Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

Recent Advances in Heterostructured Cathodic Electrocatalysts for Non-aqueous Li-O₂ Batteries

Qing Xia^a, Deyuan Li^b, Lanling Zhao^c, Jun Wang^{*b}, Yuxin Long^b, Xue Han^b, Zhaorui Zhou^b, Yao Liu^{*b}, Yiming Zhang^b, Yebing Li^b, Abulgasim Ahmed Abbaker Adam^b, Shulei Chou^{*a}

a Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China

b Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China

c School of Physics, Shandong University, Jinan, 250100, China

E-mail: chou@wzu.edu.cn

Materials	Synthesis Method	1 st Discharge Capacity ^a / Current Density	Overall Potential Gap/ Current Density	Cycles or hours/Current Density-Fixed Capacity	Ref
Mo ₂ C@CNTs	Ball Milling+Thermal Treatment	-	0.47 V/100 mA g ⁻¹	100/100 mA g ⁻¹ -500 mAh g ⁻¹	1
Co ₄ N@CNFs	Hydrothermal+Nitridation Process	$\sim 11000 \text{ mAh g}^{-1}/00 \text{ mA g}^{-1}$	1.23 V/700 mA g ⁻¹	177/200 mA g ⁻¹ -500 mAh g ⁻¹	2
CuGeO ₃ @Graphene	Hydrothermal+Thermal Treatment	10030 mAh g ⁻¹ /200 mA g ⁻¹	1.50 V/200 mA g ⁻¹	50/1000 mA g ⁻¹ -2000 mAh g ⁻¹	3
Co ₉ S ₈ @CFs	Hydrothermal+Thermal Treatment	6875 mAh g ⁻¹ /50 mA g ⁻¹	$0.57 \text{ V}/50 \text{ mA g}^{-1}$	105/100 mA g ⁻¹ -500 mAh g ⁻¹	4
(Mn _{1/3} Co _{2/3})O@CNTs	One-pot Spray Pyrolysis	20588 mAh g ⁻¹ /500 mA g ⁻¹ -	0.64 V/200 mA g ⁻¹	245/200 mA g ⁻¹ -500 mAh g ⁻¹	5
Mo ₂ C@CC	Infiltrated+Thermal Treatment	7646 mAh g ⁻¹ /200 mA g ⁻¹	~1.25 V/200 mA g ⁻¹	700h/500 mA g ⁻¹ -500 mAh g ⁻¹	6
N-Co@Graphene	Solution Reaction+Thermal Treatment	-	~0.9 V/0.1 mA cm $^{-2}$	30/0.1 mA cm ⁻² -1 mAh cm ⁻²	7
Pd-C@CP	Electrophoretic+In-Situ Modification	5900 mAh g ⁻¹ /1500 mA g ⁻¹	~1 V/300 mA g ⁻¹	213/300 mA g ⁻¹ -1000 mAh g ⁻¹	8
$Ag/La_{0.9}FeO_{3\cdot\delta}$	Electrospinning+Thermal Treatment	8476 mAh g ⁻¹ /100 mA g ⁻¹	0.66 V/100 mA g ⁻¹	174/100 mA g ⁻¹ -1000 mAh g ⁻¹	9
Co ₃ O ₄ /Ag	Solution Reaction+Hydrothermal	12000 mAh g ⁻¹ /200 mA g ⁻¹	$\sim 1.2 \text{ V}/200 \text{ mA g}^{-1}$	80/200 mA g ⁻¹ -1000 mAh g ⁻¹	10
AuNi/NPNi/FNi	Thermal Treatment+In- Situ Modification+Atom Interdiffusion	22551 mAh g ⁻¹ /1000 mA g ⁻¹	0.68 V/1000 mA g ⁻¹	268/1000 mA g ⁻¹ -3000 mAh g ⁻¹	11
Au/Cu@FCu	Solution Immersion+Redox Replacement	27270 mAh g ⁻¹ /100 mA g ⁻¹	0.64 V/100 mA g ⁻¹	220/100 mA g ⁻¹ -500 mAh g ⁻¹	12
Pd/NiCo ₂ O ₄	Hydrothermal+Solution Immersion	4000 mAh g ⁻¹ /200 mA g ⁻¹	~1.3 V/100 mA g ⁻¹	100/200 mA g ⁻¹ -1000 mAh g ⁻¹	13
$Ru/ZnIn_2S_{4\text{-}x}$	Hydrothermal+Solution Immersion	3532mAh g ⁻¹ /500 mA g ⁻¹	0.77 V/500 mA g ⁻¹	1254h/500 mA g ⁻¹ -1000 mAh g ⁻¹	14
Pd/Pd ₄ S	Solution Reaction	8777 mAh g ⁻¹ /100 mA g ⁻¹	1.55 V/100 mA g ⁻¹	160/500 mA g ⁻¹ -500 mAh g ⁻¹	15
MnO ₂ /Co ₃ O ₄ @CP	Hydrothermal+Thermal Treatment	4850 mAh g ⁻¹ /103 mA g ⁻¹	0.95 V/103 mA g ⁻¹	53/103 mA g ⁻¹ -1030 mAh g ⁻¹	16
NiCo ₂ S ₄ /NiO	Hydrothermal+Solution	10050 mAh g ⁻¹ /200 mA g ⁻¹	0.88 V/200 mA g ⁻¹	300/200 mA g ⁻¹ -1000 mAh g ⁻¹	17

Table S1 Comparison table of the synthesis methods and electrocatalytic performance based on reported typical heterostructures catalysts for $Li-O_2$ batteries.

	Immersion+Thermal				
	Treatment				
PdO/Co ₃ O ₄	Solution	-	0.22 V/200 mA g ⁻¹	90/200 mA g ⁻¹ -500 mAh g ⁻¹	18
	Immersion+Pyrolysis				
Co ₃ O ₄ /MnO ₂	Hydrothermal+Thermal	5738 mAh g ⁻¹ /100 mA g ⁻¹	0.82 V/100 mA g ⁻¹	60/200 mA g ⁻¹ -1000 mAh g ⁻¹	19
	Treatment				
NiCo ₂ O ₄ /NiO	Hydrothermal	$17463 \text{ mAh } \text{g}^{-1}/500 \text{ mA } \text{g}^{-1}$	0.98 V/500 mA g ⁻¹	500/100 mA g ⁻¹ -1000 mAh g ⁻¹	20
Mo ₂ C/MoO ₂	Hydrothermal+Thermal	$\sim 2000 \text{ mAh g}^{-1}/800 \text{ mA g}^{-1}$	0.56 V/200 mA g ⁻¹	100/200 mA g ⁻¹ -1000 mAh g ⁻¹	21
	Treatment				
RuO ₂ /Mn ₂ O ₃	Solution	-	0.96 V/100 mA g ⁻¹	121/400 mA g ⁻¹ -1000 mAh g ⁻¹	22
	Reaction+Electrospinning				
Urchin-NiO/NiCo ₂ O ₄	Hydrothermal+Thermal	9231 mAh g ⁻¹ /100 mA g ⁻¹	1.48 V/100 mA g ⁻¹	80/100 mA g ⁻¹ -600 mAh g ⁻¹	23
	Treatment				
$NiS_2/ZnIn_2S_4$	Hydrothermal	$3682 \text{ mAh } \text{g}^{-1}/500 \text{ mA } \text{g}^{-1}$	$\sim 1.2 \text{ V}/500 \text{ mA g}^{-1}$	490/500 mA g ⁻¹ -500 mAh g ⁻¹	24
CoSe ₂ /NiSe ₂	Hydrothermal+Thermal	3530 mAh g ⁻¹ /600 mA g ⁻¹	0.95 V/100 mA g ⁻¹	250/200 mA g ⁻¹ -1000 mAh g ⁻¹	25
	Treatment				
Ni ₃ Se ₂ /NiSe ₂ @NF	Hydrothermal	23092 mAh g ⁻¹ /500 mA g ⁻¹	0.38 V/100 mA g ⁻¹	500/100 mA g ⁻¹ -1000 mAh g ⁻¹	26
CdSe/ZnS QD@CNT	Hydrothermal+Solution	-	$\sim 1.3 \text{ V}/100 \text{ mA g}^{-1}$	100/100 mA g ⁻¹ -1000 mAh g ⁻¹	27
	Reaction				
Co-Fe-(LDH) /RuO ₂	Co-precipitation +Self-	$\sim 4300 \text{ mAh g}^{-1}/10 \text{ mA cm}^{-2}$	0.64 V/100 mA g ⁻¹	100/10 mA cm ⁻² -800 mAh g ⁻¹	28
	assembling				

^aThe specific discharge capacities were calculated based on the amount of catalysts in the cathodes.

- W. J. Kwak, K. C. Lau, C. D. Shin, K. Amine, L. A. Curtiss and Y. K. Sun, *ACS Nano*, 2015, 9, 4129-4173.
- K. R. Yoon, K. Shin, J. Park, S. H. Cho, C. Kim, J. W. Jung, J. Y. Cheong, H. R. Byon, H. M. Lee and I. D. Kim, *ACS Nano*, 2018, 12, 128-139.
- 3. G. H. Lee, M. C. Sung, J. C. Kim, H. J. Song and D. W. Kim, *Adv. Energy Mater.*, 2018, **8**, 1801930.
- X. D. Lin, R. M. Yuan, S. R. Cai, Y. H. Jiang, J. Lei, S. G. Liu, Q. H. Wu, H. G. Liao, M. S. Zheng and Q. F. Dong, *Adv. Energy Mater.*, 2018, 8, 1800089.
- 5. J. H. Kim, Y. J. Oh and Y. C. Kang, *Carbon*, 2018, **128**, 125-133.
- 6. Y. Luo, C. Jin, Z. Wang, M. Wei, C. Yang, R. Yang, Y. Chen and M. Liu, *Journal of Materials Chemistry A*, 2017, **5**, 5690-5695.
- G. Tan, L. Chong, R. Amine, J. Lu, C. Liu, Y. Yuan, J. Wen, K. He, X. Bi, Y. Guo, H. H. Wang, R. Shahbazian-Yassar, S. Al Hallaj, D. J. Miller, D. Liu and K. Amine, *Nano Lett.*, 2017, 17, 2959-2966.
- 8. J. J. Xu, Z. L. Wang, D. Xu, L. L. Zhang and X. B. Zhang, Nat. Commun., 2013, 4, 2438.
- Y. Cong, Q. Tang, X. Wang, M. Liu, J. Liu, Z. Geng, R. Cao, X. Zhang, W. Zhang, K. Huang and S. Feng, ACS Catal., 2019, 9, 11743-11752.
- 10. R. Gao, Z. Yang, L. Zheng, L. Gu, L. Liu, Y. Lee, Z. Hu and X. Liu, ACS Catal., 2018, 8, 1955-

1963.

- 11. J. J. Xu, Z. W. Chang, Y. B. Yin and X. B. Zhang, ACS Cent. Sci., 2017, 3, 598-604.
- 12. N. Luo, G. J. Ji, H. F. Wang, F. Li, Q. C. Liu and J. J. Xu, ACS Nano, 2020, 14, 3281-3289.
- 13. D. A. Agyeman, M. Park and Y. M. Kang, J. Mater. Chem. A, 2017, 5, 22234-22241.
- R. X. Liang, C. Z. Shu, A. J. Hu, C. X. Xu, R. X. Zheng, M. L. Li, Y. W. Guo, M. He, Y. Yan and J. P. Long, *J. Mater. Chem. A*, 2020, 8, 11337-11345.
- 15. Q. S. Huang, F. Dang, H. T. Zhu, L. L. Zhao, B. He, Y. Wang, J. Wang and X. M. Mai, *J. Power Sources*, 2020, **451**, 227738.
- 16. P. Zhang, S. Zhang, M. He, J. Lang, A. Ren, S. Xu and X. Yan, *Adv. Sci.*, 2017, 4, 1700172.
- P. Wang, C. Li, S. Dong, X. Ge, P. Zhang, X. F. Miao, R. Wang, Z. Zhang and L. Yin, *Adv. Energy Mater.*, 2019, 9, 1900788.
- Y. Zhang, J. Ma, M. W. Yuan, Y. Li, R. A. Shen, W. C. Cheong, T. Han, G. B. Sun, C. Chen and C. Y. Nan, *Chem. Commun.*, 2019, 55, 12683-12686.
- Y. J. Lee, D. H. Kim, T.-G. Kang, Y. Ko, K. Kang and Y. J. Lee, *Chemistry of Materials*, 2017, 29, 10542-10550.
- R. X. Liang, A. J. Hu, M. L. Li, Z. Q. Ran, C. Z. Shu and J. Long, *Electrochim Acta*, 2019, **321**, 134716.
- 21. C. Wu, Y. Y. Hou, J. C. Jiang, H. P. Guo, H. K. Liu, J. Chen and J. Z. Wang, *J. Power Sources*, 2020, **470**, 228317.
- 22. K. R. Yoon, G. Y. Lee, J. W. Jung, N. H. Kim, S. O. Kim and I. D. Kim, *Nano Lett.*, 2016, **16**, 2076-2083.
- W. Zhao, X. Li, R. Yin, L. Qian, X. Huang, H. Liu, J. Zhang, J. Wang, T. Ding and Z. Guo, *Nanoscale*, 2018, 11, 50-59.
- A. Hu, W. Lv, T. Lei, W. Chen, Y. Hu, C. Shu, X. Wang, L. Xue, J. Huang, X. Du, H. Wang, K. Tang, C. Gong, J. Zhu, W. He, J. Long and J. Xiong, *ACS Nano*, 2020, 14, 3490-3499.
- R. X. Liang, C. Z. Shu, A. J. Hu, M. L. Li, Z. Q. Ran, R. X. Zheng and J. P. Long, *Chem. Eng. J.*, 2020, **393**, 124592.
- Z. Q. Ran, C. Z. Shu, Z. Q. Hou, L. J. Cao, R. X. Liang, J. B. Li, P. Hei, T. S. Yang and J. P. Long, J. Power Sources, 2020, 468, 228308.
- V. Veeramani, Y. H. Chen, H. C. Wang, T. F. Hung, W. S. Chang, D. H. Wei, S. F. Hu and R. S. Liu, *Chem. Eng. J.*, 2018, 349, 235-240.
- X. Y. Jin, D. A. Agyeman, S. Kim, Y. H. Kim, M. G. Kim, Y. M. Kang and S. J. Hwang, *Nano Energy*, 2020, 67, 104192.