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1. General Statements

On behalf of the authors, I'd like to thank the Review Commons team for sending our
manuscript out for review. I'd also like to thank the three anonymous reviewers for providing
valuable feedback that will improve the clarity, focus, and analysis interpretation presented in
our manuscript.

To prompt the editorial team, our paper provides two well-controlled innovations:

1. We are the first to train variational autoencoders (VAEs) on classical image features
extracted from Cell Painting images.

VAEs are commonplace in, and have contributed major discoveries to, other biomedical
data types (e.g. transcriptomics), but they have been underexplored in morphology data.
In our paper, we trained and optimized three different VAE variants using Cell Painting
readouts and compared these variants against shuffled data, against PCA (a nonlinear
dimensionality reduction algorithm commonly used as a VAE control), and against L1000
(mRNA) readouts from the same perturbations. We found that cell morphology VAEs
train with different settings than gene expression data, and that they generate
interpretable latent spaces that depend on the chosen VAE variant.

2. We tested special VAE propetrties to predict polypharmacology cell states in a novel way.

Polypharmacology is a major reason why drugs fail to reach the bedside. Off-target
effects cause unintended toxicity, and lead to adverse clinical events. In our paper, we
used VAE latent space arithmetic (LSA) to predict polypharmacology cell states; in other
words, what cells might look like if we perturbed them with a compound that had two
mechanisms of action (MOA). We compared our results to shuffled data, PCA, and to
LSA performed with VAEs trained using L1000 readouts. We found that cell morphology
and gene expression provide complementary information, and that we could predict
some polypharmacology cell states robustly, while others were more difficult to predict.

We found value in all of the reviewer comments. We intend to conduct all but four of the
proposed analyses to supplement our aforementioned innovations.

In the following revision plan, we include all reviewer comments exactly as they were written.
The reviewers often had overlapping suggestions. In these cases, we grouped together similar
reviewer comments and responded to them once.
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We include three sections: 1) A description of the revisions we plan to conduct in the near
future; 2) A description of changes we have already made; and 3) A description and rationale of
changes we will not pursue.

Lastly, we would like to highlight that all reviewers provided positive feedback in their reviews.
They discussed our paper as “conceptually and technically unique” and were positive about our
methods section, stating that we did a “good job making everything available and reproducible”.
Our methods section is complete, and we provide a fully reproducible and versioned github
repository. We will release a second version of our github repository when we complete our
revision plan to maintain clarity for our submitted version and the peer-reviewed version.

2. Description of the planned revisions

2.1. Address UMAP interpretability to provide a deeper description of MOA performance

Reviewer 1: Instead of using UMAP embedding, it would be better to compare reconstruction
error or show a reconstructed image with the original image to claim that models reliably
approximate the underlying morphology data.

Reviewer 1: Rather than just stating that the VAE's did not span the original data distribution
and saying beta-VAE performed best by eye, some simple metrics can be drawn to analyze the
overlap in data for a more direct and quantified comparison. Researchers should also explain
what part of the data is not being captured here. Some analysis of what the original uncaptured
UMAP represents is important in understanding the limitations of the VAEs' capacity.

Reviewer 2: The authors compare generation performance based on UMAP. In the UMAP
space, data tend to cluster together even though they might be far from each other in the
feature space. | would like to see more quantitive metrics on how well these methods capture
morphology distributions. You can compute metrics like MMD distance, kullback leibler (KL),
earthmoving distance, or a simple classifier trained on actual MoA classes tested on generated
data.

We agree with the reviewers that evaluating reconstruction loss in addition to providing the
UMAP coordinates would improve understanding of VAE limitations and enable a better
comparison of VAE performance. We will analyze reconstruction loss across models and include
these data as a new supplementary figure, which will enable direct comparisons across models
and across different MOAs.

We also agree that UMAP interpretation can be misleading. While currently state-of-the-art,
UMAP has mathematical limitations that prevent interpretation of global data structures.
However, there are emerging tools, including a new dimensionality reduction algorithm, called
PaCMAP, which aims to preserve both local and global structure (Wang et al, 2021). We will
explore this tool to determine, both mathematically and empirically, which is most appropriate for
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our dataset by cross-referencing the visualization with our added supplementary figure
describing per-MOA reconstruction loss.

We would also like to emphasize that we trained our VAEs using CellProfiler readouts from Cell
Painting images and not the raw Cell Painting images themselves. As this was one of our
primary innovations, this detail is extremely important. Therefore, we have improved clarity and
added emphasis to this point in the manuscript introduction and discussion (see section 3).

2.2. More specific comparisons of MOA predictions to shuffled data and improved
description of MOA label accuracy

Reviewer 1: It is difficult to know the clear threshold for successful performance is on figures
like Figure 7 and SFigure 9, but by and large, it appears that the majority of predicted
combination MOAs were not successful. Without the ability to either A) adequately predict most
all combinations from individual profiles that were used in training or B) an explanation prior to
analysis of which combination will be able to predict, it is difficult to see this method being used
since the combinatorial predictions are more likely not informative.

Reviewer 1: The researchers justify the poor performance compared to shuffled data, by saying
that A) MOA annotations are noisy and unreliable and B) they MOAs may only manifest in other
modalities like what was seen in the L1000 vs morphology predictability. While these might be
true, knowing this the researchers should make an effort to clean and de-noise their data and
select MOAs that are well-known and reliable, as well as, selecting MOAs for which we have a
known morphological or genetic reaction.

Reviewer 3: Figure 6 is missing error bars (standard deviation of the L2 distance) and, as such,
is hard to draw conclusions from.

We thank the reviewers for raising this concern. We agree that it is critical, and we appreciate
the opportunity to address it.

All three of these comments relate to being unable to draw conclusions from our results when
most ANB predictions appear to have no difference from shuffled controls. Therefore, to address
this comment, we will update our LSA evaluation to compare each MOA to a matched set of
randomly shuffled data. Specifically, in our existing comparison, we realized a methodological
fallacy in how we're displaying these data shuffles. We should be comparing specific MOA
combinations to their corresponding shuffled results instead of comparing all to all, which will
artificially decrease performance when there are polypharmacology predictions that fail to
recapitulate the ground truth cell states.

We have connected with Paul Clemons, the senior director Director of Computational Chemical
Biology Research at the Broad Institute of MIT and Harvard, who has informed us that the Drug
Repurposing Hub annotations are among the most well documented. Therefore, while we know
that biological annotations are often incomplete, our original text overemphasized the amount of
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noise contributed by inaccurate labels. We therefore added the following sentence to the
discussion to clarify this important point:

“‘However, the Drug Repurposing Hub MOA annotations are among the most
well-documented resources, so other factors like different dose concentration and
non-additive effects contribute to weak LSA performance for some compound
combinations (Corsello et al, 2017).”

We will also update our supplementary figure to account for specific MOA shuffling and include
additional text comparing Cell Painting and L1000 showing which MOAs perform best in which
modality.

2.3. More detailed evaluation of MOA performance across drug variance and drug
classes

Reviewer 1: With the small number of combinations that are successfully predicted, to build
confidence in the performance, it would be necessary to explain the reason for the differences in
performance. Further experimentations should be done looking into any relationship between
the type of MOAs (and their features) and the resulting A|B predictability. Looking at Figure 7,
the top-performing combinations are comprised entirely of inhibitor MOAs. If the noisiness of the
data is a factor, there should be some measurable correlation between feature noisiness and
variation and the resulting A|B predictability from LSA.

We agree with the reviewer that further experimentation would be helpful to gain confidence in
our LSA performance. We plan to perform two different analyses to address this question. First,
we will compare profile reproducibility (median pairwise correlations among MOAs) to MOA
predictability. This will provide insight to determine the relationship between MOA measurement
variance and performance. Second, we will split MOAs by category (e.g. inhibitor, activator) and
test if there are significant performance differences between categories across VAE models in
both L1000 and Cell Painting data. This will tell us if there are certain trends in the type of MOAs
we're able to predict. If there is, this would be useful knowledge since it could suggest that
certain types of MOAs are associated with a more consistent cell state.

2.4. Higher confidence in LSA overfitting assessment

Reviewer 1: To show that the methodology works well on unseen data, researchers withheld
the top 5 performing A|B MOAs (SFig 9) and showed they were still well predicted. This is not
the most compelling demonstration since the data to be held out was selected with bias as the
top-performing samples. It would be much more interesting to withhold an MOA that was near or
only somewhat above the margin of acceptability and see how many holdouts affected the
predictability of those more susceptible data points. From my best interpretation, the hold-out
experiment also only held out the combination MOA groups from training. It would be better if
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single MOAs (for example A) which were a part of a combination of MOA (A|B) were also held
out to see if predictability suffered as a result and if generalizability did extend to cells with
unseen MOAs (not just cells which had already highly performing combinations of seen MOAS).

We believe our original analysis was extremely compelling. Even if we removed the top MOAs
from training, we were still able to capture their combination polypharmacology cell states
through LSA. We find this similar to removing all pictures of sunglasses in an image corpus of
human faces, but still being able to reliably infer pictures of people wearing sunglasses.
Specifically, this tells us that our model is learning some fundamental data generating function
that our top performing MOAs tap into regardless of if they are present or not in training.

However, we agree with the reviewer that withholding intermediate-performing MOAs would also
be informative, but for a separate reason. Unlike the best predicted MOAs, the intermediate
MOAs are likely more susceptible to changes in the training data, so it would be interesting to
determine if intermediate MOAs’ performance is a result of overfitting instead of truly learning
aspects of the data generating function. We plan to perform this new analysis and add the
results to Supplementary Figure 8 as a subpanel and add a full description of the approach to
the appropriate methods subsection.

2.5. Additional metrics to evaluate LSA predictions to provide more confident
interpretation

Reviewer 2: The predictions are evaluated using L2 distances, which | find not that informative.
I would like to see other metrics (correlation or L1 or distribution distances in previous
comments)

We agree with the reviewer that using more than one metric would be helpful because
oftentimes a single metric does not tell a complete story. We will add a panel to the LSA
supplementary figure (Supplementary Figure 7), using Pearson correlation instead. While L2
distances will tell us how close predictions are to ground truth, Pearson correlations will tell us
how consistent, on average, we are able to predict feature direction.

2.6. Adding a performance-driven feature level analysis to categorize per-feature
modeling ability

Reviewer 2: | would like to see feature-level analysis, which features are well predicted and
which ones are more challenging to predict?

We agree with the reviewer that feature level analysis would be interesting to study. We believe
that understanding which features are easy and hard to model could give insight into why
certain MOAs (which could be associated with more signal in certain Cell Painting features) are
predicted better than others.
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However, we are concerned that it is difficult to have an objective measurement of which
features are easier to model because features that have less variation might be easier to model.
So, we will analyze the correlation between individual feature reconstruction loss vs. feature
variance across profiles. We will color-code the points to represent feature groups or channels.
This analysis will not only demonstrate the relationship between feature variance and modeling
ability, but also provide insight into the difficulty of modeling individual CellProfiler features.

3. Description of the revisions that have already been incorporated in
the transferred manuscript

3.1. Documenting positive feedback as provided by the three reviewers

Reviewer 1: With access to the dataset, the posted GitHub, and documentation in the paper, |
believe that the experiments are reproducible.

Reviewer 1: The experiments are adequately replicated statistically for conventions of deep
learning.

Reviewer 1: This paper proposes a conceptually and technically unique proposal in terms of
application, taking existing technologies of VAEs and LSA and, and as far as | know, uses them
in a novel area of application (predicting and simulating combination MOAs for compound
treatments). If this work is shown to work more broadly and effectively, is seen through to it
completion, and is eventually successfully implemented, it will help to evaluate the effects of
drugs used in combination on gene expression and cell morphology. An audience in the realm of
biological deep learning applications as well as an audience working in the compound and drug
testing would be interested in the results of this paper. Authors successfully place their work
within the context of existing literature, referencing the numerous VAE applications that they
build off of and fit into the field of (Lafarge et al, 2018; Ternes et al, 2021, etc...), citing the
applications of LSA in the computer vision community (Radford et al, 2015, Goldsborough et al,
2017), and discussing the biological context that they are working in (Chandrasekaran et al,
2021).

Reviewer 2: The main novelty of the work is applying VAEs on cell painting data to predict drug
perturbations. The final use case could be guiding experimental design by predicting unseen
data. However, the authors do not show such an example and use case which is
understandable due to the need for doing further experiments to validate computational results
and maybe not the main focus of this paper. The authors did a good job of citing existing
methods and relevant. The potential audience could be the computational biology and applied
machine learning community.

Reviewer 3: The manuscript is beautifully written in a crystal clear manner. The authors have
made a visible effort towards making their work understandable. The methods section is clear
and comprehensive. All experiments are rigorously conducted and the validation procedures are
sound. The conclusions of the paper are convincing and most of them are well supported by the
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data. Both the data and the code required to reproduce this work are freely available. Overall,
the article is of high quality and relevance to several scientific communities.

We thank the reviewers for their encouraging remarks and overall positive sentiment. As
early-career researchers, we feel empowered by these words.

3.2. Moved Figure 2 to supplement and removed Figure 5

Reviewer 1: Fig 2 is not informative so it can go to supplementary.

Reviewer 2: | liked the paper's GitHub repo, the authors did a good job making everything
available and reproducible. As a suggestion, you can move the learning curves in two the sup
figures cause they might not be the most exciting piece of info for the non-technical reader.
Reviewer 3: | would suggest removing Figure 5 (or moving it to the supplementary) as it revisits
the content of Figure 1 and does not bring much extra information.

We agree that Figure 2 might not be informative to a non-technical reader, so we have accepted
this suggestion by both reviewers 1 and 2, and we have moved Figure 2 to supplementary.

We agree with the reviewer and have removed Figure 5.

3.3. Clarified our data source as CellProfiler readouts, not raw Cell Painting images

Reviewer 1: In Fig 4, it would be useful to show a few sample representative images with
respect to CellProfiler feature groups.

Reviewer 1: Figure 6, what does it means original input space? Does it mean raw pixel image?
As researchers extracted CellProfiler feature groups already, it would be interesting to compare
mean L2 distance based on CellProfiler features so that whether VAE improves performance or
not (compared to handcrafted features) as a baseline.

Reviewer 3: While what "morphological readouts" concretely mean becomes clearer later on in
the paper, it would be useful to give a couple of examples early on when introducing the
considered datasets.

We thank the reviewer for these suggestions, which bring to light a common source of
confusion, which we must alleviate. We are working with CellProfiler readouts (features
extracted using classical algorithms) of the Cell Painting images and not the images
themselves. We have made several edits throughout the manuscript to improve clarity and
remove this confusion, including the introduction, in which we clearly state our model input data:

“Because of the success of VAEs on these various datasets, we sought to determine if
VAEs could also be trained using cell morphology readouts (rather than directly on
images), and further, to carry out arithmetic to predict novel treatment outcomes. We
derive the cell morphology readouts using CellProfiler (McQuin et al, 2018), which


https://paperpile.com/c/IBTAyY/oPWZ

- ReView
Revision Plan COMMONS

measures the size, structure, texture, and intensity of cells, and use these readouts to
train all models.”

This decision comes with tradeoffs: The benefit of using CellProfiler readouts instead of images
is that they are more manageable but we might lose some information. We more thoroughly
discuss this important tradeoff in the discussion section:

“We determined that VAEs can be trained on cell morphology readouts rather than
directly using the cell images from which they were derived. This decision comes with
various trade-offs. Compared to cell images, cell morphology readouts as extracted by
image analysis tools (e.g. CellProfiler) are a more manageable data type; the data are
smaller, easier to distribute, substantially less expensive to analyze and store, and faster
to train (McQuin et al, 2018). However, it is likely some biological information is lost,
because these tools might fail to measure all morphology signals. The so-called
image-based profiling pipeline also loses information, by nature of aggregating inherently
single-cell data to bulk consensus signatures (Caicedo et al, 2017).”

3.4. Clarified future directions to infer cell health readouts from simulated
polypharmacology cell states

Reviewer 1: Authors also make the claim that they can infer toxicity and simulate the
mechanism of how two compounds might react. This is a claim that would not be supported
even if the method were able to successfully predict morphology or gene profiles. Drug
interaction and toxicity are quite complex and goes beyond just morphology and expression.
VAEs predicting a small set of features would not be able to capture information beyond the
readouts, especially when dealing with potentially unseen compounds for which toxicity is not
yet known. For example, two compounds might produce a morphology that appears similar to
other safe compounds but has other factors that contribute to toxicity. Further, here they show
no evidence of toxicity or interaction analysis.

The reviewer is correct that such a claim is unsupported by our research. Our message was
actually that inferring toxicity could be a potential future application of our work. Specifically, for
example, we can apply orthogonal models of cell toxicity that we previously derived using other
data (Way et al, 2021a) to our inferred polypharmacology cell states. We thank this reviewer for
noticing our lack of clarity, and we have made changes in the discussion to make it clear that
inferring toxicity is something we may do in the future and is not something that is discussed in
the manuscript:

“In the future, by predicting cell states of inferred polypharmacology, we can also infer
toxicity using orthogonal models (e.g. Way et al. 2021) and simulate the mechanisms of
how two compounds might interact.”
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3.5. Clarified our method of splitting data, and noting how a future analysis will answer
overfitting extent

Reviewer 2: Could authors outline detailed data splits? Which MoA are in train and which are
held out from training? As | understood, there were samples from MoAs that were supposed to
be predicted in the calculation of LSA? Generally, the predicted MoA should not be seen during
training and not in LSA calculation.

We now more explicitly detail how we split our data in the methods:

“As input into our machine learning models, we split the data into an 80% training, 10%
validation, and 10% test set, stratified by plate for Cell Painting and stratified by cell line
for L1000. In effect, this procedure evenly distributes compounds and MOAs across data
splits.”

We also thank the reviewer for this comment, because they express an important concern about
making sure that we are not overfitting to the data. We have explained in the manuscript that
because of lack of data, MOAs were repeated in training and LSA. However, we believe
overfitting is not playing a large role in model performance. Through our hold 5 out experiment,
we are able to show that our models are able to predict the same MOAs irrespective of whether
they were in the training data, indicating that we did not overfit to the distribution of certain
MOA:s.

Reviewer 1 also suggested that we do the hold 5 out experiment on ANBs that were barely
predicted. After we do that, we will explicitly demonstrate the extent of overfitting.

3.6. Introduced acronyms when they first appear in the manuscript

Reviewer 3: The Kullback-Leibler divergence is properly introduced in the methods part, but not
at all in the introduction (it directly appears as "the KL divergence"). To enhance readability, it
would be better to fully spell it before using the acronym, and maybe give a one-sentence
intuition of what it is about before pointing out to the methods part for more details.

We thank the reviewer for bringing this to our attention. We have carefully reviewed the entire
manuscript and have corrected such instances of clear introductions to acronyms.

3.7. Fixed minor text changes

Reviewer 3: In Figure 1, | would recommend changing "compression algorithms" to "dimension
reduction algorithm" or "embedding algorithm". In a compression setting, | would expect the
focus to be on the number of bits of information each method requires (or the dimension of the
resulting embedding) to encode the data while guaranteeing a certain quality threshold. This is
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obviously not the case here as the dimension of the embedding is fixed and the focus is on
exploring how the embedding is constructed (eg how much it decorrelates the different features,
etc) - which may be misleading.

Reviewer 3: | recommend using "An B" or "A & B" or "(A, B)" to denote the combination of two
independent modes of action A and B. The current notation "A | B" overloads the statistical "A
given B" which appears in the VAE loss and is therefore misleading.

We agree with the reviewer, and aim to minimize all sources of potential confusion. We have
made the change in the figure.

We also agree that our current notation can be confusing. We have updated all instances of
“‘AIB” with “AN B”.

3.8. Added hypothesis of MMD-VAE oscillations to supplementary figure legend

Reviewer 3: Do the authors have a hypothesis of what may be causing MMD-VAE to oscillate
during validation when data are shuffled? This seems to be the case on two of the three
considered datasets (Figure 2 and SuppFigure 1) and is not observed for the other models.
Including a few sentences on that in the text would be interesting.

We believe a big reason for this is because of the fact that the optimal MMD-VAE had a much
higher regularization term, which puts a greater emphasis on forming normal latent distributions,
than the optimal Beta or Vanilla VAE. Forcing the VAE to encode a shuffled distribution into a
normally distributed latent distribution would be difficult to do consistently across different
randomly shuffled data subsets, and therefore might cause oscillations in the training curve
across epochs when the penalty for that term is high. As these observations may be interesting
to a certain population of readers, we have incorporated this explanation into the supplementary
figure legend (which is where this figure is shown):

“Forcing the VAE to consistently encode a shuffled distribution into a normally distributed
latent distribution would be difficult, and therefore might cause oscillations in the training
curve across epochs.”

3.9. Explained our selection of VAE variants

Reviewer 3: The different types of considered VAE and their differences are very clearly
introduced. It may however be good to motivate a bit more the focus on beta-VAE and
MMD-VAE among all the possible VAE models. This is partly done through examples in the
second paragraph of page 2, but could be elaborated further.

We thank the author for their encouraging remarks. We have made edits to the manuscript’s
introduction, explaining why we chose these two variants out of all the possible choices:

10
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“We trained vanilla-VAEs, B-VAEs, and MMD-VAEs only, and not other VAE variants and
other generative model architectures, such as generative adversarial networks (GANs),
because these VAE variants are known to facilitate latent space interpretability.”

4. Description of analyses that authors prefer not to carry out

4.1. We will not explore additional latent space dimensions in more detail, as this is out
of scope

Reviewer 1: As both reconstructed and simulated data did not span the full original data
distribution, it might be better to look at reconstruction error and increase the dimension of latent
space.

We thank the reviewer for bringing up this important point. Our VAE loss function consists of the
sum of reconstruction error and some form of KL divergence. Specifically, this reviewer is
suggesting that if we only minimize reconstruction error (or focus more on reconstruction over
KLD by lowering beta), a higher latent dimension would result in better overall reconstruction.
This is true, but doing so would have negative consequences. While we would perhaps get the
UMAPs to show the full data distribution, the UMAPs are not our focus; predicting
polypharmacology through LSA is. We found that when we have a higher focus on the
reconstruction term, we have more feature entanglement, as indicated by lower performance
when simulating data and overlapping feature contribution per latent feature. The fact that
simulating data would logically require less disentanglement than performing LSA shows that
we require higher regularization (and hence lower focus on reconstruction) than the one we got
from simulating data.

Essentially, while the reviewer's comments would improve reconstruction and allow us to
improve the UMAPs, doing so would likely worsen LSA performance, which is the main focus of
the project. Also, increasing the latent dimension without changing beta would likely have
caused little to no change because since beta is encouraging disentanglement, it would cause
the newly added dimension to have little variation and encode little new information that wasn’t
already encoded before.

We have also previously explored the concept of toggling the latent dimensions in a separate
project (Way et al, 2020). We are very interested in this area of research in general, and any
additional analyses (beyond hyperparameter optimization) deserves a much deeper dive than
what we can provide in this paper.

Lastly, we intend to include a deeper description and analysis of reconstruction loss across

models, datasets, and MOAs as was suggested by a previous reviewer comment (see section
2.1 above)

11
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4.2. We will not review Gaussian distribution assumptions of the VAE as we feel it is not
informative

Reviewer 1: By looking at SFigure 6, | am wondering whether latent distribution actually met
gaussian distribution (assumption of VAE). It may show skew distribution as some of latent
features shows low contribution.

This reviewer’s comment is interesting, but we do not believe it would change the findings of our
study. Suppose we find that the latent dimensions aren’t normally distributed. This wouldn't
change much; a gaussian distribution isn’t the most critical to perform LSA. We need the latent
code to be disentangled, but having normally distributed latent features doesn't necessarily
mean that we have good disentanglement (see
https://towardsdatascience.com/what-a-disentangled-net-we-weave-representation-learning-in-v
aes-pt-1-9e5dbc205bd1)

4.3. In this paper, we will not train or compare conditional VAEs nor cycle GANs

Reviewer 2: While authors provided a comparison between vanilla VAE and MMD-VAE, B-VEA,
there are other methods capable of doing similar tasks (data simulation, counterfactual
predictions ), | would like to see a comparison with those methods such as conditional VAE(
https://papers.nips.cc/paper/2015/hash/8d55a249e6baa5c06772297520da2051-Abstract.html,
CVAE + MMD :

https://academic.oup.com/bioinformatics/article/36/Supplement_2/i610/6055927 ?login=true) or
cycle GANs(https://arxiv.org/abs/1703.10593 ).

While such comparisons would be interesting, they are not the main focus of the manuscript,
which is to benchmark the use of VAEs in cell morphology readouts and to predict
polypharmacology.

We think that CVAE would not be appropriate for our study. In a CVAE, the encoder and
decoder are both conditioned to some variable. In our situation where we are predicting the cell
states of different MOAs, it would make most sense to condition on the MOA. However, because
we’re using the MOA labels in our LSA experiment, conditioning on them is likely to bias our
results and not be effective for MOAs outside the conditioning.

For cycle GANs, we have found that training using these data, in a separate study in our lab, is
extremely difficult. Our lab has not published this yet, but once we are able to better understand
cycleGAN behavior in these data, it will require a separate paper in which we compare
performance and dissect model properties in much greater detail.

12
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Nevertheless, we have added citations to multi-modal approaches like cycle GANs (see section
4.4) as they will point a reader to useful resources for future directions.

4.4. We will not be comparing with multi-modal integration, but we clarified our focus on
Cell Painting VAE novelty and added multi-modal citations

Reviewer 1: Researchers found that the optimal VAE architectures were very different between
morphology and gene expression, suggesting that the lessons learned training gene expression
VAEs might not necessarily translate to morphology. It would be interesting to compare the
result with multimodal integration as baseline (i.e., Seurat).

Our focus in this paper was to train and benchmark different variational autoencoder (VAE)
architectures using Cell Painting data and to demonstrate an important, unsolved application in
predicting polypharmacology that we show is now possible for a subset of compounds. It was a
natural and useful extension to compare Cell Painting VAE performance with L1000 VAE
performance especially since our data set contained equivalent drug perturbations. We feel that
any extension including multi-modal data integration will distract focus away from the Cell
Painting VAE novelty, and requires a much deeper dive beyond scope of our current manuscript.

Additionally, there have been other, more in-depth and very recent multi-modal data integration
efforts using the same or similar datasets (Caicedo et al, 2021; Haghighi et al, 2021). In a
separate paper that we just recently submitted, we also dive much deeper to answer the
question of how the two modalities complement one another in various ways and for various
tasks (Way et al, 2021b). These two papers already provide a deeper and more informative
exploration of Cell Painting and L1000 data integration.

Therefore, because multi-modal data integration, while certainly interesting, will distract from the
Cell Painting VAE novelty and is redundant with other recent publications, we feel it is beyond
scope of this current paper.

Nevertheless, multi-modal data integration is important to mention, so we add it to the
discussion. Specifically, we discuss how multi-modal data integration might help with predicting
polypharmacology in the future and include pertinent citations so that we, or another reader,
might be able to follow-up in the future. The new section reads:

“‘Because we had access to the same perturbations with L1000 readouts, we were able
to compare cell morphology and gene expression results. We found that both models
capture complementary information when predicting polypharmacology, which is a
similar observation to recent work comparing the different technologies’ information
content (Way et al, 2021). We did not explore multi-modal data integration in this project;
this has been explored in more detail in other recent publications (Caicedo et al, 2021;
Haghighi et al, 2021). However, using multi-modal data integration with models like
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CycleGAN or other style transfer algorithms might provide more confidence in our ability
to predict polypharmacology in the future (Zhu et al, 2017).”
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