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1. Unique features of proposed method

Table 1 highlights the unique features of our proposed methods compared to existing works.

[Table 11.2 here]

2. Proof of Theorem 1

The Lagrangian

L(A,B, λ1, λ2) = ρtr(ATS1
bA + BTS2

bB) + (1− ρ)tr(ATS12BBTST

12 A)

− λ1(tr(ATS1
wA)− (K − 1))− λ2(tr(BTSwB)− (K − 1))

Let Ω1 = S12BBTST

12 and Ω2 = ST

12AATS12.

The first order stationary solutions for A and B are

∂L(A,B, λ1, λ2)

∂A
= ρ(S1

b + S1T

b )A + (1− ρ)(Ω1 + Ω1T

)A− λ1(S1
w + S1T

w )A = 0

∂L(A,B, λ1, λ2)

∂B
= ρ(S2

b + S2T

b )B + (1− ρ)(Ω2 + Ω2T

)B− λ1(S2
w + S2T

w )B = 0

Rearranging, we obtain the eigensystems for A and B respectively as

(
ρ(S1

b + S1T

b ) + (1− ρ)(Ω1 + Ω1T

)
)

A = λ1(S1
w + S1T

w )A (1)(
ρ(S2

b + S2T

b ) + (1− ρ)(Ω2 + Ω2T

)
)

B = λ2(S2
w + S2T

w )B (2)

For B fixed in Ω1, equation (1) can be solved for the nonzero eigenvalues of (S1
w+S1T

w )−1(ρ(S1
b+

S1T

b ) + (1 − ρ)(Ω1 + Ω1T

)). Denote the corresponding eigenvectors as Ã = [α̃1, . . . , α̃r].

Similarly, with A fixed in Ω2, we can solve for the nonzero eigenvalues in equation (2) from

(S2
w+S2T

w )−1(ρ(S2
b+S2T

b )+(1−ρ)(Ω2 +Ω2T

)). Let B̃ = [β̃1, . . . , β̃r]. We iterate over A and B
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in equations (1) and (2) until convergence (both ‖Ãnew−Ãold‖F < ε and ‖B̃new−B̃old‖F < ε).

At which point we set Â = Ã and B̂ = B̃.

Remark 1: In high-dimensional examples where p > n, we make S1
w and S2

w positive

definite by adding a small multiple of the identity. We could estimate S1
w and S2

w using

techniques proposed in Cai et al. (2011) and Bickel and Levina (2008) but that would add

a layer of complexity. To reduce computations, we use techniques described in Hastie and

Tibshirani (2004) to avoid inverting the p× p (or q× q) matrices S11/2

w and S21/2

w ; instead, we

invert a n× n matrix, and n� p (or q).

3. More comments on association component of proposed method

Note that the cross-covariance matrix between X1 and X2, (i.e., S12 ) can be decomposed

as S12 = S12
w + S12

b , where

S12
w =

K∑
k=1

n∑
i=1

(x1
ik − µ̂1

k)(x
2
ik − µ̂2

k)
T; S12

b =
K∑
k=1

nk(µ̂
1
k − µ̂1)(µ̂2

k − µ̂2)T.

Here, µ̂j
k = (1/nk)

∑nk

i=1 xjik, j = 1, 2 and µ̂j is the combined class mean vector for View j,

j = 1, 2, and is defined as µ̂j = (1/n)
K∑
k=1

nkµ̂
j
k. In keeping with terminology in LDA, we term

S12
w as within-class cross-covariance and S12

b as between-class cross-covariance. S12
b measures

the cross-covariance within the classes, and S12
b measures the cross-covariance between the

classes. So in using S12 in our method, we are capturing the cross-covariances between and

within the classes.

Similar to LDA where we maximize separation between classes while minimizing variation

within the classes for one data type, we also explored a different formulation of the association

part of our optimization problem:

max
A,B

ρ

separation︷ ︸︸ ︷
tr(ATS1

bA + BTS2
bB) + (1− ρ)

association︷ ︸︸ ︷
tr(ATS12

b BBTS12T

b A)

subject to tr(ATS1
wA)/(K − 1) = 1, tr(BTSwB)/(K − 1) = 1. (3)
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That is, we maximize simultaneously separation for each data type and the square of the

between-class cross-covariance (instead of the cross-covariance S12). Table 17 gives simulation

results for Scenario four in Section 10.4. We did observe an improvement in classification

accuracy when we used S12
b but the estimated RV coefficients where similar or lower when

compared to estimates from S12.

4. Rank Determination

In the classical LDA problem, the rank (maximum number of eigenvalues) is K − 1, where

K is the number of classes. This coincides with rank(S1
b) (or rank(S2

b) ). For a fixed B∗,

rank
(

(S1
w + S1T

w )−1(S1
b + S1T

b + Ω1 + Ω1T

)
)

6 K − 1 + min
(

rank(S1−1

w ), rank(S12), rank(B)
)
.

This suggests that for the integrative LDA problem, there could be more than K − 1

eigenvalue-eigenvector pairs. In practice, one could use a scree-plot to choose the rank.

However, in our simulations and real data analyses, we find that the first K − 1 eigenvalues

dominate the rest of the eigenvalues. Thus, we set the maximum number of eigenvalues to

be K − 1, similar to the classical LDA.

5. More Comments on Laplacian

One could use the Laplacian (not normalized) defined as:

L(u, v) =



rv − w(u, v) if u = v

−w(u, v) if u 6= v and variables u and v are adjacent

0 otherwise

(4)

instead of the normalized Laplacian defined in equation (10) in the main text. However, the

Laplacian in equation (4) encourages variables in the network to have the same coefficients.

This is true since w(u, v) is the same for variables that are connected. We believe variables
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that are connected will often have different coefficients that capture their contributions to

overall dependency structure and class separation. As such, we use the normalized Lapla-

cian, which normalizes the connected variables by their degrees, thus encouraging different

coefficients.

6. Extension to multiple views of data

We extend the proposed methods to more than two views of data. Let Xd = [Xd
1,X

d
2, . . . ,X

d
K ],

Xd ∈ <n×pd ,Xd
k ∈ <nk×pd , k = 1, . . . , K, d = 1, 2, . . . , D be a concatenation of the K classes

in the d-th view. Let Sdb and Sdw be the between-class and within-class covariances for the

d-th view. Let Sdj, j < d be the cross-covariance between the d-th and j-th views. Define

Md = Sd
−1/2

w SdbS
d−1/2

w and Ndj = Sd
−1/2

w SdjS
j−1/2

w . We solve the optimization problem for

multiple views of data:

max
Γ1

,··· ,ΓD
ρ

D∑
d=1

tr(ΓdTMdΓd) +
2(1− ρ)

D(D − 1)

D∑
d=1,d6=j

tr(ΓdTNdjΓjΓjTNjdΓd) s.t tr(ΓdTΓd) = K − 1.

As before, ρ controls the influence of separation or association in the optimization problem.

The second term essentially sums all of these unique pairwise squared correlations and weight

them by D(D−1)
2

so that the sum of the squared correlations is one. As in Proposition 1 in

the main text, the nonsparse basis discriminant directions for the d-th view, Γ̃
d
, are given

by the eigenvectors corresponding to the eigenvalues that iteratively solve the following

eigensystems: (
c1M1 + c1M1T

+ c2N 1j + c2N
T

1j

)
Γ1 = Λ1Γ

1,

...(
c1MD + c1M1T

+ c2NDj + c2N
T

Dj

)
ΓD = ΛDΓD, (5)

where we set c1 = ρ and c2 = 2(1−ρ)
D(D−1)

, and N dj =
∑D

d,j NdjΓ
jΓjTNjd, d, j = 1, . . . D, j 6= d

sums all unique pairwise correlations of the d-th and the j-th views. For sparsity or smooth-
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ness we solve the following optimization problems:

min
Γ1
P(Γ1) s.t ‖(c1M1 + c1M1T

+ c2N 1j + c2N
T

1j)Γ̃
1
− Λ̃1Γ

1‖∞ 6 τ1

...

min
ΓD
P(ΓD) s.t ‖(c1MD + c1MDT

+ c2NDj + c2N
T

Dj)Γ̃
D
− Λ̃DΓD‖∞ 6 τD. (6)

The penalty term P(Γd) is either set respectively to equations (6) or (9) in the main text,

depending on whether sparsity or smoothness (with sparsity) is desired.

7. More Comments on initialization, tuning parameters, and algorithm

The optimization problems in equations (8) and (12) in the main text are biconvex. With Γd

fixed at Γd∗ , the problem of solving for Γ̂
j
, j 6= d is convex, and may be solved easily with

any-off-the shelf convex optimization software. The technique of solving biconvex problems

by fixing parameters and then solving the resulting convex problems is popularly used

in the statistical literature. Since the problem is biconvex, alternating minimization does

not guarantee a global solution, but instead a solution where the cost function (objec-

tive) at previous and current iterations is within a specified tolerance value. At the first

iteration, we fix Γd∗ as the classical LDA solution from applying LDA on Xd. We can

initiate Γd∗ with random orthonormal matrices, but we choose to initialize with regular

LDA solutions because the algorithm converges faster. At subsequent solutions, we fix Γd∗

as the solution from previous iteration, and iterate until convergence. We use the following

criteria for convergence, which ever occurs first: (i)max

(
‖Γ1

new−Γ
1

old‖2F
‖Γ1

old‖2F
, . . . ,

‖ΓD

new−Γ
D

old‖2F
‖ΓD

old‖2F

)
,

(ii)
∑D

d=1 ‖Γ
d

new−Γ
d

old‖2F ‖∑D
d=1 ‖Γ

d

old‖2F
. Here, Γd

new and Γd
old, d = 1, . . . , D, are the current and old previous

iteration solutions. In our simulations and real data applications, we observed that the

algorithm usually converged within 4 ∼ 7 iterations. Algorithm 1 gives an outline of our

proposed methods.

The optimization problems depend on tuning parameters τd, which need to be chosen. We
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1 Input: training data (Xd,y); tuning parameters τd, d = 1, . . . , D; edge matrix, Ed

and edge weight, W d (for SIDANet)

. τD = 0 if covariates (D-th view) available

2 Output: estimated sparse discriminant vectors Γ̂
d
.

3 Initialize: Γd, d = 1, . . . , D .

. Use random orthonormal matrices or solution from classical LDA

4 repeat

5 for d = 1, . . . , D do

6 Fix Γ̃
d

and Λ̃d.

. Use solutions from generalized eigenvalue systems (equation 5)

7

8 Solve

min
Γd
P(Γd) s.t ‖(c1Md + c1MdT + c2N̄dj + c2N̄T

dj)Γ̃
d − Λ̃dΓd‖∞ 6 τd

. P(Γd) is defined in equation (6) for SIDA and (9) for SIDANet in main text.

9 end

10 until convergence

Algorithm 1: Algorithm for obtaining sparse (and network-constrained) integrative

discriminant vectors for multi-view data.

fix w = 0.5 to provide equal weight on separation and association. Without loss of generality,

assume theD-th (last) view is the covariates, if available. We fix τD = 0 and select the optimal

tuning parameters for the other views from a range of tuning parameters. Note that searching

the tuning parameters hyperspace can be computationally intensive. For instance, if there are

two views (excluding covariates) each having 10 grid points, then one needs to search a 10×10

grid space, representing 100 grid values to choose the optimal combination. For d = 1, .., D−1,

we need to search a large hyperparameter space [(G1×G2×· · ·×GD−1) grid values assuming

Gd is the number of grid points for the d-th view]. This obviously is computationally taxing.

To overcome this computational bottleneck, we follow ideas in Bergstra and Bengio (2012)
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and randomly select some grid points (from the entire grid space) to search for the optimal

tuning parameters; we term this approach random search. This technique has been shown to

yield good results (Bergstra and Bengio, 2012) when compared to searching the entire space

(grid search). In fact, our own simulations with random search produced satisfactory results

when compared to grid search. A detailed comparison of random search and grid search in

terms of error rates, estimated correlations, variables selected, and computational time is

found here and in the main text.

We provide upper and lower bounds for τd. Let d = 1. Note that τ1 > ‖(c1M1 + c1M1T

+

c2N̄1j + c2N̄ T

1j)‖∞ results in trivial solution vectors, i.e., Γ̂
1

= 0. Hence, we set the upper

bound for τ1 as τ1 max = ‖(c1M1 + c1M1T

+ c2N̄1j + c2N̄ T

1j)‖∞. Similar results hold for the

other views. Instead of using a lower bound of 0, we use a lower bound dependent on the

dimensions of each view (specifically τdmin = (
√

log pd/n) · τdmax) to encourage sparsity. We

choose the optimal tuning parameters from the range of tuning parameters using K-fold

cross validation (K = 5 in our simulations and real data applications) to minimize average

classification error.

An ideal situation is to select the τ and η that result in sparse estimates leading to optimal

separation and association given a fixed data. But overlaying the η selection on top of that

of τ will result in another layer of complexity. Our simulations comparing RV coefficients

using true and estimated discriminant vectors show that the optimal tuning parameters τ

(with η = 0.5) are been selected to produce reasonable association or correlation between

views. Please refer to Table 2 for these results.

[Table 2 here]

Our classification approach is found in Section 8.
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8. Using SIDA and SIDANet for classification

Once the SIDA or SIDANet discriminant functions have been obtained, one can make future

class assignments by either 1) pooling the discriminant scores for each view Xd, d = 1 . . . D,

or 2) using individual discriminant scores from each view. The latter option, which we

term separate class assignment, is appealing if for some reasons some of the views are not

available for future observations. In such instances, future class assignments can be carried

out using the discriminant functions for available views. In either the pooled or separate

class assignments, we use nearest centroid for classification.

The discriminant scores are defined to be Ud = XdΓ̂
d
, d = 1, ..., D, where Γ̃

d
is a pd×(K−1)

matrix of basis vectors obtained from SIDA or SIDANet. Let zd = (zd1 , ..., z
d
p)

T be the available

measurement for a new (future) observation for the d-th view. Consider projecting these

future observations onto the estimated discriminant vectors Γ̂
d

for the d-th view (i.e., vd =

zdTΓ̂
d
) and concatenating the scores for all d views; i.e v = [z1TΓ̂

1
, z2TΓ̂

2
, · · · , zDT

Γ̂
D

]T ∈

<D(K−1). For pooled class assignment, we assign z = [z1, · · · , zD] to class k if the distance

from v to ûk is minimum, that is,

min
k
‖v − ûk‖2, k = 1, ..., K

where ûT

k ∈ <D(K−1) is the pooled mean for class k obtained from the pooled scores U =

[U1, · · · ,UD] ∈ <D(K−1). For separate class assignments, we assign zd to the population

whose class mean is closest to vd, i.e.,

min
k
‖vd − ûdk‖2, k = 1, ..., K, d = 1, · · · , D

9. Time Comparisons

We compare the run times of random and grid search. We consider a K = 3 class and

D = 2 views problem and simulate data according to Scenario One in the main text when

no prior information exists. In grid search, we choose tuning parameters over a 8 × 8 grid
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(or 64 grid points). Random search randomly selects 15% of the grid points to optimize. We

compare run times for N < p and N > p, and when the cross validation task for choosing

optimal tuning parameters is executed in parallel (using 4 workers) or not. All comparisons

are carried out with the Matlab codes for SIDA on an Intel (R) Core (TM) i7-7700 3.60

GHz processor. Table 3 gives timings in minutes averaged over three runs. We observe that

random search is considerably faster than grid search. SIDA with random search, with or

without parallelization is faster than JACA especially when N < p.

[Table 3 here]

10. Simulation Results

In our simulations and real data applications, for two views (excluding covariates), we set 8

grid points each, and randomly select 20% of the grid values in the hyperparameter space to

optimize. For d > 2, we set the number of grid points to 5, and randomly select 15% of the grid

values in the hyperparameter space to optimize. Figure 1 is a visual representation of random

data projected onto the true integrative discriminant vectors for different combinations of c,

p1 and p2. In the top panel, (ρ1 = 0.9, ρ2 = 0.7, c = 0.5). In the middle panel, (ρ1 = 0.4, ρ2 =

0.2, c = 0.2). In the bottom panel, (ρ1 = 0.15, ρ2 = 0.05, c = 0.12).

[Figure 1 about here.]

10.1 Scenario One, degree of separation varies between the two views

We consider a setting similar to Setting 1 in Scenario One, but we allow the degree of

separation to vary between the two views. Here, the first column of A1 ∈ <p×2 is set to

(c1110,0p−10); the second column is set to (010,−c1110,0p−20). The first column of A2 ∈ <p×2

is set to (c2110,0p−10); the second column is set to (010,−c2110,0p−20). We fix c1 = 0.7 and
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c2 = 0.2, 0.8.

[Table 4 here]

10.2 Scenario Two (Binary class, equal covariance within class):

We consider a D = 2 high-dimensional and K = 2 class problem. The covariance matrices

for each class follow Scenario One. The mean matrices follow Scenario One in the main text

but with this exception: A1 ∈ <p is set to (c120,0p−20). A2 is defined similarly. As before,

we vary c to assess separation between the two classes.

[Table 5 here]

10.3 Scenario Three (Multi-class, unequal covariance within class)

In Scenario One (main text) we considered an example where the LDA assumption holds,

i.e., the within-class covariance is the same for each class. In this setting, we relax this

assumption. The covariance matrices for the three classes within X1 and X2 are each given

as follows: for class 1, the covariance matrix has the same form as in Model 1; for class

2, the covariance matrix has entries σij = 0.6|i−j|; for class 3, the covariance matrix is the

identity matrix, I(p or q). Table 6 show results of our method compared to the other methods

considered.

[Table 6 here]

10.4 Scenario Four (Binary class with covariates, degree of separation varies)

We consider a simulation scenario with covariates and two other views where the classes are

well separated in the covariates data. We assess the performance of the methods when we

integrate the two views, and when we integrate all three views (including covariates). For the

proposed method, SIDA, we also consider the situation where we regularize the coefficients

of the covariates (i.e., we select covariates) to evaluate whether our proposal to not regularize

the coefficients of covariates (Remark 3) is reasonable.
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The first view X1 is genetic (single nucleotide polymorphisms [SNPs]) data from the

Emory Predictive Health Institute. We began with about 8.2 million imputed SNPs, and

we extracted SNPs in genes belonging to the immune regulation pathway; this pathway is

suggested to play a role in cardiovascular disease risk. After preprocessing, there remained

225,182 genetic variants (see Figure 11.2) and we randomly selected 15% of these SNPs for

view 1; there were 2,925 genetic variants and 567 samples. The genetic data are coded 0, 1, 2,

where 0 is homozygous normal, 1 is heterozygous with 1 risk allele and 1 normal allele, and 2

is homozygous risk (minor allele in our data). We obtained class membership comprising of

two groups as follows. We randomly selected twenty SNPs and summed the number of alleles.

Samples with total alleles < 10 were in Class 1, and those with alleles > 10 were in Class

2. The proportions of 1’s and 2’s were 55.73% and 44.27% respectively. The second view X2

was set to X2 = 5X1 + E, where each element in the error term E was drawn from a normal

distribution with mean 0 and variance 1. By this, X1 and X2 are correlated. The third view

X3 comprised of 5 variables representing covariates. Data for covariates were generated to

fall within the range of 5 continuous variables in our real data: age (40-78 years), systolic

blood pressure (83 - 171 mmHg), low-density lipoprotein (14 - 219 mg/dL), body mass index

(17.9- 45 kg/m2), and triglycerides (31- 330 mg/dL). We allowed for different class means

so that the classes were well separated in this view. Samples with values below the normal

ranges were assigned to class 1 and samples with values on or above the normal ranges were

assigned to class 2. For the age variable, samples with age below 60 were assigned to Class

1. Denote this data by X3∗. Finally, we let each covariate to have moderate association with

one SNP from the 20 SNPs used to construct the two classes. Specifically, we set as our final

covariates data: X3 = X3∗+ 10X1∗ where X1∗ is a data matrix of 5 SNPs. Twenty bootstrap

training datasets where generated and each method was trained using the training sets. The

out-of-bag samples (testing sets) were used to evaluate the performance of each method.
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Table 7 shows results of our method compared to the other methods considered. Of note

we did not compare with sCCA since the method is applicable to two views, but we have

three views in this example. Further, MGSDA (stack) did not select any variable out of all

20 bootstrap datasets. We first compare methods when we integrate X1 and X2, and when

we integrate all three views (i.e., add covariates). We note that the misclassification rates

of all methods are considerably lower and even more so for SIDA when we add covariates.

This is not surprising since in this example, the data are simulated such that the classes

are well-separated in the covariates data, thus improving the performance when all views

are integrated. This goes to suggest that if clinical covariates are available, they may help

improve classification accuracy. Compared to JACA, SIDA had lower error rates and a higher

correlations. When we did regularize the coefficients of the covariates, the error rate was

somewhat higher than when we did not regularize; but this was lower than that of JACA.

This suggests that in some applications, it is enough to add covariates to guide the selection

of variables and estimation of discriminant vectors, and not regularize their coefficients. Our

proposed methods give users this option. In terms of variable selectivity, we selected fewer

variables compared to JACA, and still achieved lower error rates and higher or comparable

correlation estimates.

[Figure 2 about here.]

[Table 7 here]

[Table 8 here]

11. Real Data Analysis

Data preprocessing: The gene expressions data consist of 38, 694 probes, and the metabolomics

data consist of ∼ 6, 000 mass to ion (m/z) features. We preprocess and preselect genes as
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follows. We remove probes with gene names not found in KEGG database. We also remove

probes with variance and entropy expression values that are respectively less than the 90th

and 20th percentile, resulting in 1, 658 genes. For the metabolomics data, we removed m/z

features with at least 50% zeros, and features with coefficient of variation > 50%; this resulted

in 2,416 features for the analyses. Because of the skewed distributions of most metabolomic

levels, we log2 transformed each feature.

Genes and m/z features selected by methods: Tables 9, 10 and 11 give the genes and

m/z features selected by the proposed and competing methods in at least 60% (12 times)

of the 20 resampled datasets. SIDANet and JACA selected 28 and 45 genes respectively,

of which 17 overlap; 6 m/z features overlapped between SIDANet and JACA. Additionally,

all genes identified by SIDA were also selected by SIDANet; there were 6 overlapping m/z

features selected by SIDA and SIDANet. sLDA (Ens) and sLDA (Stack) did not identify any

gene and m/z feature.

We also used ToppGene Suite (Chen et al., 2009) to investigate the biological relationships

of these “stable” genes. These genes were taken as input in ToppGene online tools for pathway

enrichment analysis. The pathways that are significantly enriched (Bonferonni p-value <=

0.05) in the 28 genes selected by SIDANet are listed in Table 12.

[Table 9 here]

[Table 10 here]

[Table 11 here]

[Table 12 here]
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11.1 Genes or m/z features from SIDA and SIDANet plus established risk factors predict

ASCVD better

: Our aim here is to assess whether including the genes and/or m/z features identified by our

methods is any better than a model with only age and gender. Given the sample size of 71

in each of the 20 testing resampled datasets, we can only include a few variables to increase

power of detecting differences in low vs high-risk ASCVD. We include the demographic

variables age and gender in model one (M1). In model two we further include a risk score

calculated with the genes or m/z features identified by the methods using the testing datasets.

Specifically, we run a logistic regression model on the training data to obtain effect sizes

(logarithm of the odds ratio of the probability that ASCVD risk group is high) for each

gene or m/z feature. The genetic risk score (GRS) or metabolomic risk score (MRS) are

each obtained as a sum of the genes or m/z features in the testing data set, weighted by

the effect sizes. In Model 3 (M3), we include both GRS and MRS. We summarize the area

under the curves (AUCs) from the receiver operating characteristic in Table 16. We observe

that including genes and/or m/z features identified by our methods to a model with age and

gender results in better discrimination of the ASCVD risk groups compared to association

or classification-based methods, and when compared to a model with only age and gender.

By integrating gene expression and m/z features and simultaneously discriminating ASCVD

risk group, we have identified biomarkers that potentially may be used to predict ASCVD

risk, in addition to a few established ASCVD risk factors.

[Table 16 here]

11.2 Comparison of Genes and m/z features selected by SIDA and SIDANet for both

random and grid search

We compare genes and m/z features identified by SIDA and SIDANet using both random

search and grid search for tuning parameter optimizations. Table ?? gives the average error
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rate on the testing data, average estimated correlation on the training data, and average

number of genes and m/z features. Averages are over 20 resampled datasets. SIDA with

random search and grid search yield similar error rates, and estimated correlations. This is

also true for SIDANet. Table 13 gives variable stability results using the criteria discussed

in the main text. Seven genes and five m/z features overlap between SIDA with random and

grid search (Table 14). Comparing SIDANet (RS) with SIDANet (GS), 22 genes identified by

SIDANet (GS) are also identified by SIDANet (RS) [Table 14]. The m/z features identified

by SIDANet (GS) are contained in those selected by SIDANet (RS) [ Table 15]. Table 16

compares the AUC’s for the three models under consideration. The results are similar for

both RS and GS. These findings suggest that we can choose optimal tuning parameters at

a lower computational cost (see Table 3) by randomly selecting grid points from the entire

tuning parameter hyperspace and searching over those grid values (instead of searching over

the entire grid space) and still achieve competitive performance. In our algorithm, the default

method to obtain optimal tuning parameter is random search. However, we make it as an

option for the interested user to choose tuning parameters using grid search.

[Table 13 here]

[Table 14 here]

[Table 15 here]
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Figure 1. Projection of random data simulated from Scenario One onto true integrative
discriminant direction vectors. Top panel: good separation of classes, and strong association
between views. Middle pane: moderate separation and moderate association. Bottom panel:
weak separation and weak association.
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Figure 2. Genetic data preprocessing criteria.
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Property/ Classification- Association- JACA CCA- SIDA SIDANet
Method Based Based Regression

Association X X X X X
Classification X X X* X X
Variable Selection X X X X X X
Smoothness X X X
Covariates X X

Table 1
Unique features of SIDA and SIDANet compared to other methods. *CCA-regression is not applicable when there are

more than two classes.
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Equal Class Variance Binary Class Unequal Class Variance
Method S1 S2 S3 S1 S2 S3 S1 S2 S3

True 0.99 0.63 0.16 0.97 0.46 0.11 0.97 0.42 0.10
SIDA (RS) 0.99 0.58 0.14 0.91 0.37 0.09 0.97 0.40 0.03

Table 2
Comparison of test RV coefficients from using true and estimated discriminant vectors. In most situations, the

estimated RV coefficients are comparable to the truth.
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SIDA (RS, P) SIDA (GS, P) SIDA (RS, NP) SIDA (GS, NP) JACA
(N , p/q)
(240, 200/200) 1.49 6.80 8.43 39.79 1.31
(240, 2000/2000) 3.39 13.32 12.90 61.51 22.31
(1000, 200/200) 1.36 6.52 10.24 35.00 3.22
(1000, 2000/2000) 5.61 26.35 12.81 66.31 69.53

Table 3
Timings (in minutes). Average time for five fold cross-validation. RS and GS denote random and grid search

respectively. P is parallel computing (4 workers), and NP is no parallel computing. N is the sample size, and p/q are
the dimensions for the two views of data.



Supporting Information for Sparse Linear Discriminant Analysis for Multi-view Structured Data 23

Method Error (%) ρ̂ TPR-1 TPR-2 FPR-1 FPR-2 F-1 F-2
(ρ1 = 0.9, ρ2 = 0.7, c1 = 0.5, c2 = 0.2)
SIDA (RS) 0.77 0.97 100.00 100.00 0.02 0.06 99.08 98.08
SIDA (GS) 0.76 0.97 100.00 100.00 0.02 0.06 99.08 98.08
sCCA 1.75 0.98 100.00 100.00 0.11 0.02 96.09 99.21
JACA 1.25 0.96 100.00 100.00 1.89 7.50 57.15 22.37
MGSDA (Stack) 0.82 0.00 30.00 0.00 0.04 0.03 41.99 -*
MGSDA (Ens) 2.10 0.94 28.75 33.50 0.12 0.02 39.41 48.68

(ρ1 = 0.9, ρ2 = 0.7, c1 = 0.5, c2 = 0.8)
SIDA (RS) 0.00 0.99 100.00 100.00 0.00 0.00 100.00 100.00
SIDA (GS) 0.00 0.99 100.00 100.00 0.00 0.00 100.00 100.00
sCCA 0.00 0.99 100.00 100.00 0.03 0.02 98.72 99.07
JACA 0.00 0.93 100.00 100.00 7.52 3.19 22.25 42.38
MGSDA (Stack) 0.00 0.86 0.50 11.25 0.00 0.00 9.52 20.16
MGSDA (Ens) 0.04 0.96 13.25 11.25 0.00 0.00 23.25 20.16

Table 4
Scenario One: Multi-class, equal covariance within class. RS; randomly select tuning parameters space to search.

GS; search entire tuning parameters space. MGSDA (Ens) applies sparse LDA method on separate views and peform
classification on the pooled discriminant vectors. MGSDA (Stack) applies sparse LDA on stacked views. TPR-1;

true positive rate for X1. Similar for TPR-2. FPR; false positive rate for X2. Similar for FPR-2; F-1 is F-measure
for X1. Similar for F-2. ρ1 and ρ2 controls the strength of association between X1 and X2. c1 and c2 control the

between-class variability in views 1 and 2 respectively. *MGSDA (Stack) had 0 TPR for the second dataset, which
results in a division by zero in the definition of F-2.
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Method Error (%) ρ̂ TPR-1 TPR-2 FPR-1 FPR-2 F-1 F-2
(ρ1 = 0.9, ρ2 = 0.7, c = 0.25)
SIDA (RS) 0.77 0.91 100.00 81.50 0.13 0.00 96.14 89.01
SIDA (GS) 0.83 0.90 99.50 71.50 0.13 0.00 95.84 82.21
sCCA 1.08 0.96 97.75 100.00 0.06 0.01 96.41 100.00
JACA 0.95 0.96 100.00 100.00 0.34 0.35 89.14 89.46
MGSDA (Stack) 1.78 0.83 17.25 17.25 0.02 0.01 39.57 27.87
MGSDA (Ens) 1.36 0.87 34.00 25.00 0.01 0.02 49.23 37.18

(ρ1 = 0.4, ρ2 = 0.2, c = 0.2)
SIDA (RS) 9.19 0.37 58.00 57.00 1.39 0.68 56.46 59.50
SIDA (GS) 9.28 0.37 60.75 58.75 1.55 1.38 51.75 56.80
sCCA 9.81 0.37 56.75 60.75 0.00 0.01 71.35 73.53
JACA 9.97 0.40 74.50 79.00 2.95 2.56 40.85 47.27
MGSDA (Stack) 10.75 0.32 18.00 17.25 0.13 0.12 27.00 25.88
MGSDA (Ens) 12.95 0.34 21.00 23.50 0.10 0.23 31.34 31.66

(ρ1 = 0.15, ρ2 = 0.05, c = 0.12)
SIDA (RS) 23.83 0.09 50.00 49.00 1.87 3.75 47.25 33.09
SIDA (GS) 23.38 0.09 51.00 50.25 2.63 3.14 41.21 38.00
sCCA 27.69 0.07 37.50 41.50 5.30 0.07 49.75 58.54
JACA 22.63 0.10 43.00 42.50 0.38 0.16 52.12 54.36
MGSDA (Stack) 24.77 0.08 13.00 10.75 0.12 0.12 21.15 18.04
MGSDA (Ens) 26.95 0.08 13.00 10.75 0.35 0.14 18.28 17.43

Table 5
Scenario Two: Binary class, equal covariance within class. RS; randomly select tuning parameters space to search.

GS; search entire tuning parameters space. MGSDA (Ens) applies sparse LDA method on separate views and peform
classification on the pooled discriminant vectors. MGSDA (Stack) applies sparse LDA on stacked views. TPR-1;

true positive rate for X1. Similar for TPR-2. FPR; false positive rate for X2. Similar for FPR-2; F-1 is F-measure
for X1. Similar for F-2. ρ1 and ρ2 controls the strength of association between X1 and X2. c controls the

between-class variability within each view.
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Method Error (%) ρ̂ TPR-1 TPR-2 FPR-1 FPR-2 F-1 F-2
(ρ1 = 0.9, ρ2 = 0.7, c = 0.5)
SIDA (RS) 2.16 0.97 83.75 87.17 0.19 0.03 85.40 92.06
SIDA (GS) 2.25 0.97 84.38 87.17 0.20 0.03 85.64 92.06
sCCA 3.61 0.96 83.54 88.04 1.28 6.23 60.72 52.73
JACA 2.08 0.98 83.96 87.61 1.73 1.91 56.06 54.12
MGSDA (Stack) 2.59 0.83 33.75 31.09 0.01 0.02 49.04 45.97
MGSDA (Ens) 3.31 0.93 46.25 45.87 0.09 0.08 59.25 59.33
(ρ1 = 0.4, ρ2 = 0.2, c = 0.2)
SIDA (RS) 22.80 0.40 85.45 82.95 0.17 0.18 85.64 85.60
SIDA (GS) 22.32 0.40 88.18 87.27 1.09 1.03 74.25 74.37
sCCA 28.49 0.49 84.77 85.68 1.49 1.28 59.31 60.43
JACA 20.77 0.49 91.14 91.14 1.01 0.95 72.83 74.24
MGSDA (Stack) 25.55 0.34 47.95 45.91 0.07 0.11 61.50 58.65
MGSDA (Ens) 27.97 0.39 57.73 57.73 0.18 0.39 66.36 62.03
(ρ1 = 0.15, ρ2 = 0.05, c = 0.12)
SIDA (RS) 48.84 0.03 31.82 44.29 0.59 2.29 33.79 33.28
SIDA (GS) 47.69 0.03 30.45 44.76 0.49 1.72 34.02 34.40
sCCA 50.02 0.03 29.55 42.14 0.47 1.31 33.19 36.54
JACA 40.42 0.07 63.64 66.67 1.03 0.95 56.00 55.51
MGSDA (Stack) 47.72 0.03 22.50 25.48 0.37 0.41 30.77 33.18
MGSDA (Ens) 49.77 0.04 26.36 34.05 0.74 1.13 32.70 36.17

Table 6
Scenario Three: We assume unequal covariances in each class. This violates the LDA assumption. RS; randomly

select tuning parameters space to search. GS; search entire tuning parameters space. MGSDA (Ens) applies sparse
LDA method on separate views and perform classification on the pooled discriminant vectors. MGSDA (Stack)

applies sparse LDA on stacked views. TPR-1; true positive rate for X1. Similar for TPR-2. FPR; false positive rate
for X2. Similar for FPR-2; F-1 is F-measure for X1. Similar for F-2. ρ1 and ρ2 control the strength of association

between X1 and X2. c controls the between-class variability within each view.
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Method Error (%) ρ̂ average # of variables selected
View 1 View 2 View 1 (20 SNPs) View 2 (20 SNPs)

SIDA(RS) 0.43 0.40 13.40 18.10 9.25 8.10
SIDA(RS)∗ 0.49 0.36 20.00 15.85 7.30 6.75
SIDA(RS)+ 29.19 0.43 323.25 95.35 16.95 11.30
SIDA(GS) 0.31 0.36 7.50 8.35 6.350 5.25
SIDA(GS)∗ 0.52 0.36 21.45 14.00 8.70 6.20
SIDA(GS)+ 29.82 0.41 349.05 130.35 16.80 11.40
JACA 7.15 0.24 1544.85 1561.20 19.35 19.30
JACA+ 33.45 0.64 1853 1863.40 19.65 19.45

Table 7
Scenario Four: Simulation setting with covariates and different separation of classes within views. sCCA is

applicable to two views but we have three views in this example. View 1 (20 SNPs) denote the average number of
SNPs selected in View 1 from the twenty genetic variants that was used to construct the two classes. Similarly for

View 2 (20 SNPs). ∗ denotes results when we regularize the coefficients of View 3. + is the result when we integrate
two views without the covariates.
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Method Error (%) ρ̂ average # of variables selected
View 1 View 2 View 1 (20 SNPs) View 2 (20 SNPs)

SIDA(RS) 0.31 0.40 14.40 15.85 9.10 7.75
SIDA(RS)∗ 0.45 0.36 21.65 17.20 7.70 7.15
SIDA(RS)+ 29.27 0.31 332.85 93.30 16.55 10.60
SIDA(GS) 0.28 0.36 8.10 6.90 6.40 5.10
SIDA(GS)∗ 0.38 0.36 19.65 15.55 8.30 6.80
SIDA(GS)+ 28.30 0.37 262.15 124.40 16.60 11.85
JACA 7.15 0.24 1544.85 1561.20 19.35 19.30
JACA+ 33.45 0.64 1853.00 1863.40 19.65 19.45

Table 8
Scenario Four: Simulation setting with covariates and different separation of classes within views. We use Sbdj in
the association part of equation (1) instead of Sdj, d, j = 1, 2, 3, d 6= j. sCCA is applicable to two views but we have

three views in this example. View 1 (20 SNPs) denote the average number of SNPs selected in View 1 from the
twenty genetic variants that was used to construct the two classes. Similarly for View 2 (20 SNPs). ∗ denotes results

when we regularize the coefficients of View 3. + is the result when we integrate two views without the covariates.
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# Genes #m/z features
SIDA 7 7
SIDANet 28 7
sCCA 1 185
JACA 45 20
sLDA (Ens) 0 0
sLDA (Stack) 0 0

Table 9
Genes and m/z feature selected at least 60% (12 times out of 20 resampled datasets).
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Method Genes selected

SIDA CIRBP CLEC1BH4C8 MAGEB4 RASEF SCGB1C1 TNS2

SIDANet ABHD3 TSPOAP1 CBS CIRBP CLEC1B EMP2 FCER1A FCER1G GJA9 GLYAT

GNAI1 GNAQ H3F3A H2BC5 H4C8 HMBOX1 IRX3 MAGEB4 NEURL2 NPVF

RASEF RGS18 SCGB1C1 SCUBE1 TNS2 ALKAL1 YPEL5 ZNF667

JACA ABHD3 ADAD2 ALKBH8 ANKLE1 ARG1 TSPOAP1 CIRBP CLCN3 CYP17A1 ACKR1

DEFB127 DNAJB14 ERV3-1 FCER1G FPR2 GLYAT GNAI1 H3F3A HBE1 H2BC5

H4C8 HLA-DRB4 HMBOX1 KCTD20 LOC402634 LRRC6 MAGEB4 NEURL2 OR2T29 PAIP2

PDGFRB POLR2J PTGS2 RASEF RPA1 SCGB1C1 SCUBE1 SEMA3E SIGLEC16 TNS2

TMEM190 TMEM40 TRAF4 VGF YPEL5

sLDA(Ens) -

sLDA(Stack) -

Table 10
Genes feature selected at least 60% (12 times out of 20 resampled datasets). There are six overlapping genes between

SIDA and SIDANet.
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Method m/z features (retention times) selected

SIDA 168.9045( 73.1430) 212.9862 (373.9647) 216.9397( 134.2085) 228.8127 (98.0079) 250.1187 (30.9802)

542.3191 (572.5522) 756.7378 (64.1087)

SIDANet 168.9045 (73.1430) 216.9397 (134.2085) 250.1187 (30.9802) 542.3191 (572.5522) 754.4435 (42.6461)

756.7378 (64.1087)

JACA 87.1004 (104.4254) 102.0666 (140.1219) 131.5336 (209.9927) 140.9912 (30.7790) 146.0601 (117.5612)

168.9045 (73.1430) 201.9908 (131.3211) 212.9862 (373.9647) 216.9397 (134.2085) 250.1187 (30.9802)

282.1301 (574.5190) 283.2631 (31.3793) 317.1609 (20.8866) 342.3191 (37.0602) 363.0753 (516.8183)

604.7894 (61.5482) 652.6285 (67.6081) 682.3266 (52.4711) 754.4435 (42.6461) 1071.7809 (54.6874)

sLDA(Ens) -

sLDA(Stack) -

Table 11
m/z features (retention times) selected at least 60% (12 times out of 20 resampled datasets). There are six

overlapping features between SIDA and SIDANet.
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ID Pathway Database p-value Bonferonni Genes in list

q-value

SIDANet

1144995 Sphingolipid signaling pathway KEGG 2.08E-05 6.71E-03 GNAI1,GNAQ,FCER1A,FCER1G

1269659 RNA Polymerase I Promoter Opening REACTOME 9.86E-05 3.19E-02 H2BC5,H3-3A,H4C8

1269740 DNA methylation REACTOME 1.08E-04 3.49E-02 H2BC5,H3-3A,H4C8

585563 Alcoholism KEGG 1.08E-04 3.50E-02 H2BC5,H3-3A,GNAI1,H4C8

1269513 Activated PKN1 stimulates transcription

of AR (androgen receptor) regulated

genes KLK2 and KLK3 REACTOME 1.18E-04 3.82E-02 H2BC5,H3-3A,H4C8

1269738 SIRT1 negatively regulates rRNA Expression REACTOME 1.29E-04 4.16E-02 H2BC5,H3-3A,H4C8

JACA

137937 S1P1 pathway Pathway Interaction 1.116E-5 6.862E-3 GNAI1, PDGFRB, PTGS2

1269866 Meiotic recombination REACTOME 4.300E-5 2.644E-2 H2BC5, H3-3A, RPA1, H4C8

Table 12
Pathway enrichment analysis of “stable” genes using ToppGene Suite. SIDANet used Random Search for optimal

tuning parameters.
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# Genes # m/z features
SIDA (RS) 7 7
SIDA (GS) 17 6
SIDANet (RS) 28 7
SIDANet (GS) 32 4

Table 13
Genes and m/z feature selected at least 60% (12 times out of 20 resampled datasets).
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Method Genes selected

SIDA (RS) CIRBP CLEC1B H4C8 MAGEB4 RASEF SCGB1C1 TNS2

SIDA (GS) ABHD3 TSPOAP1 CBS CIRBP CLEC1B EMP2 H4C8 HMBOX1 IRX3

MAGEB4 NEURL2 RASEF RGS18 SCGB1C1 SCUBE1 TNS2 YPEL5

SIDANet (RS) ABHD3 TSPOAP1 CBS CIRBP CLEC1B EMP2 FCER1A FCER1G GJA9

GLYAT GNAI1 GNAQ H3F3A H2BC5 H4C8 HMBOX1 IRX3 MAGEB4 NEURL2

NPVF RASEF RGS18 SCGB1C1 SCUBE1 TNS2 ALKAL1 YPEL5 ZNF667

SIDANet (GS) ABHD3 AICDA TSPOAP1 CBS CIRBP CLCN3 CLEC1B CYP17A1 DEFB127

EMP2 ERV3-1 GNAI1 GNAQ H3F3A HELB H2BC5 H4C8 HMBOX1

IRX3 JAG2 MAGEB4 NEURL2 RASEF RGS18 RPA1 SCGB1C1 SCUBE1

TNS2 TIMELESS ALKAL1 VGF YPEL5

Table 14
Genes feature selected at least 60% (12 times out of 20 resampled datasets). There are overlapping genes.
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Method m/z features (retention times) selected

SIDA (RS) 168.9045( 73.1430) 212.9862 (373.9647) 216.9397( 134.2085) 228.8127 (98.0079) 250.1187 (30.9802)

542.3191 (572.5522) 754.4435 (42.6461) 756.7378

SIDA (GS) 168.9045( 73.1430) 216.9397( 134.2085) 228.8127 (98.0079) 250.1187 (30.9802)

754.4435 (42.6461) 756.7378 (64.1087)

SIDANet (RS) 168.9045 (73.1430) 212.9862 (373.9647) 216.9397 (134.2085) 250.1187 (30.9802) 342.3191 (37.0602)

542.3191 (572.5522) 754.4435 (42.6461)

SIDANet (GS) 168.9045 (73.1430) 216.9397 (134.2085) 250.1187 (30.9802) 754.4435 (42.6461)

Table 15
m/z features (retention times) selected at least 60% (12 times out of 20 resampled datasets). There are overlapping

features between SIDA (RS) and SIDA (GS).
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minimum mean median maximum
M1 0.71 0.80 0.81 0.89

M2: M1 + GRS
SIDA (RS) 0.82 0.89 0.90 0.94
SIDA (GS) 0.86 0.93 0.93 0.99
SIDANet (RS) 0.86 0.94 0.94 0.98
SIDANet (GS) 0.86 0.94 0.94 0.98

M3: M1 + MRS
SIDA (RS) 0.79 0.85 0.84 0.91
SIDA (GS) 0.79 0.85 0.85 0.92
SIDANet (RS) 0.81 0.87 0.87 0.94
SIDANet (GS) 0.81 0.87 0.86 0.95

M4: M1 + GRS + MRS
SIDA (RS) 0.84 0.91 0.91 0.95
SIDA (GS) 0.89 0.94 0.93 0.99
SIDANet (RS) 0.89 0.95 0.95 1.00
SIDANet (GS) 0.87 0.94 0.94 0.99

Table 16
Comparison of AUCs using genes and m/z features identified: Model 1 (M1): Age + gender; Model 2 (M2): Age +
gender + gene risk score (GRS); Model 3 (M3): Age + gender+ metabolomic risk score (MRS). Model 4 (M4): age
+ gender + metabolomic risk score + gene risk score. The genes and m/z features identified by the methods on the

training datasets are used to calculate GRS and MRS.


