Dear Editorial Team,

We'd like to thank the editors for assessing our manuscript and accepting our initial revision
plan. As a reminder, we had initially transferred this manuscript with three reviews from Review
Commons. We had originally responded to several reviews, and we proposed a plan on how we
would address the remaining comments.

In this document, we address all comments and present new experiments as we had originally
planned. To facilitate understanding of exactly what we’'ve changed, we divide our changes into
two sections:

Section 1: Response to review comments that were under the “proposed changes”
section of our initial revision plan. Most changes are consistent with the original plan. In
cases where our changes differ, we describe and justify our alternative approach.

Section 2: All other review comments which we already addressed upon original
submission. This section is exactly the same as what we had in the revision plan; we
include it to maintain a record of all changes in response to reviewer comments.

Software updates and documentation for our revision plan changes can be found here:
https://github.com/broadinstitute/cell-painting-vae/releases/tag/v1.1

Section 1: Analyses added as part of revision plan

Address UMAP interpretability to provide a deeper description of modeling performance

Reviewer 1: Instead of using UMAP embedding, it would be better to compare reconstruction
error or show a reconstructed image with the original image to claim that models reliably
approximate the underlying morphology data.

Reviewer 1: Rather than just stating that the VAE's did not span the original data distribution
and saying beta-VAE performed best by eye, some simple metrics can be drawn to analyze the
overlap in data for a more direct and quantified comparison. Researchers should also explain
what part of the data is not being captured here. Some analysis of what the original uncaptured
UMAP represents is important in understanding the limitations of the VAEs' capacity.

Reviewer 2: The authors compare generation performance based on UMAP. In the UMAP
space, data tend to cluster together even though they might be far from each other in the
feature space. | would like to see more quantitive metrics on how well these methods capture
morphology distributions. You can compute metrics like MMD distance, kullback leibler (KL),
earthmoving distance, or a simple classifier trained on actual MoA classes tested on generated
data.

We agree with the reviewers that more closely evaluating reconstruction loss in addition to
UMAP would improve understanding of VAE limitations and enable a better comparison of VAE


https://github.com/broadinstitute/cell-painting-vae/releases/tag/v1.1

performance. Therefore, we analyzed reconstruction loss across models and added quantitative
results to the manuscript. This will enable direct comparisons across models. From Reviewer 2’s
recommendation, we also evaluated performance using earthmoving distance. We add the

following text and a new table (Table 1) to the results section:

Based on reconstruction loss (MSE) and earth moving distance, MMD VAEs performed
the best in Cell Painting data, and all architectures performed substantially better in most
cases compared to randomly shuffled baselines (Table 1).

Cell Painting level 5 |Vanilla |0.00387 |0.0088 0.016 (0.006, 0.040) [0.024 (0.0096, 0.060)
Cell Painting level 5 |Beta  |0.00272 |0.0088 0.012 (0.005, 0.028) [0.024 (0.01, 0.06)
Cell Painting level 5 |MMD  |0.00435 |0.0088 0.016 (0.005, 0.04) 0.024 (0.01, 0.06)
Cell Painting level 4 |Vanilla |0.00145 |0.0014 0.006 (0.004, 0.009) |0.0053 (0.004, 0.008)
Cell Painting level 4 |Beta  |0.00091 |0.0014 0.0045 (0.002, 0.013) |0.0051 (0.004, 0.008)
Cell Painting level 4 |MMD |0.00075 |0.0014 0.0039 (0.0022, 0.01) |0.0051 (0.004, 0.008)
L1000 Vanilla (0.85 1.85 0.249 (0.14, 0.36) 0.61 (0.28, 1.94)
L1000 Beta 1.23 2.10 0.445 (0.23, 0.73) 0.67 (0.29, 2.25)
L1000 MMD |1.27 2.05 0.475 (0.25, 0.79) 0.64 (0.29, 2.027)

Table 1. Mean squared error (MSE) and earthmoving distance for VAE’s ability to reconstruct Cell
Painting and L1000 profiles. We compare these values with results derived from shuffled models.
Earthmoving distance is calculated by taking the mean of the earthmoving distance of each sample. We
add the 95% percentile range of earthmoving distance in parenthesis (0.05 lowest, 0.95 highest). Note
that since our models required that we normalize Cell Painting and L1000 input data differently (see
Methods), the metrics cannot be compared across data modalities.

The reviewer comments also bring up an important detail. We trained our VAEs using
CellProfiler readouts from Cell Painting images and not the raw Cell Painting images
themselves. As this was one of our primary innovations, this detail is extremely important.
Therefore, we have improved clarity and added emphasis to this point in the manuscript

introduction and discussion.

Because of the success of VAEs on these various datasets, we sought to determine if
VAEs could also be trained using cell morphology readouts (rather than directly on
images), and further, to carry out arithmetic to predict novel treatment outcomes. We
derive the cell morphology readouts using CellProfiler (McQuin et al, 2018), which
measures the size, structure, texture, and intensity of cells, and use these readouts to
train all models.




We determined that VAEs can be trained on cell morphology readouts rather than
directly using the cell images from which they were derived. This decision comes with
various trade-offs. Compared to cell images, cell morphology readouts as extracted by
image analysis tools (e.g. CellProfiler) are a more manageable data type; the data are
smaller, easier to distribute, substantially less expensive to analyze and store, and faster
to train (McQuin et al, 2018).

In our revision plan, we planned to compare UMAP with another dimensionality reduction
algorithm called PaCMAP. However, we learned that this was not feasible because PaCMAP is
incompatible with our approach. The method does not have a “transform” function, and thus
cannot be used to directly compare simulated and real datasets
(https://github.com/YingfanWang/PaCMAP/issues/8). While this is unfortunate, we believe
comparing reconstruction using MSE and earthmoving distance is sufficient to quantitatively
understand the modeling performance of the different VAE variants.

More specific comparisons of MOA predictions to shuffled data and improved description of
MOA label accuracy

Reviewer 1: It is difficult to know the clear threshold for successful performance is on figures
like Figure 7 and SFigure 9, but by and large, it appears that the majority of predicted
combination MOAs were not successful. Without the ability to either A) adequately predict most
all combinations from individual profiles that were used in training or B) an explanation prior to
analysis of which combination will be able to predict, it is difficult to see this method being used
since the combinatorial predictions are more likely not informative.

Reviewer 1: The researchers justify the poor performance compared to shuffled data, by saying
that A) MOA annotations are noisy and unreliable and B) they MOAs may only manifest in other
modalities like what was seen in the L1000 vs morphology predictability. While these might be
true, knowing this the researchers should make an effort to clean and de-noise their data and
select MOAs that are well-known and reliable, as well as, selecting MOAs for which we have a
known morphological or genetic reaction.

Reviewer 3: Figure 6 is missing error bars (standard deviation of the L2 distance) and, as such,
is hard to draw conclusions from.

We thank the reviewers for raising this concern. We agree that it is critical, and we appreciate
the opportunity to address it. All three of these comments relate to being unable to draw
conclusions from our LSA results when most ANB predictions appear to have no difference from
shuffled controls. It is important to note that because of these comments, we realized a
methodological fallacy in our results interpretation. To assess individual MOA performance, we
should be comparing specific MOA combinations to their corresponding shuffled results instead
of comparing “all to all”, which might artificially decrease performance when there are
polypharmacology predictions that fail to measure the ground truth cell states.



Therefore, we performed an additional analysis comparing LSA for each individual
polypharmacology MOA ANB. In our methods section, we describe this analysis as follows:

To determine the MOAs our VAE could predict the best, we calculated a z score metric
for each MOA combination. Specifically, for a given polypharmacology MOA “A N B”, we
compared two values: 1) the L2 distance between the predicted cell state and the
ground-truth cell state and 2) the distribution of L2 distances between ten cell state
predictions from randomly shuffled negative controls and the ground-truth cell state. We
calculated the z-score of the ground truth value compared to the randomly shuffled
distribution. As well, we repeated this procedure using Pearson correlation instead of L2
distance. This evaluation measures performance for each polypharmacology MOA “A N
B” independently, and describes how much better LSA with real data could predict cell
states compared to random.

We also add a brief description in the results section:

Using Cell Painting level 5 VAE models, we compared LSA performance of specific
polypharmacology MOAs. For each polypharmacology MOA “A N B”, we calculated a z
score comparing 1) the L2 distance between the real and the predicted “A N B” cell state
against 2) a distribution of L2 distances between the real and ten predictions of “A N B”
cell states from randomly permuted input data (see Methods). We repeated this
procedure using Pearson correlations as well. These metrics indicated that, for the
majority of MOAs, we predicted polypharmacology states better than random
(Supplementary Figure 11). High test statistics for L2 distance and a low test statistics for
Pearson correlation indicates that the specific MOA “A N B” could not be predicted,
either because of incorrect annotations, non-additive or synergistic treatment effects, or
a low penetrant phenotype unable to be captured in Cell Painting data.

We created a supplementary figure to present these new results, which increases confidence in
the LSA experiment’s ability to predict MOAs.
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Supplementary Figure 11. Distribution of LSA z-scores from comparing ground-truth MOA cell state to
10 randomly shuffled LSA permutations for Cell Painting level 5 data. The blue line is centered at 0. All
MOAs to the left of the blue line for the L2 distance graph are predicted better than random, and all MOAs
to the right of the blue line in the Pearson correlation graph are predicted better than random. The red line
indicates the mean of all the z-scores, so a lower mean for the L2 distance is better, and higher mean for
Pearson correlation is better.

Additionally, we modified the manuscript to better describe potential reasons for poor LSA
performance. In correspondence with Paul Clemons, the senior director Director of
Computational Chemical Biology Research at the Broad Institute of MIT and Harvard, we
learned that the Drug Repurposing Hub annotations are among the most well documented.
Therefore, while we know that biological annotations are often incomplete, our original text



overemphasized the amount of noise contributed by inaccurate labels. We therefore added the
following sentence to the discussion to clarify this important point:

However, the Drug Repurposing Hub MOA annotations are among the most
well-documented resources, so other factors like different dose concentration and
non-additive effects may also contribute to weak LSA performance for some compound
combinations (Corsello et al. 2017).

We also recognize that the LSA performance compared to random controls suggests that it
would work poorly in many use-cases. Therefore, in the Discussion section, we emphasize the
novelty of our findings, and add the following statement about the need to develop more
improved tools for predicting polypharmacology cell states:

Therefore, while VAEs model interpretable latent spaces in Cell Painting data and LSA
can serve as a baseline for predicting polypharmacology, other datasets, which directly
collect data on an expanded set of polypharmacology cell states, will enable training of
more accurate predictive models (Caldera et al, 2019).

More detailed evaluation of MOA performance across drug variance and drug classes

Reviewer 1: With the small number of combinations that are successfully predicted, to build
confidence in the performance, it would be necessary to explain the reason for the differences in
performance. Further experimentations should be done looking into any relationship between
the type of MOAs (and their features) and the resulting A|B predictability. Looking at Figure 7,
the top-performing combinations are comprised entirely of inhibitor MOAs. If the noisiness of the
data is a factor, there should be some measurable correlation between feature noisiness and
variation and the resulting A|B predictability from LSA.

We agree with the reviewer that further experimentation would gain confidence and increase
understanding of LSA performance. We have performed two different analyses to address this
question and add two new supplementary figures. We introduce both in the results section:

Finally, we performed two analyses to more specifically understand LSA performance.
First, we assessed correlation between MOA reproducibility and MOA predictability. We
calculated MOA reproducibility by comparing median pairwise correlation between
original and reconstructed “ANB” MOAs, and we calculated MOA predictability as the
correlation between real and predicted “ANB” MOAs from the LSA experiment. We
observed a strong correlation (Pearson r = 0.8) between MOA reproducibility and MOA
predictability (Supplementary Figure 13). This was expected; MOAs that we more
reproducibly captured are more reliably modeled and predicted. Second, we sought to
see if there were any LSA performance differences depending on the type of MOA
(inhibitor, antagonist, agonist, and other). While the top performing MOAs were all


https://paperpile.com/c/fy5TK8/aoWQn
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inhibitors, we did not observe significant differences across MOA types (Supplementary

Figure 14).
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Supplementary Figure 13. Strong correlation between MOA reproducibility (median pairwise correlation
among real and reconstructed MOAs) and MOA predictability (correlation between real and predicted
MOA from LSA experiment).
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Supplementary Figure 14. No significant association between MOA compound class and the
predictability of MOAs.



Higher confidence in LSA overfitting assessment

Reviewer 1: To show that the methodology works well on unseen data, researchers withheld
the top 5 performing A|B MOAs (SFig 9) and showed they were still well predicted. This is not
the most compelling demonstration since the data to be held out was selected with bias as the
top-performing samples. It would be much more interesting to withhold an MOA that was near or
only somewhat above the margin of acceptability and see how many holdouts affected the
predictability of those more susceptible data points. From my best interpretation, the hold-out
experiment also only held out the combination MOA groups from training. It would be better if
single MOAs (for example A) which were a part of a combination of MOA (A|B) were also held
out to see if predictability suffered as a result and if generalizability did extend to cells with
unseen MOAs (not just cells which had already highly performing combinations of seen MOAs).

We believe our original analysis was compelling. We did remove all single MOAs from training,
in addition removing compounds belonging to the polypharmacology combination. We now
make this point more clear in the results and methods section:

For our work with predicting MOAs to have practical application, we needed to know that
we can predict MOAs that have never been seen by the training set. So, we removed
compounds annotated to the top five best-predicted MOAs, as well as the single MOAs
that were part of the MOA combinations (i.e. also removing compounds annotated with
MOA “A” or MOA “B” if MOA “ANB” was in the top 5 best predicted) for each LSA
evaluation.

This analysis tells us that even if we removed compounds belonging to the top MOAs from
training, we were still able to capture their combination polypharmacology cell states through
LSA. Our model is learning some fundamental data generating function that our top performing
MOAs tap into regardless of if they are present or not in training. We find this similar to removing
all pictures of sunglasses in an image corpus of human faces, but still being able to reliably
simulate pictures of people wearing sunglasses.

However, we agree with the reviewer that withholding intermediate-performing MOAs would also
be informative. Unlike the best predicted MOAs, the intermediate MOAs are likely more
susceptible to changes in training data composition, so it would be interesting to determine if
intermediate MOAS’ performance is a result of overfitting instead of truly learning aspects of the
data generating function. We performed this new analysis and have added the results to
Supplementary Figure 12 as a subpanel and added a full description of the approach and
results in the results section.

We also retrained all models after removing compounds with MOA annotations that were
predicted with intermediate performance. Specifically, we removed the five MOAs that
were predicted with intermediate scores of above one standard deviation better than
random. In general, performance dropped more for these intermediate data points than



the high performers, but overall performance per MOA remained consistent particularly

in our B-VAE (Supplementary Figure 12B). Despite the top MOAs retaining signal, lower

performing MOAs experienced some signal loss, which suggests that intermediate
performing MOAs are more susceptible to changes in training data composition and

require more data or different approaches to model.
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Supplementary Figure 12. Leave-five-out MOA experiments demonstrate robust learning in the

absence of certain compounds.
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Additional metrics to evaluate LSA predictions to provide more confident interpretation

Reviewer 2: The predictions are evaluated using L2 distances, which | find not that informative.
| would like to see other metrics (correlation or L1 or distribution distances in previous
comments)

We agree with the reviewer that using more than one metric would be helpful because
oftentimes a single metric does not tell a complete story. In response, we added Supplementary
Figure 9, which visualizes performance across models using Pearson correlation. While L2
distances will tell us how linearly far apart our predictions are to ground truth, Pearson
correlations will tell us how close our predictions trend in the same direction as ground truth. We
reference this finding in the results section as follows:

We observed similar results when measuring MOA similarity using Pearson correlation
instead (Supplementary Figure 9).
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Supplementary Figure 9. Mean Pearson correlation (higher is better) between real and predicted profiles
annotated with known polypharmacology (“A N B”) mechanisms of action (MOAs) for three different VAE
architectures, PCA, and original input space. We used level 4 Cell Painting input data for LSA predictions.

Adding a performance-driven feature level analysis to categorize per-feature modeling ability

Reviewer 2: | would like to see feature-level analysis, which features are well predicted and
which ones are more challenging to predict?

11



We agree with the reviewer that feature level analysis would be interesting to study. We believe
that understanding the modeling difficulty of different features could give insight into the nature
of Cell Painting features and why certain MOAs are predicted better than others.

However, any direct analysis of feature performance would be impacted by feature variance,
because features that have less variation are likely to be inherently easier to model. Therefore,
we compared individual feature reconstruction loss vs. feature variance across profiles and
observed strong positive associations. We compared different feature subcategories, including
compartments (cells, cytoplasm, nuclei) or channels (DNA, ER, Mito, RNA, AGP), and identified
significant differences across a few subcategories.This analysis not only demonstrates the
relationship between feature variance and modeling ability, but also provides insight into the
difficulty of modeling certain categories of CellProfiler features. We added the following
description and supplementary figure:

We also analyzed our VAE’s ability to reconstruct specific CellProfiler features. As
expected, we observed that features with lower variance were more easily reconstructed
(Supplementary Figure 6). For all VAE variants, we found a high performance diversity,
with many features reconstructing nearly perfectly, while others had poor reconstruction.
The DNA channel was among the best reconstructed, while the AGP image channel was
among the worst reconstructed, although this relationship was not significant (DNA <
AGP with one-sample t-test p-value 0.37, 0.056, 0.20 for vanilla, 8, and MMD-VAEs,
respectively). The cells compartment was significantly better reconstructed compared to
cytoplasm and nuclei for all VAE variants (Cells < non-Cells with one-sample t-test
p-value 2.7e-4, 5.1e-7, 1.8e-5 for vanilla, 3, and MMD-VAEs, respectively).

12
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Supplementary Figure 6. Comparing feature variance with feature reconstruction for Cell Painting level 4

input data across three VAE variants. We stratified feature categories by image channel and
compartment.
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SECTION 2: REVIEW COMMENTS ALREADY ADDRESSED IN OUR REVISION PLAN

Documenting positive feedback as provided by the three reviewers

Reviewer 1: With access to the dataset, the posted GitHub, and documentation in the paper, |
believe that the experiments are reproducible.

Reviewer 1: The experiments are adequately replicated statistically for conventions of deep
learning.

Reviewer 1: This paper proposes a conceptually and technically unique proposal in terms of
application, taking existing technologies of VAEs and LSA and, and as far as | know, uses them
in a novel area of application (predicting and simulating combination MOAs for compound
treatments). If this work is shown to work more broadly and effectively, is seen through to it
completion, and is eventually successfully implemented, it will help to evaluate the effects of
drugs used in combination on gene expression and cell morphology. An audience in the realm of
biological deep learning applications as well as an audience working in the compound and drug
testing would be interested in the results of this paper. Authors successfully place their work
within the context of existing literature, referencing the numerous VAE applications that they
build off of and fit into the field of (Lafarge et al, 2018; Ternes et al, 2021, etc...), citing the
applications of LSA in the computer vision community (Radford et al, 2015, Goldsborough et al,
2017), and discussing the biological context that they are working in (Chandrasekaran et al,
2021).

Reviewer 2: The main novelty of the work is applying VAEs on cell painting data to predict drug
perturbations. The final use case could be guiding experimental design by predicting unseen
data. However, the authors do not show such an example and use case which is
understandable due to the need for doing further experiments to validate computational results
and maybe not the main focus of this paper. The authors did a good job of citing existing
methods and relevant. The potential audience could be the computational biology and applied
machine learning community.

Reviewer 3: The manuscript is beautifully written in a crystal clear manner. The authors have
made a visible effort towards making their work understandable. The methods section is clear
and comprehensive. All experiments are rigorously conducted and the validation procedures are
sound. The conclusions of the paper are convincing and most of them are well supported by the
data. Both the data and the code required to reproduce this work are freely available. Overall,
the article is of high quality and relevance to several scientific communities.

We thank the reviewers for their encouraging remarks and overall positive sentiment. As
early-career researchers, we feel empowered by these words.

Moved Figure 2 to supplement and removed Figure 5

Reviewer 1: Fig 2 is not informative so it can go to supplementary.

14



Reviewer 2: | liked the paper's GitHub repo, the authors did a good job making everything
available and reproducible. As a suggestion, you can move the learning curves in two the sup
figures cause they might not be the most exciting piece of info for the non-technical reader.
Reviewer 3: | would suggest removing Figure 5 (or moving it to the supplementary) as it revisits
the content of Figure 1 and does not bring much extra information.

We agree that Figure 2 might not be informative to a non-technical reader, so we have accepted
this suggestion by both reviewers 1 and 2, and we have moved Figure 2 to supplementary.

We agree with the reviewer and have removed Figure 5.

Clarified our data source as CellProfiler readouts, not raw Cell Painting images

Reviewer 1: In Fig 4, it would be useful to show a few sample representative images with
respect to CellProfiler feature groups.

Reviewer 1: Figure 6, what does it means original input space? Does it mean raw pixel image?
As researchers extracted CellProfiler feature groups already, it would be interesting to compare
mean L2 distance based on CellProfiler features so that whether VAE improves performance or
not (compared to handcrafted features) as a baseline.

Reviewer 3: While what "morphological readouts" concretely mean becomes clearer later on in
the paper, it would be useful to give a couple of examples early on when introducing the
considered datasets.

We thank the reviewer for these suggestions, which bring to light a common source of
confusion, which we must alleviate. We are working with CellProfiler readouts (features
extracted using classical algorithms) of the Cell Painting images and not the images
themselves. We have made several edits throughout the manuscript to improve clarity and
remove this confusion, including the introduction, in which we clearly state our model input data:

“Because of the success of VAEs on these various datasets, we sought to determine if
VAEs could also be trained using cell morphology readouts (rather than directly on
images), and further, to carry out arithmetic to predict novel treatment outcomes. We
derive the cell morphology readouts using CellProfiler (McQuin et al. 2018), which
measures the size, structure, texture, and intensity of cells, and use these readouts to
train all models.”

This decision comes with tradeoffs: The benefit of using CellProfiler readouts instead of images
is that they are more manageable but we might lose some information. We more thoroughly
discuss this important tradeoff in the discussion section:

“We determined that VAEs can be trained on cell morphology readouts rather than

directly using the cell images from which they were derived. This decision comes with
various trade-offs. Compared to cell images, cell morphology readouts as extracted by
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image analysis tools (e.g. CellProfiler) are a more manageable data type; the data are
smaller, easier to distribute, substantially less expensive to analyze and store, and faster
to train (McQuin et al. 2018). However, it is likely some biological information is lost,
because these tools might fail to measure all morphology signals. The so-called
image-based profiling pipeline also loses information, by nature of aggregating inherently
single-cell data to bulk consensus signatures (Caicedo et al. 2017).”

Clarified future directions to infer cell health readouts from simulated polypharmacology cell
states

Reviewer 1: Authors also make the claim that they can infer toxicity and simulate the
mechanism of how two compounds might react. This is a claim that would not be supported
even if the method were able to successfully predict morphology or gene profiles. Drug
interaction and toxicity are quite complex and goes beyond just morphology and expression.
VAEs predicting a small set of features would not be able to capture information beyond the
readouts, especially when dealing with potentially unseen compounds for which toxicity is not
yet known. For example, two compounds might produce a morphology that appears similar to
other safe compounds but has other factors that contribute to toxicity. Further, here they show
no evidence of toxicity or interaction analysis.

The reviewer is correct that such a claim is unsupported by our research. Our message was
actually that inferring toxicity could be a potential future application of our work. Specifically, for
example, we can apply orthogonal models of cell toxicity that we previously derived using other
data (Way, Kost-Alimova, et al. 2021) to our inferred polypharmacology cell states. We thank
this reviewer for noticing our lack of clarity, and we have made changes in the discussion to
make it clear that inferring toxicity is something we may do in the future and is not something
that is discussed in the manuscript:

“In the future, by predicting cell states of inferred polypharmacology, we can also infer
toxicity using orthogonal models (e.g. Way et al. 2021) and simulate the mechanisms of
how two compounds might interact.”

Clarified our method of splitting data, and noting how a future analysis will answer overfitting
extent

Reviewer 2: Could authors outline detailed data splits? Which MoA are in train and which are
held out from training? As | understood, there were samples from MoAs that were supposed to
be predicted in the calculation of LSA? Generally, the predicted MoA should not be seen during
training and not in LSA calculation.

We now more explicitly detail how we split our data in the methods:
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“As input into our machine learning models, we split the data into an 80% training, 10%
validation, and 10% test set, stratified by plate for Cell Painting and stratified by cell line
for L1000. In effect, this procedure evenly distributes compounds and MOAs across data
splits.”

We also thank the reviewer for this comment, because they express an important concern about
making sure that we are not overfitting to the data. We have explained in the manuscript that
because of lack of data, MOAs were repeated in training and LSA. However, we believe
overfitting is not playing a large role in model performance. Through our hold 5 out experiment,
we are able to show that our models are able to predict the same MOAs irrespective of whether
they were in the training data, indicating that we did not overfit to the distribution of certain
MOAs.

Reviewer 1 also suggested that we do the hold 5 out experiment on ANBs that were barely
predicted. After we do that, we will explicitly demonstrate the extent of overfitting.

Introduced acronyms when they first appear in the manuscript

Reviewer 3: The Kullback-Leibler divergence is properly introduced in the methods part, but not
at all in the introduction (it directly appears as "the KL divergence"). To enhance readability, it
would be better to fully spell it before using the acronym, and maybe give a one-sentence
intuition of what it is about before pointing out to the methods part for more details.

We thank the reviewer for bringing this to our attention. We have carefully reviewed the entire
manuscript and have corrected such instances of clear introductions to acronyms.

Fixed minor text changes

Reviewer 3: In Figure 1, | would recommend changing "compression algorithms" to "dimension
reduction algorithm" or "embedding algorithm". In a compression setting, | would expect the
focus to be on the number of bits of information each method requires (or the dimension of the
resulting embedding) to encode the data while guaranteeing a certain quality threshold. This is
obviously not the case here as the dimension of the embedding is fixed and the focus is on
exploring how the embedding is constructed (eg how much it decorrelates the different features,
etc) - which may be misleading.

Reviewer 3: | recommend using "An B" or "A & B" or "(A, B)" to denote the combination of two
independent modes of action A and B. The current notation "A | B" overloads the statistical "A
given B" which appears in the VAE loss and is therefore misleading.

We agree with the reviewer, and aim to minimize all sources of potential confusion. We have
made the change in the figure.
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We also agree that our current notation can be confusing. We have updated all instances of
“A|B” with “A N B”.

Added hypothesis of MMD-VAE oscillations to supplementary figure legend

Reviewer 3: Do the authors have a hypothesis of what may be causing MMD-VAE to oscillate
during validation when data are shuffled? This seems to be the case on two of the three
considered datasets (Figure 2 and SuppFigure 1) and is not observed for the other models.
Including a few sentences on that in the text would be interesting.

We believe a big reason for this is because of the fact that the optimal MMD-VAE had a much
higher regularization term, which puts a greater emphasis on forming normal latent distributions,
than the optimal Beta or Vanilla VAE. Forcing the VAE to encode a shuffled distribution into a
normally distributed latent distribution would be difficult to do consistently across different
randomly shuffled data subsets, and therefore might cause oscillations in the training curve
across epochs when the penalty for that term is high. As these observations may be interesting
to a certain population of readers, we have incorporated this explanation into the supplementary
figure legend (which is where this figure is shown):

“Forcing the VAE to consistently encode a shuffled distribution into a normally distributed
latent distribution would be difficult, and therefore might cause oscillations in the training
curve across epochs.”

Explained our selection of VAE variants

Reviewer 3: The different types of considered VAE and their differences are very clearly
introduced. It may however be good to motivate a bit more the focus on beta-VAE and
MMD-VAE among all the possible VAE models. This is partly done through examples in the
second paragraph of page 2, but could be elaborated further.

We thank the author for their encouraging remarks. We have made edits to the manuscript’s
introduction, explaining why we chose these two variants out of all the possible choices:

“We trained vanilla-VAEs, B-VAEs, and MMD-VAEs only, and not other VAE variants and
other generative model architectures, such as generative adversarial networks (GANs),
because these VAE variants are known to facilitate latent space interpretability.”

Description of analyses that authors prefer not to carry out

We will not explore additional latent space dimensions in more detail, as this is out of scope

Reviewer 1: As both reconstructed and simulated data did not span the full original data
distribution, it might be better to look at reconstruction error and increase the dimension of latent
space.
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We thank the reviewer for bringing up this important point. Our VAE loss function consists of the
sum of reconstruction error and some form of KL divergence. Specifically, this reviewer is
suggesting that if we only minimize reconstruction error (or focus more on reconstruction over
KLD by lowering beta), a higher latent dimension would result in better overall reconstruction.
This is true, but doing so would have negative consequences. While we would perhaps get the
UMAPs to show the full data distribution, the UMAPs are not our focus; predicting
polypharmacology through LSA is. We found that when we have a higher focus on the
reconstruction term, we have more feature entanglement, as indicated by lower performance
when simulating data and overlapping feature contribution per latent feature. The fact that
simulating data would logically require less disentanglement than performing LSA shows that
we require higher regularization (and hence lower focus on reconstruction) than the one we got
from simulating data.

Essentially, while the reviewer's comments would improve reconstruction and allow us to
improve the UMAPs, doing so would likely worsen LSA performance, which is the main focus of
the project. Also, increasing the latent dimension without changing beta would likely have
caused little to no change because since beta is encouraging disentanglement, it would cause
the newly added dimension to have little variation and encode little new information that wasn’t
already encoded before.

We have also previously explored the concept of toggling the latent dimensions in a separate
project (Way et al. 2020). We are very interested in this area of research in general, and any
additional analyses (beyond hyperparameter optimization) deserves a much deeper dive than
what we can provide in this paper.

Lastly, we intend to include a deeper description and analysis of reconstruction loss across
models, datasets, and MOAs as was suggested by a previous reviewer comment (see section
2.1 above)

We will not review Gaussian distribution assumptions of the VAE as we feel it is not informative

Reviewer 1: By looking at SFigure 6, | am wondering whether latent distribution actually met
gaussian distribution (assumption of VAE). It may show skew distribution as some of latent
features shows low contribution.

This reviewer’'s comment is interesting, but we do not believe it would change the findings of our
study. Suppose we find that the latent dimensions aren’t normally distributed. This wouldn't
change much; a gaussian distribution isn’t the most critical to perform LSA. We need the latent
code to be disentangled, but having normally distributed latent features doesn't necessarily
mean that we have good disentanglement (see
https://towardsdatascience.com/what-a-disentangled-net-we-weave-representation-learning-in-v
aes-pt-1-9e5dbc205bd1)
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In this paper, we will not train or compare conditional VAEs nor cycle GANs

Reviewer 2: While authors provided a comparison between vanilla VAE and MMD-VAE, B-VEA,
there are other methods capable of doing similar tasks (data simulation, counterfactual
predictions ), | would like to see a comparison with those methods such as conditional VAE(
https://papers.nips.cc/paper/2015/hash/8d55a249e6baa5c06772297520da2051-Abstract.html,
CVAE + MMD :

https://academic.oup.com/bioinformatics/article/36/Supplement 2/i610/6055927 ?login=true) or
cycle GANs(https://arxiv.org/abs/1703.10593 ).

While such comparisons would be interesting, they are not the main focus of the manuscript,
which is to benchmark the use of VAEs in cell morphology readouts and to predict
polypharmacology.

We think that CVAE would not be appropriate for our study. In a CVAE, the encoder and
decoder are both conditioned to some variable. In our situation where we are predicting the cell
states of different MOAs, it would make most sense to condition on the MOA. However, because
we’re using the MOA labels in our LSA experiment, conditioning on them is likely to bias our
results and not be effective for MOAs outside the conditioning.

For cycle GANs, we have found that training using these data, in a separate study in our lab, is
extremely difficult. Our lab has not published this yet, but once we are able to better understand
cycleGAN behavior in these data, it will require a separate paper in which we compare
performance and dissect model properties in much greater detail.

Nevertheless, we have added citations to multi-modal approaches like cycle GANs (see section
4.4) as they will point a reader to useful resources for future directions.

We will not be comparing with multi-modal integration, but we clarified our focus on Cell Painting
VAE novelty and added multi-modal citations

Reviewer 1: Researchers found that the optimal VAE architectures were very different between
morphology and gene expression, suggesting that the lessons learned training gene expression
VAEs might not necessarily translate to morphology. It would be interesting to compare the
result with multimodal integration as baseline (i.e., Seurat).

Our focus in this paper was to train and benchmark different variational autoencoder (VAE)
architectures using Cell Painting data and to demonstrate an important, unsolved application in
predicting polypharmacology that we show is now possible for a subset of compounds. It was a
natural and useful extension to compare Cell Painting VAE performance with L1000 VAE
performance especially since our data set contained equivalent drug perturbations. We feel that
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any extension including multi-modal data integration will distract focus away from the Cell
Painting VAE novelty, and requires a much deeper dive beyond scope of our current manuscript.

Additionally, there have been other, more in-depth and very recent multi-modal data integration
efforts using the same or similar datasets (Caicedo et al. 2021; Haghighi et al. 2021). In a
separate paper that we just recently submitted, we also dive much deeper to answer the
question of how the two modalities complement one another in various ways and for various
tasks (Way, Natoli, et al. 2021). These two papers already provide a deeper and more
informative exploration of Cell Painting and L1000 data integration.

Therefore, because multi-modal data integration, while certainly interesting, will distract from the
Cell Painting VAE novelty and is redundant with other recent publications, we feel it is beyond
scope of this current paper.

Nevertheless, multi-modal data integration is important to mention, so we add it to the
discussion. Specifically, we discuss how multi-modal data integration might help with predicting
polypharmacology in the future and include pertinent citations so that we, or another reader,
might be able to follow-up in the future. The new section reads:

“Because we had access to the same perturbations with L1000 readouts, we were able
to compare cell morphology and gene expression results. We found that both models
capture complementary information when predicting polypharmacology, which is a
similar observation to recent work comparing the different technologies’ information
content (Way et al, 2021). We did not explore multi-modal data integration in this project;
this has been explored in more detail in other recent publications (Caicedo et al, 2021;
Haghighi et al, 2021). However, using multi-modal data integration with models like
CycleGAN or other style transfer algorithms might provide more confidence in our ability
to predict polypharmacology in the future (Zhu et al. 2017).”
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