) to be the sum of25

squares as follows:26

skl(x) =
∑
i:zi=k

∑
j:zj=l

xij, (1.7)
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and 1

qkl(x) =
∑
i:zi=k

∑
j:zj=l

x2
ij. (1.8)

We also define wkl(z) = mk(z)ml(z) to be the number of elements in the block, where mk and 2

ml are the numbers of nodes in community k and l respectively. The prior and the likelihood in the 3

above expression is the NIG-Gaussian conjugate pair. With this conjugate pair, we can calculate 4

the posterior distribution for each model block, which is also a Normal-Inverse-Gamma distribution 5

µkl ∼ N (ξn, κ
2
nσ

2
kl) and σ2

kl ∼ IG(νn/2, ρn/2), where 6

νn = ν + wkl, (1.9)

7

κ2
n =

κ2

1 + wklκ2
, (1.10)

8

ξn =
ξ + sklκ

2

1 + wklκ2
, (1.11)

9

ρn =
ξ2

κ2
+ qkl + ρ− (ξ + sklκ

2)2

1/κ2 + wkl
. (1.12)

Details of the derivation of this NIG(ξn, κ
2
nσ

2
kl, νn/2, ρn/2) distribution are provided in SI Section 10

2. The posterior density of the whole model is a product of such terms for all blocks, as follows. 11

p(π|x, z) =
∏
k,l

p(πkl|xkl, z). (1.13)

Given a sampled z we can draw π from the above posterior directly. Methods for sampling the latent 12

vector z will be discussed later in the paper. 13

1.3 The collapsed posterior of latent label vector 14

In this model, a change-point corresponds to a change in community architecture i.e., a change in 15

the latent label vector z and the parameter matrix π. For the sake of computational efficiency, it is 16

convenient to construct the collapsed posterior distribution p(z|x, K). We can obtain the collapsed 17

posterior by integrating out the nuisance parameters (MacDaid et al., 2012, Wyse and Friel, 2012). 18

In this section, we discuss the details of collapsing the latent block model when the edge weights are 19

continuously valued. 20

Given K, the joint density of x, π, z, and r is 21

p(x,π, z, r|K) = p(z, r|K)p(x,π|z). (1.14)

The parameters r and π can be integrated out (collapsed) to obtain the marginal density p(x, z|K). 22

23

p(z,x|K) =

∫
p(z, r|K)dr

∫
p(x,π|z)dπ, (1.15)

so that the posterior for the block-wise model can be expressed as 24

p(z|x, K) ∝ p(z,x|K) =

∫
p(z, r|K)dr

∏
k,l

∫
p(xkl, πkl|z)dπkl. (1.16)

The first integral p(z|K) =
∫
p(z, r|K)dr, where the integral is over the K-simplex, can be evaluated 25

as follows: 26∫
p(z, r|K)dr =

Γ(
∑K

k=1 αk)

Γ(
∑K

k=1(αk +mk(z))
(1.17)

×
K∏
k=1

Γ(αk +mk(z))

Γ(αk)
. (1.18)
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The details of this derivation are in SI Section 3 below. The integral of the form
∫
p(xkl, πkl|z)dπkl1

can be evaluated as2 ∫
p(xkl, πkl|z)dπkl =

ρν/2Γ{(wkl + ν)/2}
πwkl/2Γ(ν/2)(wklκ2 + 1)1/2

(1.19)

×(−κ
2(skl + ξ/κ2)2

wklκ2 + 1
+
ξ2

κ2
(1.20)

+qkl + ρ)−(wkl+ν)/2 (1.21)

The derivation is in SI Section 4.3

1.4 Sampling from the collapsed posterior4

We use a Markov chain Monte Carlo (MCMC) method to sample the latent label vector from the5

posterior with proposal moves p(z → z∗) similar to those of the allocation sampler (Nobile and6

Fearnside, 2007) to update z. In the Metropolis-Hastings algorithm (Hastings, 1970), a candidate7

latent label vector z∗ is accepted with probability min{1, r}, where8

r =
p(K, z∗,x)p(z∗ → z)

p(K, z,x)p(z→ z∗)
. (1.22)

In each iteration of the sampler, we perform either a Gibbs move or an M3 move, with equal proba-9

bility (0.5) of each. Each Gibbs move updates the latent label vector z by drawing from the collapsed10

posterior p(z|x, K). At each iteration, one entry zi is randomly selected and updated by drawing11

from12

p(z∗i |z−i,x, K) =
1

C
p(z1, · · · , zi−1, z

∗
i = k, zi+1, · · · , zn|x), (1.23)

where k ∈ {1, · · · , K}, z−i represents the elements in z apart from zi and the normalization term13

C = p(z−i|x, K) =
K∑
k=1

p(z1, · · · , zi−1, z
∗
i = k, zi+1, · · · , zn|x). (1.24)

For a Gibbs move within a Metropolis-Hastings sampler, the ratio r always equals one. The com-14

putational complexity of a Gibbs move depends on the cost of calculating the probability of the15

reassignment of a specific entry. Each probability takes O(K2 +N2) time to calculate. There are K16

possible reassignments so that each Gibbs move takes O(K3 +KN2) time.17

The details of the M3 move are provided in SI Section 5. The computational complexity of the18

M3 move depends on the cost of calculating the ratio of posterior density and proposal density. The19

time cost of calculating this ratio is O(K2 +N2), and calculating the proposal ratio takes O(N +L2)20

time, so the M3 move takes O(K2 +N2 + L2) time.21
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2 The likelihood and posterior of the latent block model with weighted 1

edges 2

Likelihood: The likelihood of the block kl with weighted edges is 3

p(xkl|πkl, z, K) =
∏
{i|zi=k}

∏
{j|zj=l}

p(xij|µkl, σ2
kl, z, K)

= (2πσ2
kl)
−wkl/2exp{− 1

2σ2
kl

∑
i:zi=k

∑
j:zj=l

(xij − µkl)2}

= (2πσ2
kl)
−wkl/2

×exp{− 1

2σ2
kl

(
∑
i:zi=k

∑
j:zj=l

x2
ij − 2

∑
i:zi=k

∑
j:zj=l

xijµkl

+
∑
i:zi=k

∑
j:zj=l

µ2
kl)}

= (2πσ2
kl)
−wkl/2exp{− 1

2σ2
kl

(qkl − 2µklskl + wklµ
2
kl)}, (2.1)

where wkl is the number of elements in block kl, skl is the sum of the weights and qkl is the sum of 4

squares of the weights in the block kl. 5

Posterior: We derive the posterior of the model parameter πkl with prior µkl ∼ N (ξ, κ2σ2
kl) and 6

σ2
kl ∼ IG(ν/2, ρ/2) as follows. 7

p(πkl|xkl, z, K) ∝ p(πkl)p(xkl|πkl, z, K)

= p(µkl)p(σ
2
kl)

∏
{i|zi=k}

∏
{j|zj=l}

p(xij|µkl, σ2
kl, z, K)

= (2πκ2σ2
kl)
−1/2exp{− 1

2κ2σ2
kl

(µkl − ξ)2}

×(ρ/2)ν/2

Γ(ν/2)
σ
−2(ν/2+1)
kl exp{−ρ/2σ2

kl}

×(2πσ2
kl)
−wkl/2exp{− 1

2σ2
kl

(qkl − 2µklskl + wklµ
2
kl)}

=
(ρ/2)ν/2

Γ(ν/2)
(2πκ2)−1/2(2π)−wkl/2σ−1

kl σ
−ν−2−wkl
kl

×exp{− 1

2σ2
kl

[(
1

κ2
+ wkl)µ

2
kl − 2(

1

κ2
ξ + skl)µkl

+
1

κ2
ξ2 + qkl + ρ]} (2.2)

The posterior of the Gaussian model is also a Normal-Inverse-Gamma distribution which can be 8

denoted as µkl ∼ N (ξn, κ
2
nσ

2
kl) and σ2

kl ∼ IG(νn/2, ρn/2). The posterior density can be expressed as 9

p(πkl|xkl, z, K) = (2πκ2
nσ

2
kl)
−1/2exp{− 1

2κ2
nσ

2
kl

(µkl − ξn)2}

×(ρn/2)νn/2

Γ(νn/2)
σ
−2(νn/2+1)
kl exp{−ρn/2σ2

kl}

=
(ρn/2)νn/2

Γ(νn/2)
(2πκ2

n)−1/2σ−1
kl σ

−νn−2
kl

×exp{− 1

2σ2
kl

(
1

κ2
n

µ2
kl −

2ξn
κ2
n

µkl +
ξ2
n

κ2
n

+ ρn)}. (2.3)
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Comparing the terms and coefficients with respect to µ2
kl, µkl and σ2

kl,1

−νn − 2 = −ν − 2− wkl, (2.4)

2
1

κ2
n

=
1

κ2
+ wkl, (2.5)

3
2ξn
κ2
n

= 2(
1

κ2
ξ + skl), (2.6)

4

ξ2
n

κ2
n

+ ρn =
1

κ2
ξ2 + qkl + ρ. (2.7)

In summary, the parameters of the posterior density are given by5

νn = ν + wkl, (2.8)

6

κ2
n =

κ2

1 + wklκ2
, (2.9)

7

ξn =
ξ + sklκ

2

1 + wklκ2
, (2.10)

8

ρn =
ξ2

κ2
+ qkl + ρ− (ξ + sklκ

2)2

1/κ2 + wkl
. (2.11)

We can directly sample πkl from NIG(ξn, κ
2
nσ

2
kl, νn/2, ρn/2).9

3 Collapse r in latent block model10

We show the calculation of p(z|K) =
∫
p(z, r|K)dr. Given the K-dimensional Dirichlet prior with11

density p(r|K) = N(α)
∏K

k=1 r
αk−1
k , where α = {α1, · · · , αK}, N(α) =

Γ(
∑K
k=1 αk)∏K

k=1 Γ(αk)
; and the likelihood12

p(z|r, K) =
∏K

k=1 r
mk(z)
k , we can collapse r as follows:13

p(z|K) =

∫
p(z, r|K)dr

=

∫
p(r|K)p(z|r, K)dr

=

∫
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

rαk−1
k

K∏
k=1

rmkk dr

=
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

∏K
k=1 Γ(αk +mk)

Γ(
∑K

k=1(αk +mk))

×
∫

Γ(
∑K

k=1(αk +mk))∏K
k=1 Γ(αk +mk)

K∏
k=1

rαk+mk−1
k dr

=
Γ(
∑K

k=1 αk)

Γ(
∑K

k=1(αk +mk))

K∏
k=1

Γ(αk +mk)

Γ(αk)
(3.1)
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4 Collapse πkl in latent block model with weighted edges 1

The collapsed posterior of the latent block model is described in the work by (Wyse and Friel, 2012), 2

but the details of the collapsing procedure are not described there. We elaborate the collapsing 3

procedure of the Gaussian latent block model. We collapse µkl and σ2
kl respectively to get the 4

integral. 5∫
p(xkl, πkl|z)dπkl =

∫ ∫
p(xkl, µkl, σ2

kl|z)dµkldσ
2
kl

=

∫ ∫
p(µkl)p(σ

2
kl)p(xkl|µkl, σ2

kl, z)dµkldσ
2
kl (4.1)

To facilitate integrating with respect to µkl, we denote 6

Iµkl =

∫
p(xkl, µkl, σ2

kl|z)dµkl, (4.2)

then 7

Iµkl =
(ρ/2)ν/2

Γ(ν/2)
(2πκ2)−1/2(2π)−wkl/2σ−1

kl σ
−ν−2−wkl
kl

×
∫

exp{− 1

2σ2
kl

[(
1

κ2
+ wkl)µ

2
kl − 2(

1

κ2
ξ + skl)µkl

+
1

κ2
ξ2 + qkl + ρ]}dukl. (4.3)

Let 8

M =
(ρ/2)ν/2

Γ(ν/2)
(2πκ2)−1/2(2π)−wkl/2σ−1

kl σ
−ν−2−wkl
kl , (4.4)

so that 9

Iµkl = M ×
∫

exp{− 1

2σ2
kl

[λ(µkl −m)2 − λm2 +
1

κ2
ξ2 + qkl + ρ]}dukl, (4.5)

where 10

λ =
1

κ2
+ wkl, (4.6)

and 11

m =
1
κ2
ξ + skl

1
κ2

+ wkl
. (4.7)

Then 12

Iµkl = M × (2π
σ2
kl

λ
)1/2

∫
(2π

σ2
kl

λ
)−1/2exp{− 1

2σ2
kl

λ(µkl −m)2}

×exp{− 1

2σ2
kl

(−λm2 +
1

κ2
ξ2 + qkl + ρ)}dukl

= M × (2π
σ2
kl

λ
)1/2 × exp{− 1

2σ2
kl

(−λm2 +
1

κ2
ξ2 + qkl + ρ)}

= (2π)−wkl/2
(ρ/2)ν/2

Γ(ν/2)
σ−ν−wkl−2
kl (wklκ

2 + 1)−1/2

×exp{− 1

2σ2
kl

[−
( 1
κ2
ξ + skl)

2

1
κ2

+ wkl
+

1

κ2
ξ2 + qkl + ρ]}. (4.8)

To facilitate integration with respect to σ2
kl, we first rewrite Iµkl as follows 13

Iµkl = (2π)−wkl/2
(ρ/2)ν/2

Γ(ν/2)
(wklκ

2 + 1)−1/2 Γ(α)

βα
βα

Γ(α)
(σ2

kl)
−(α+1)e

( −β
σ2
kl

)
, (4.9)
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where1

α =
1

2
ν +

1

2
wkl, (4.10)

and2

β =
1

2
[−

( 1
κ2
ξ + skl)

2

1
κ2

+ wkl
+

1

κ2
ξ2 + qkl + ρ]. (4.11)

This can be integrated as follows3 ∫
Iµkldσ

2
kl = (2π)−wkl/2

(ρ/2)ν/2

Γ(ν/2)
(wklκ

2 + 1)−1/2 Γ(α)

βα

= (2π)−wkl/2
(ρ/2)ν/2

Γ(ν/2)
(wklκ

2 + 1)−1/2

×
Γ(1

2
ν + 1

2
wkl)

(1
2
[− ( 1

κ2
ξ+skl)2

1
κ2

+wkl
+ 1

κ2
ξ2 + qkl + ρ])( 1

2
ν+ 1

2
wkl)

=
ρν/2Γ{(wkl + ν)/2}

πwkl/2Γ(ν/2)(wklκ2 + 1)1/2

×(−κ
2(skl + ξ/κ2)2

wklκ2 + 1
+
ξ2

κ2
+ qkl + ρ)−(wkl+ν)/2. (4.12)

In summary,4 ∫
p(xkl, πkl|z)dπkl =

∫ ∫
p(xkl, µkl, σ2

kl|z)dµkldσ
2
kl

=
ρν/2Γ{(wkl + ν)/2}

πwkl/2Γ(ν/2)(wklκ2 + 1)1/2

×(−κ
2(skl + ξ/κ2)2

wklκ2 + 1
+
ξ2

κ2
+ qkl + ρ)−(wkl+ν)/2. (4.13)

5 The M3 move5

In a Gibbs move, only one entry in z is updated at each iteration. An alternative is the M3 move (No-6

bile and Fearnside, 2007), which updates multiple entries of z simultaneously. In M3, two communities7

in z are randomly selected and denoted as k1 and k2. Each element zi in the selected communities8

is reassigned to k1 or k2 with probability P i
k1

and P i
k2

respectively, to form the updated z∗. The9

collection of elements of z with labels k1 or k2 may be indexed by the set I = {i : zi = k1 or zi = k2}.10

Let the number of such elements be L. The remaining elements of z are collected into a subvector11

denoted as z̃. For the update, one element zi with i ∈ I is randomly selected and updated to z∗i12

according to a reassignment probability. The updated element is added to z̃. The size of I thus13

becomes L− 1. This procedure is repeated until all the elements of I are processed (the length of I14

becomes 0) and the resulting vector z̃ becomes the proposed move z∗. We define a sub-adjacency ma-15

trix x̃ as the observations corresponding to z̃ and the observations x∗i corresponding to the updated16

z∗i . The probabilities of the reassignment satisfy P i
k1

+ P i
k2

= 1 and the ratio17

P i
k1

P i
k2

=
p(z∗i = k1|z̃, x̃,x∗i, K)

p(z∗i = k2|z̃, x̃,x∗i, K)

=
p(z∗i = k1, z̃, x̃,x∗i|K)

p(z∗i = k2, z̃, x̃,x∗i|K)

=
p(z∗i = k1, z̃|K)

p(z∗i = k2, z̃|K)

p(x̃,x∗i|z∗i = k1, z̃, K)

p(x̃,x∗i|z∗i = k2, z̃, K)
. (5.1)

8



The first term of this ratio is given by 1

p(z∗i = k1, z̃|K)

p(z∗i = k2, z̃|K)
=

Γ(αk1 + m̃k1(z̃) + 1)

Γ(αk1 + m̃k1(z̃))

Γ(αk2 + m̃k2(z̃))

Γ(αk2 + m̃k2(z̃) + 1)

=
αk1 + m̃k1(z̃)

αk2 + m̃k2(z̃)
, (5.2)

where m̃k1(z̃) and m̃k2(z̃) are the numbers of nodes in community k1 and k2 in z̃. The second term 2

of the ratio is given by 3

p(x̃,x∗i|z∗i = k1, z̃, K)

p(x̃,x∗i|z∗i = k2, z̃, K)
=

p(x∗i|x̃, z∗i = k1, z̃, K)

p(x∗i|x̃, z∗i = k2, z̃, K)

=
p(x∗i|x̃k1 , z∗i = k1, z̃, K)

p(x∗i|x̃k2 , z∗i = k2, z̃, K)

=
p(x̃k1 ,x∗i|z∗i = k1, z̃)

p(x̃k1|z∗i = k1, z̃)

p(x̃k2 |z∗i = k2, z̃)

p(x̃k2 ,x∗i|z∗i = k1, z̃)
. (5.3)

Finally, the reassignment probability is given by 4

P i
k1

1− P i
k1

=
αk1 + m̃k1(z̃)

αk2 + m̃k2(z̃)

p(x̃k1 ,x∗i|z∗i = k1, z̃)

p(x̃k1|z∗i = k1, z̃)

p(x̃k2|z∗i = k2, z̃)

p(x̃k2 ,x∗i|z∗i = k1, z̃)
. (5.4)

and the proposal ratio is given by 5

p(z∗ → z)

p(z→ z∗)
=

∏
i∈I

P i
zi

P i
z∗i

. (5.5)
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6 Summary of the algorithms1

6.1 Bayesian change-point detection by posterior predictive discrepancy2

Algorithm 1 Bayesian change-point detection by posterior predictive discrepancy
Input: Time series Y of one subject, length of time course T , window size W , number of communities K.
1: For t = W

2 + 1, · · · , T − W
2

2: Calculate Yt → xt where xt is the correlation matrix.
3: Draw samples {zi,πi} (i = 1, · · · , S) from the posterior P (z,π|x,K).
4: Simulate replicated adjacency matrix xrepi from the predictive distribution P (xrep|z,π,K).
5: Calculate the disagreement index γ(xrepi ;x).

6: Calculate the posterior predictive discrepancy index γt =
∑S
i=1 γ(xrep

i
;x)

S .
7: End
8: For t = W

2 + Ws
2 + 1, · · · , T − W

2 −
Ws
2

9: Calculate cumulative discrepancy energy E(t) =
∑t+Ws

2
−1

I=t−Ws
2

γI .

10: End

6.2 Removing false positives for local extrema in CDE3

Algorithm 2 Removing false positives for local extrema in CDE
Input: Group-averaged CDE time series E(t).
1: Calculate the time points of local extrema in E(t): {t1, t2, · · · , tm, · · · , tM}, where M is the number of

local extrema.
2: Create empty storage C = {cij}, a threshold of time distance τ .
3: Initiation of indicator indices i = 1, j = 1.
4: For m = 1, · · · ,M − 1
5: If |tm − tm+1| < τ ,
6: cij = tm.
7: i = i+ 1.
8: Else if |tm − tm+1| ≥ τ ,
9: cij = tm.
10: j = j + 1.
11: i = 1.
12: End
13: End
14: cij = tM .
15: Create empty storage C ′ = {c′l}.
16: For l = 2 : j − 1
17: If min{E(c1l), · · · , E(cil)} > max{E(c1(l−1)), · · · , E(ci(l−1)), E(c1(l+1)), · · · , E(ci(l+1))},
18: c′l = arg maxc{E(c1l), · · · , E(cil)}.
19: Else if max{E(c1l), · · · , E(cil)} < min{E(c1(l−1)), · · · , E(ci(l−1)), E(c1(l+1)), · · · , E(ci(l+1))},
20: c′l = arg minc{E(c1l), · · · , E(cil)}.
21: Else
22: Remove c′l.
23: End
24: End
25: Output: C ′, the estimated locations of change-points and discrete states after removing false positives.
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7 Label switching 1

For the latent block model, we set αk = 1 with {k = 1, · · · , K}, and constant values of ξ, κ2, ν and ρ 2

for all of the blocks kl, so the prior is symmetric with respect to permutations of community labels. 3

Permutations of community labels do not change the likelihood, which means the distributions with 4

respect to blocks are not identifiable. Therefore, the posterior is also invariant to permutations of 5

community labels. In the Markov chain, the labels of the latent label vector switch occasionally: 6

this effect is known as the label switching phenomenon (Stephens, 2000, Nobile and Fearnside, 2007, 7

Wyse and Friel, 2012). For global fitting, label switching does not affect the results of posterior 8

predictive discrepancy. However, for local inference, we need to assign the labels to the communities 9

unequivocally to estimate the memberships of the nodes. 10

We define a distance indicating the difference of coordinates between two latent label vectors z 11

and z′, 12

D(z, z′) =
N∑
i=1

I(zi 6= z′i), (7.1)

where I is the indicator function. We define 13

σ = {σ(1), · · · , σ(k), · · · , σ(K)} (7.2)

as a permutation of a labelling {1, · · · , k, · · · , K}. Let Q = {zj(σj), j = 1, · · · , J} be a collection 14

of latent label vectors with respect to a sequence of permutations {σj, j = 1, · · · , J}. We want to 15

minimize the sum of all distances between the vectors 16

J−1∑
j=1

J∑
l=j+1

D(zj(σj), zl(σl)). (7.3)

The solution of this minimization can be considered as a sequential optimization problem of the 17

square assignment. For each vector zj, if the vectors that have already been processed (relabelled) 18

up to j − 1 are {zt, t = 1, · · · , j − 1}, we define the element of a cost matrix 19

C(k1, k2) =

j−1∑
t=1

N∑
i=1

D(zti 6= k1, z
j
i = k2). (7.4)

We use the square assignment algorithm (Carpaneto and Toth, 1980) returning a permutation σj
20

which minimizes the total cost
∑K

k=1C(k, σ(k)) for each zj. Finally, we permute the labels in the 21

vector zj according to σj. 22

8 Generative model, synthetic data and parameter settings 23

To validate our Bayesian change-point detection algorithm, we use the multivariate Gaussian gen- 24

erative model to simulate the synthetic data. Specifically, we generate D segments of Gaussian 25

time series from D different network architectures. The synthetic data contains the ground truth 26

of D − 1 change-points over the time course. The positions of the true change-points are denoted 27

as a row vector p = [p1, · · · , pD−1]. Within each of D segments, we suppose nodes are assigned to 28

Ktrue communities, the value of which differs in different segments. The true number of commu- 29

nities in the segments can be denoted as a vector Ktrue = [Ktrue
1 , · · · , Ktrue

D ]. We generate three 30

types of dataset: data with various SNRs, data with various degree of inter-individual variations of 31

community structures, and data with HRF. 32

8.1 Simulations with varying SNR 33

This set of simulations is used to evaluate the effect of SNR on the performance of the proposed 34

Bayesian change-point detection method. For generating this synthetic data, we set the label vectors 35
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that determine the form of the covariance matrices in the generative model to be {z1, z2, · · · , zD}. A1

same collection of label vectors is used for each virtual subject such that there are no inter-individual2

variations of community structures between subjects at a same data segment. These label vectors are3

generated using the Dirichlet-Categorical conjugate pair. The component weights {r1, r2, · · · , rD}4

are first drawn from a uniform distribution on the Ktrue simplex and then nodes are assigned to the5

communities by drawing from the corresponding Categorical distributions. Time series data in <N6

are then simulated from7

Y = f(z, a, b) + ε (8.1)

for t = 1, · · · , T by drawing f(z, a, b) ∼ N (0,Σ(z, a, b)), with8

Σij =

 1, if i = j
a, if i 6= j and zi = zj
b, if i 6= j and zi 6= zj

(8.2)

where a ∼ U(0.8, 1) and b ∼ U(0, 0.2) are uniformly distributed, and ε ∼ N (0, σ2I) is the additive9

Gaussian noise. A same sample of {a, b} is used in the generative model for simulating the dataset10

of each subject. The resulting covariance matrices for D segments are denoted as {Σ1,Σ2, · · · ,ΣD}.11

For each virtual subject, the simulated data Y ∈ <N×T can be separated into D segments which are12

{Y1,Y2, · · · ,YD}.13

8.2 Simulations with varying DIIV14

This set of simulations is used to evaluate the performance of Bayesian change-point detection for15

capturing the inter-individual variations of community structures. The generative models have differ-16

ent settings of {z1, z2, · · · , zD} for different subjects. Samples of {a, b} are drawn independently from17

the uniform distribution for simulating the datasets of different subjects. The variation of the com-18

munity structure is determined by a parameter called degree of inter-individual variations (DIIV).19

The DIIV is defined as the number of nodes that have different label assignments between subjects20

in a group. If DIIV = n, there are n nodes having different label assignments. In this case, n nodes21

are randomly selected from N nodes and each selected node is reassigned a label randomly drawn22

from the collection {1, · · · , K} for each subject. Therefore, the set of simulations in the previous23

section, with no inter-individual variations, is a special case for this set of experiments when DIIV24

= 0.25

8.3 Simulations with HRF26

This set of simulations is performed by convolving the multivariate Gaussian data with a canonical27

haemodynamic response function (HRF) as has been implement in SPM (using spm_hrf.m function).28

The parameters of HRF are set as follows. To imitate the real working memory task fMRI data,29

the scan repeat time of HRF is set to be 0.72 s; the delay of response (relative to onset) is 6 s; the30

delay of undershoot (relative to onset) is 16 s; the dispersion of response is 1 s; the dispersion of31

undershoot is 1 s; the ratio of response to undershoot is 6 s; the onset is at 0 s; and the length of32

kernel is 32 s.33

8.4 Parameter settings34

For validation, we first generate 100 instances (as virtual subjects) of synthetic multivariate time35

series for a network with N = 35 nodes and T = 180 time points to imitate the scenario of real36

data. We set the true change-points at {20, 50, 80, 100, 130, 160} and the numbers of communities in37

the segments to be {3, 4, 5, 3, 5, 4, 3}. Here we define the signal-to-noise ratio (SNR) as Σii
σ2 , and set38

different values of σ to control SNR (σ = 0.3162 for SNR = 10 dB, σ = 0.5623 for SNR = 5 dB,39

σ = 1 for SNR = 0 dB, and σ = 1.7783 for SNR = -5 dB). For simulations with various SNRs, we40

set SNR = 10 dB, 5 dB, 0 dB, and -5 dB respectively and DIIV = 0. For simulations with various41

DIIV, we set DIIV = 0, 5, and 10 respectively and SNR = 5 dB. For simulations with HRF, we apply42

HRF to the multivariate Gaussian data with SNR = 5 dB, and DIIV = 0, 5, and 10 respectively.43
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For global fitting, the posterior prediction replication number is set as S = 50 for all of our 1

experiments. For local inference, we draw Ss = 200 samples from the posterior densities for both 2

latent label vectors and model parameters. We set the prior to be NIG(ξ, κ2σ2
kl, ν/2, ρ/2) with ξ = 0, 3

κ2 = 1, ν = 3 and ρ = 0.02, which is non-informative. 4
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SI Table 1:1

2-back 0-back Fixation
Community Node number Community Node number Community Node number
k=1 k=1 18 k=1
k=2 11 30 31 32 k=2 11 31 32 k=2 11 30 31 32
k=3 k=3 16 20 k=3 12 16 20 21
k=4 1 9 17 34 k=4 9 17 34 k=4 1 7
k=5 2 23 24 k=5 23 24 k=5 3 24
k=6 8 k=6 5 10 26 k=6 5

SI Table 1. A table of community detection with session 2 (RL). This table summarises the nodes commonly located
in a specific community k for all of picture types in the working memory tasks.
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SI Figure 1. Results of method validation using synthetic data with SNR = 10 dB. a CDE of the multivariate
Gaussian data with SNR = 10 dB using different models (K = 6, 5, 4, and 3). The sliding window size for converting from
time series to correlation matrices sequence is W = 20, whereas (for smoothing) the sliding window size for converting from
PPDI to CDE is Ws = 10. The vertical dashed lines are the locations of the true change-points (t = 20, 50, 80, 100, 130, and
160). The colored scatterplots in the figures are the CDEs of individual (virtual) subjects and the black curve is the group
CDE (averaged CDE over 100 subjects). The red dots are the local maxima and the blue dots are the local minima. b Local
fitting with different models (from K = 3 to 18) for synthetic data (SNR = 10 dB). Different colors represent the PPDI values
of different states with the true number of communities Ktrue. c The estimation of community constituents for SNR = 10 dB
at each discrete state: t = 36, 67, 91, 116, 147 for brain states 1 to 5, respectively. The estimations of the latent label vectors
(Estimation) and the label vectors (True) that determine the covariance matrix in the generative model are shown as bar
graphs. The strength and variation of the connectivity within and between communities are represented by the block mean and
variance matrices within each panel.
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SI Figure 2. Results of method validation using synthetic data with SNR = 0 dB. a This figure is in the same
format as the SI Figure 1 above only that it is for SNR = 0 dB. b Local fitting with different models (from K = 3 to 18) for
synthetic data (SNR = 0 dB). c The estimation of community constituents for SNR = 0 dB at each discrete state: t = 36, 66,
92, 116, 146 for brain states 1 to 5, respectively.
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SI Figure 3. CDE of the multivariate Gaussian data with SNR = -5 dB. Different models (K = 6, 5, 4, and 3 in a
to d) were used for global fitting. Change-point detection did not work in this case, hence the brain states can not be identified
here.
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SI Figure 4. Validation of sampling the model parameters. a The histograms of the sampled block mean, and b
the histograms of the sampled block variance for the case K = 3. We denote the block kl sequentially (for example, the block
for k = 2, l = 3 is denoted as block 6; the block for k = 3, l = 3 is denoted as block 9). The green dashed lines are the true
values and the black dashed lines are the estimates. In order to validate the algorithm for sampling the model parameters, we
simulate a synthetic adjacency matrix from a mixture of Gaussian distributions with ground truth of K = 3, the true latent
label vector (3, 2, 1, 1, 2, 3, 3, 3, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 3, 3, 3), the true block mean matrix (0.22, 0.05, -0.06; 0.05, 0.30, 0.02;
-0.06, 0.02, 0.18) and the true block variance matrix (0.1, 0.02, 0.01; 0.002, 0.15, 0.03; 0.01, 0.03, 0.09). Given this generated
adjacency matrix as an observation, we draw samples of the block mean and variance from the posterior p(π|x, z) conditional
on z. The shape of the histogram of mean is consistent with a Normal distribution and the histogram of variance is consistent
with an Inverse-Gamma distribution. The figure shows that the estimations of the block mean and variance closely match the
ground truth values.
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SI Figure 5. Effects of DIIV and HRF on the inter-individual variations of CDE curves for SNR = 10 dB.
a-c CDE of the multivariate Gaussian data with DIIV = 0, 5, and 10 respectively. The number of communities K = 6 for all
of the experiments. d-f The extrema of the individual-level CDE curves with different levels of DIIV. The red dots are the
local maxima and the blue dots are the local minima of 100 virtual subjects. g-i CDE curves of the multivariate Gaussian data
applied with haemodynamic response function (HRF). j-l The extrema of the individual-level CDE curves with HRF. m The
time deviation of local maxima of individual-level CDE curves compared to the local maximum of the group-averaged CDE
curve with different levels of DIIV and HRF. n The time deviation of local minima of individual-level CDE curves compared to
the local minimum of the group-averaged CDE curve with different levels of DIIV and HRF.
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SI Figure 6. Effects of DIIV and HRF on the inter-individual variations of CDE curves for SNR = 0 dB.
a-c CDE of the multivariate Gaussian data with DIIV = 0, 5, and 10 respectively. The number of communities K = 6 for all
of the experiments. d-f The extrema of the individual-level CDE curves with different levels of DIIV. The red dots are the
local maxima and the blue dots are the local minima of 100 virtual subjects. g-i CDE curves of the multivariate Gaussian data
applied with haemodynamic response function (HRF). j-l The extrema of the individual-level CDE curves with HRF. We find
the change-point detection fails for the dataset with SNR = 0 dB and with HRF.
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SI Figure 7. Task activation maps (thresholded Z-MAX maps) for group analysis. Contrasts of 2-back vs fixation,
0-back vs fixation and 2-back vs 0-back for MNI coordinates (x = -50, y = -46, z = 10). For running 1st-level GLM-based FEAT
(Woolrich et al., 2001) in FSL, we added the confound predictors files released by HCP to the design matrix of the model for
each individual. We then set up a 2nd-level design matrix for the contrast of 2-back, 0-back, and fixation. For the 3rd-level (the
group-level GLM analysis (Woolrich et al., 2004)), we applied cluster-wise inference and set up the cluster defining threshold
(CDT) to be Z = 3.1 (P = 0.001) to avoid cluster failure problems as described in (Eklund et al., 2016), with a family-wise
error-corrected threshold of P = 0.05. Maps are viewed by looking upward from the feet of the subject and the coordinate
directions are denoted as Anterior (A), Posterior (P), Superior (S), Inferior (I), Left (L), and Right (R).
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SI Figure 8. The light box views of thresholded local maximum Z statistic with different contrasts.
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SI Figure 9. Community structure of the discrete brain states with sparsity level of 20% (session 1, LR). The
figures with blue frames represent brain states corresponding to working memory tasks (2-back tool at t = 41; 0-back body at
t = 76; 2-back face at t = 140; 0-back tool at t = 175; 2-back body at t = 239; 2-back place at t = 278; 0-back face at t = 334;
and 0-back place at t = 375 in a-k) and those with red frames represent brain states corresponding to fixation (fixation at
t = 107, 206, and 306 in c, f, and i). Each brain state shows connectivity at a sparsity level of 20%. The different colors of the
labels represent community memberships. The strength of the connectivity is represented by the colors shown in the bar at the
right of each frame. In Circos maps, nodes in the same community are adjacent and have the same color. Node numbers and
abbreviations of the corresponding brain regions are shown around the circles. In each frame, different colors represent different
community numbers. The connectivity above the sparsity level is represented by arcs. The blue links represent connectivity
within communities and the red links represent connectivity between communities.
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SI Figure 10. Community structure of the discrete brain states with sparsity level of 30% (session 1, LR).
This figure is in the same format as the SI Figure 9 above only that it is for sparsity level of 30%.
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SI Figure 11. Estimated mean and variance matrices of the blocks for brain states (session 1, LR). The figures
with blue frames represent brain states corresponding to working memory tasks (2-back tool at t = 41; 0-back body at t = 76;
2-back face at t = 140; 0-back tool at t = 175; 2-back body at t = 239; 2-back place at t = 278; 0-back face at t = 334;
and 0-back place at t = 375 in a-k) and those with red frames represent brain states corresponding to fixation (fixation at
t = 107, 206, and 306 in c, f, and i). The different colors of the labels represent community memberships. The density and
variation of connectivity within and between communities are shown in the estimated block mean matrix and block variance
matrix.
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SI Figure 12. Results of Bayesian change-point detection for working memory tfMRI data (session 2, RL).
The upper panels show the cumulative discrepancy energy (CDE) with different sliding window sizes (a W = 22, b W = 26, c
W = 30, and dW = 34 under the model K = 3). Ws is the sliding window used for converting from PPDI to CDE. The vertical
dashed lines are the times of onset of the stimuli, which are provided in the EV.txt files in the released data. The colourful
scatterplots in the figures represent the CDEs of individual subjects and the black curve is the group-level CDE (averaged CDE
over 100 subjects). The red dots are the local maxima, which are taken to be the locations of change-points, and the blue dots
are the local minima, which are used for local inference of the discrete brain states. The bottom panels show the estimated
group-averaged CDE where false positives (FP) are removed using time distance threshold τ = 9.
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SI Figure 13. Local fitting (session 2, RL) between averaged adjacency matrix and models from K = 3 to
K = 18. Different colours represent the PPDI values of different brain states.
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SI Figure 14. Community structure of the discrete brain states with sparsity level of 10% (session 2, RL).
The figures with blue frames represent brain states corresponding to working memory tasks (2-back body at t = 49; 0-back
face at t = 77; 2-back tool at t = 139; 0-back body at t = 175; 0-back place at t = 236; 2-back face at t = 275; 0-back tool at
t = 334; and 2-back place at t = 376 in a-k) and those with red frames represent brain states corresponding to fixation (fixation
at t = 99, 209, and 306 in c, f, and i).
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SI Figure 15. Community structure of the discrete brain states with sparsity level of 20% (session 2, RL).
This figure is in the same format as the SI Figure 14 above only that it is for sparsity level of 20%.
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SI Figure 16. Community structure of the discrete brain states with sparsity level of 30% (session 2, RL).
This figure is in the same format as the SI Figure 14 above only that it is for sparsity level of 30%.
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SI Figure 17. Estimated mean and variance matrices of the blocks for brain states (session 2, RL). This
figure is in the same format as the SI Figure 11. The figures with blue frames represent brain states corresponding to working
memory tasks (2-back body at t = 49; 0-back face at t = 77; 2-back tool at t = 139; 0-back body at t = 175; 0-back place at
t = 236; 2-back face at t = 275; 0-back tool at t = 334; and 2-back place at t = 376 in a-k) and those with red frames represent
brain states corresponding to fixation (fixation at t = 99, 209, and 306 in c, f, and i).
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