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Convergence of 2nd order entropies with respect to the bin spacing 

To test whether the bin spacing of 0.125 Å in 𝑔𝑖𝑛ℎ is sufficient, we re-binned the values to 0.25 Å and 

computed the second order entropy. The result is shown in SI Figure 1.  

 
Figure 1: Spatially resolved water-water, water-cation, and water-anion entropies around carbazole, as in Figure 5 of the 
main text, but computed at a bin spacing of 0.25 Å. 

We find that the results are qualitatively similar in all cases. Furthermore, the integrals are very close 

for the water-ion entropies. The biggest differences are in the water-water entropy, with a difference 

of 0.22 and 0.1 kcal/mol to the results from the finer bin spacing. Since the positive and negative 

values cancel out for the water-water 3-body calculation, the error is bigger than the absolute value 

of the integral in this case (with an integral of 0.07 kcal/mol).  

However, since the values are always qualitatively similar, and the quantitative agreement is very 

good except for the water-water 3-body calculation, we conclude that the (finer) bin spacing of 0.125 

Å should be sufficient for this study. 



Salting-Out coefficients from the free energy of solvation 

The Salting-Out coefficient KS describes the dependence of the solubility of a compound on the salt 

concentration. It is defined via the Setschenow equation: 

log
𝑆

𝑆0
= −𝐾𝑆 × 𝑐salt (1) 

Here, S and S0 describe the solubility of the compound at the salt concentration csalt and in pure 

water, respectively.  

We further express the solubility in terms of the free energy of solvation: 

 𝑆 = exp (−
Δ𝐺solv

𝑅𝑇
) (2) 

Here, ΔGsolv denotes the change in free energy upon placing a solute molecule from the gas phase 

into the solution, R denotes the gas constant, and T the temperature. Note that, while ΔGsolv is 

defined using the gas phase as a reference, our approach is equally valid for solid substances, since 

we will only be working with differences between ΔGsolv at varying conditions in the solute phase, 

such that the properties of the reference state cancel out.  

Further note that we neglect any solute-solute interactions in the liquid phase. This will generally be 

valid at low solubilities but might lead to errors with highly soluble compounds.  

Combining Equations 12 and 13, we rewrite the Setschenow equation as: 

log
𝑆

𝑆0
=

Δ𝐺solv
0 − Δ𝐺solv(𝑐salt)

𝑅𝑇 ln 10
=  −𝐾𝑆 × 𝑐salt (3) 

Which leads us to the linearized equation: 

 Δ𝐺solv(𝑐salt) = Δ𝐺solv
0 + 𝑅𝑇 ln 10 𝐾𝑆 × 𝑐salt (4) 

Re-computed salt concentration 

 
Figure 2: Plot of the recomputed ion density against the density of a homogeneous system with the solute removed, but 
equal composition of the solvent. Based on the simulations of caffeine in NaCl at salt concentrations from 0.0 to 1.0M. 

To calculate the salting-out coefficient 𝐾𝑆, the salt concentration is needed. The average salt 

concentration of the system corresponds to 𝑔0 in the IST formalism. However, the density 

distribution 𝐺𝜈 is normalized with respect to the bulk concentration 𝑔∞. Therefore, we compute salt 

concentrations from 𝑔∞ and compare to the average salt concentration of the system. SI Figure 2 

shows that the difference is very minor. 

Inhomogeneous Solvation Theory (IST) with multiple solvents 

Here, we present a formal extension of IST to multiple solvents. We attempt to stay as close to the 

original derivation by Lazaridis [1] as possible, and focus on the differences due to the extension to 

mixtures.  

Lazaridis starts by citing equations by Morita and Hiroike for the free energy of liquids given an 

external potential. [2] The same work also contains generalized equations for mixtures. Here, x is 

used to describe the coordinates of multiple species, i.e., 𝑑𝒙 =  ∑ 𝑑𝒓𝜈 . v is defined as 1 − 𝑔(𝑥, 𝑥′), 



where g is the canonical pair distribution function. λ is the thermal de Broglie wavelength (𝜆 =

(ℎ2/2𝜋𝑚𝑘𝑇)
1

2 , see [3])and affects the ideal gas contribution to the absolute free energy. 

Furthermore, ρ is the density, u is the external potential (which will be used to describe the solute), k 

is Boltzmann’s constant, and T is the temperature. 

𝐴

𝑘𝑇
= ∫ 𝑑𝒙

𝜌(𝒙)𝑢𝑠𝜈(𝒙)

𝑘𝑇
−

1

2
∫ ∫ 𝑑𝒙 𝑑𝒙′𝜌(𝒙)𝜌(𝒙′)(1 + 𝑣(𝒙, 𝒙′)) ln(1 + 𝑏(𝒙, 𝒙′))

+ ∫ 𝑑𝒙 𝜌(𝒙)(ln λ3 𝜌(𝒙) − 1)

+
1

2
∫ ∫ 𝑑𝒙 𝑑𝒙′𝜌(𝒙)𝜌(𝒙′)[(1 + 𝑣(𝒙, 𝒙′)) ln(1 + 𝑣(𝒙, 𝒙′)) − 𝑣(𝒙, 𝒙′)]

− + − ⋯ − all more than doubly connected diagrams                 

(5) 

We proceed by substituting 1 + 𝑣(𝑥, 𝑥′) = 𝑔(𝑥, 𝑥′) and 1 + 𝑏(𝒙, 𝒙′) = exp(−𝑢(𝒙, 𝒙′)/kT). 

Furthermore, we use ∫ 𝜌(𝑥)𝑑𝑥 = �̅�. This leads us to: 

𝐴

𝑘𝑇

= ∫ 𝑑𝒙
𝜌(𝒙)𝑢𝑠𝜈(𝒙)

𝑘𝑇
+

1

2
∫ ∫ 𝑑𝒙 𝑑𝒙′

𝜌(𝒙)𝜌(𝒙′)𝑔(𝒙, 𝒙′)𝑢(𝑥, 𝑥′)

𝑘𝑇
− �̅� + ∫ 𝑑𝒙 𝜌(𝒙)ln(λ3𝜌(𝒙))

+
1

2
∫ ∫ 𝑑𝒙 𝑑𝒙′𝜌(𝒙)𝜌(𝒙′)[𝑔(𝒙, 𝒙′) ln(𝑔(𝒙, 𝒙′)) − 𝑔(𝒙, 𝒙′) + 1] − + − ⋯

− all more than doubly connected diagrams of black circles (ρ) and (g–1) bonds. 

(6) 

In the next step, we split the free energy into energy and entropy contributions. Note that there is an 

additional 
3

2
�̅�𝑘𝑇 term describing the kinetic energy. We will omit the higher-order terms 

(represented by the diagrams) but note that they would be part of the entropy term. 

𝐸 =
3

2
�̅�𝑘𝑇 + ∫ 𝑑𝒙𝜌(𝒙)𝑢𝑠𝜈(𝒙) +

1

2
∫ ∫ 𝑑𝒙 𝑑𝒙′𝜌(𝒙)𝜌(𝒙′)𝑔(𝒙, 𝒙′)𝑢(𝑥, 𝑥′) (7) 

𝑆

𝑘
=

5

2
�̅� − ∫ 𝑑𝒙 𝜌(𝒙)ln(λ3𝜌(𝒙))

−
1

2
∫ ∫ 𝑑𝒙 𝑑𝒙′𝜌(𝒙)𝜌(𝒙′)[𝑔(𝒙, 𝒙′) ln(𝑔(𝒙, 𝒙′)) − 𝑔(𝒙, 𝒙′) + 1] 

(8) 

In the following, we will explicitly write sums over the contributions of each species ν. The following 

substitutions apply: 

𝒙 → coordinates 𝒓, species 𝜈 (9) 

∫ 𝑑𝒙 =  ∑ ∫ 𝑑𝒓

𝜈

 (10) 

This leads us to: 

𝐸 =
3

2
�̅�𝑘𝑇 + ∑ ∫ d𝒓 𝜌𝜈(𝒓)𝑢𝑠𝜈(𝒓)

𝜈

+
1

2
∑ ∑ ∫ ∫ d𝒓 d𝒓′𝜌𝜈(𝒓)𝜌𝜈′(𝒓′)𝑔𝜈,𝜈′(𝒓, 𝒓′)𝑢(𝒓, 𝒓′)

𝜈′

 

𝜈

 (11) 



𝑆

𝑘
=

5

2
�̅� − ∑ ∫ 𝑑𝒓 𝜌𝜈(𝒓)𝑙𝑛(𝜆𝜈

3𝜌𝜈(𝒙))

𝜈

−
1

2
∑ ∑ ∫ ∫ 𝑑𝒓 𝑑𝒓′𝜌𝜈(𝒓)𝜌𝜈′(𝒓′) [𝑔𝜈,𝜈′(𝒓, 𝒓′) 𝑙𝑛 (𝑔𝜈,𝜈′(𝒓, 𝒓′)) − 𝑔𝜈,𝜈′(𝒓, 𝒓′)

𝜈′𝜈

+ 1] 

(12) 

In the grand canonical ensemble (GCE), the PCF (pair correlation function) tends towards 1 in the 

limit of long separation between the two atoms of interest. In the canonical ensemble (CE), however, 

the PCF does not converge to 1. The reason is that, by fixing the position of a single particle in space, 

the volume left to the other particles is modified. Therefore, Lazaridis defines a new PCF in terms of 

the density at long distance from the solute. This is roughly equivalent to the PCF in the GCE. 

𝜌𝜈(𝑟) →  𝜌𝜈
∞𝐺𝑠𝜈(𝑟) (13) 

𝑔𝜈,𝜈′(𝑟, 𝑟′) → 𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝑟, 𝑟′) (14) 

Substituting in the new PCF and the limiting density 𝜌∞ in above equations, we obtain 

𝐸 =
3

2
�̅�𝑘𝑇 + ∑ 𝜌𝜈

∞ ∫ d𝒓 𝐺𝑠𝜈(𝒓)𝑢𝑠𝜈(𝒓)

𝜈

+
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞ ∫ ∫ d𝒓 d𝒓′𝐺𝑠𝜈(𝒓)𝐺𝑠𝜈′(𝒓′)𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′)𝑢𝜈𝜈′(𝒓, 𝒓′)

𝜈′

 

𝜈

 
(15) 

𝑆

𝑘
=

5

2
�̅� − ∑ ∫ 𝑑𝒓 𝜌𝜈

∞𝐺𝑠𝜈(𝒓)𝑙𝑛(𝜆𝜈
3𝜌𝜈

∞𝐺𝑠𝜈(𝒓))

𝜈

−
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞ ∫ ∫ 𝑑𝒓 𝑑𝒓′𝐺𝑠𝜈(𝒓)𝐺𝑠𝜈′(𝒓′) [𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′) 𝑙𝑛 (𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′))

𝜈′𝜈

− 𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′) + 1] 

(16) 

We further split the constant and r-dependent terms in the logarithm in the 2nd term of S: 

𝑆

𝑘
=

5

2
�̅� − ∑ ∫ 𝑑𝒓 𝜌𝜈

∞𝐺𝑠𝜈(𝒓)𝑙𝑛(𝜆𝜈
3𝜌𝜈

∞)

𝜈

− ∑ ∫ 𝑑𝒓𝜌𝜈
∞𝐺𝑠𝜈(𝒓) 𝑙𝑛(𝐺𝑠𝜈(𝒓))

𝜈

−
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞ ∫ ∫ 𝑑𝒓 𝑑𝒓′𝐺𝑠𝜈(𝒓)𝐺𝑠𝜈′(𝒓′) [𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′) 𝑙𝑛 (𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′))

𝜈′𝜈

− 𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′) + 1] 

(17) 



Using ∫ 𝑑𝒓 𝜌𝜈
∞𝐺𝑠𝜈(𝑟) = 𝑁𝜈, we can simplify the second term of the solvent entropy: 

𝑆

𝑘
=

5

2
�̅� − ∑ 𝑁𝜈𝑙𝑛(𝜆𝜈

3𝜌𝜈
∞)

𝜈

− ∑ ∫ 𝑑𝒓𝜌𝜈
∞𝐺𝑠𝜈(𝒓) 𝑙𝑛(𝐺𝑠𝜈(𝒓))

𝜈

−
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞ ∫ ∫ 𝑑𝒓 𝑑𝒓′𝐺𝑠𝜈(𝒓)𝐺𝑠𝜈′(𝒓′) [𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′) 𝑙𝑛 (𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′))

𝜈′𝜈

− 𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′) + 1] 

(18) 

In the next step, we subtract the energy and entropy of the unperturbed solvent. These equations 

describe the energy and entropy that the atoms would have if they were transferred to bulk. Note 

that the bulk density 𝑔0 occurs in those equations, which is not necessarily equal to the limiting 

density 𝑔∞. 

𝐸𝑏𝑢𝑙𝑘 =  
3

2
�̅�𝑘𝑇 +

1

2
∑ 𝑁𝜈 ∑ 𝜌𝜈′

0 ∫ 𝑔𝜈𝜈′
0 (𝒓′)𝑢𝜈𝜈′(𝒓′)𝑑𝒓′

𝜈′𝜈

 (19) 

𝑆𝑏𝑢𝑙𝑘

𝑘
=

5

2
�̅� − ∑ 𝑁𝜈𝑙𝑛(𝜆𝜈

3𝜌𝜈
0)

𝜈

−
1

2
∑ ∑ 𝑁𝜈𝜌𝜈′

0 ∫ 𝑔𝜈𝜈′
0 (𝒓′) 𝑙𝑛 𝑔𝜈𝜈′

0 (𝒓′) − 𝑔𝜈𝜈′
0 (𝒓′) + 1 𝑑𝒓′ 

𝜈′𝜈

 (20) 

Subtracting the bulk values leads us to the partial molar energy and entropy. 

�̅�∞ = ∑ 𝜌𝜈
∞ ∫ d𝒓 𝐺𝑠𝜈(𝒓)𝑢𝑠𝜈(𝒓)

𝜈

+
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞ ∫ ∫ d𝒓 d𝒓′𝐺𝑠𝜈(𝒓)𝐺𝑠𝜈′(𝒓′)𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′)𝑢𝜈𝜈′(𝒓, 𝒓′)

𝜈′

 

𝜈

−
1

2
∑ 𝑁𝜈 ∑ 𝜌𝜈′

0 ∫ 𝑔𝜈𝜈′
0 (𝒓′)𝑢𝜈𝜈′(𝒓′)𝑑𝒓′

𝜈′𝜈

 

(21) 

�̅�∞

𝑘
= ∑ 𝑁𝜈𝑙𝑛(𝜆𝜈

3𝜌𝜈
0)

𝜈

− ∑ 𝑁𝜈𝑙𝑛(𝜆𝜈
3𝜌𝜈

∞)

𝜈

− ∑ ∫ 𝑑𝒓𝜌𝜈
∞𝐺𝑠𝜈(𝒓) 𝑙𝑛(𝐺𝑠𝜈(𝒓))

𝜈

−
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞∫ ∫ 𝑑𝒓 𝑑𝒓′𝐺𝑠𝜈(𝒓)𝐺𝑠𝜈′(𝒓′) [𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′) 𝑙𝑛 (𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′))

𝜈′𝜈

− 𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′) + 1] +

1

2
∑ ∑ 𝑁𝜈𝜌𝜈′

0 ∫ 𝑔𝜈𝜈′
0 (𝒓′) 𝑙𝑛 𝑔𝜈𝜈′

0 (𝒓′) − 𝑔𝜈𝜈′
0 (𝒓′) + 1 𝑑𝒓′ 

𝜈′𝜈

 

(22) 

The main difference between IST theory of mixtures and the original formulation is the treatment of 

the density correction, which stems from the first 2 terms in the partial molar entropy. Lazaridis 

assumes that the difference between 𝜌∞ and 𝜌0 is due to the “thermal volume” 𝜅𝑘𝑇, where κ is the 

compressibility of the solvent. In the case of mixtures, however, there are additional differences due 

to different interactions with the solute, which change the composition of the solute around the 

solvent. These differences are typically much larger than the thermal volume assumed by Lazaridis. 

Furthermore, they must be evaluated for each solvent species separately. We note that this is not a 



theoretical limitation of our method, because one can simply increase the total system volume until 

the differences become irrelevant. However, more care is required than with a single solvent. 

We express the density difference in terms of the excluded volume 𝑉𝑒𝑥,𝜈 of each species ν. The value 

of 𝑉𝑒𝑥,𝜈 depends on the exact choice of reference system. If the reference system is defined by 

removing the central solute particle from the solution at constant pressure and constant number of 

solvent particles, 𝑉𝑒𝑥,𝜈 is 

𝑉𝑒𝑥,𝜈 = −𝛥𝑉 + ∫ 1 − 𝐺𝑠𝜈(𝒓)𝑑𝒓 (23) 

where ΔV is the change in system volume upon removal of the solute. If we set 𝑉𝑒𝑥,𝜈 to −𝜅𝑘𝑇, our 

derivation would lead to the same results as Lazaridis’. 

Using 𝜌∞ ≈ 𝜌0 (1 +
𝑉𝑒𝑥,𝜈

𝑉
) and ln(𝑥) ≈ 𝑥 − 1, the first two entropy terms simplify to: 

∑ 𝑁𝜈𝑙𝑛(𝜆𝜈
3𝜌𝜈

0)

𝜈

− ∑ 𝑁𝜈𝑙𝑛(𝜆𝜈
3𝜌𝜈

∞)

𝜈

=  ∑ 𝑁𝜈 𝑙𝑛 (
𝜌𝜈

0

𝜌𝜈
∞)

𝜈

≈ − ∑ 𝑁𝜈 (
𝑉𝑒𝑥,𝜈

𝑉
) = − ∑ 𝜌𝜈𝑉𝑒𝑥,𝜈

𝜈𝜈

 (24) 

�̅�∞

𝑘
= − ∑ 𝜌𝜈𝑉𝑒𝑥,𝜈

𝜈

+ ∑ ∫ 𝑑𝒓𝜌𝜈
∞𝐺𝑠𝜈(𝒓) 𝑙𝑛(𝐺𝑠𝜈(𝒓))

𝜈

−
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞∫ ∫ 𝑑𝒓 𝑑𝒓′𝐺𝑠𝜈(𝒓)𝐺𝑠𝜈′(𝒓′) [𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′) 𝑙𝑛 (𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′))

𝜈′𝜈

− 𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′) + 1] +

1

2
∑ ∑ 𝑁𝜈𝜌𝜈′

0 ∫ 𝑔𝜈𝜈′
0 (𝒓′) 𝑙𝑛 𝑔𝜈𝜈′

0 (𝒓′) − 𝑔𝜈𝜈′
0 (𝒓′) + 1 𝑑𝒓′ 

𝜈′𝜈

 

(25) 

We then add the kinetic energy and one-particle entropy of the solute: 

𝑒𝑠 =
3

2
𝑘𝑇 (26) 

𝑠𝑠

𝑘
=

3

2
−

𝑙𝑛(𝜌𝑠𝜆𝑠
3)

𝑘
 (27) 

This leads us to: 

�̅�𝑠
∞ =

3

2
𝑘𝑇 + ∑ 𝜌𝜈

∞∫ d𝒓 𝐺𝑠𝜈(𝒓)𝑢𝑠𝜈(𝒓)

𝜈

+
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞∫ ∫ d𝒓 d𝒓′𝐺𝑠𝜈(𝒓)𝐺𝑠𝜈′(𝒓′)𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′)𝑢𝜈𝜈′(𝒓, 𝒓′)

𝜈′

 

𝜈

−
1

2
∑ 𝑁𝜈 ∑ 𝜌𝜈′

0 ∫ 𝑔𝜈𝜈′
0 (𝒓′)𝑢𝜈𝜈′(𝒓′)𝑑𝒓′

𝜈′𝜈

 

(28) 



�̅�∞

𝑘
=

3

2
−

𝑙𝑛(𝜌𝑠𝜆𝑠
3)

𝑘
− ∑ 𝜌𝜈𝑉𝑒𝑥,𝜈

𝜈

− ∑ ∫ 𝑑𝒓𝜌𝜈
∞𝐺𝑠𝜈(𝒓) 𝑙𝑛(𝐺𝑠𝜈(𝒓))

𝜈

−
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞∫ ∫ 𝑑𝒓 𝑑𝒓′𝐺𝑠𝜈(𝒓)𝐺𝑠𝜈′(𝒓′) [𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′) 𝑙𝑛 (𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′))

𝜈′𝜈

− 𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′) + 1] +

1

2
∑ ∑ 𝑁𝜈𝜌𝜈′

0 ∫ 𝑔𝜈𝜈′
0 (𝒓) 𝑙𝑛 𝑔𝜈𝜈′

0 (𝒓′) − 𝑔𝜈𝜈′
0 (𝒓′) + 1 𝑑𝒓′ 

𝜈′𝜈

 

(29) 

We use the identity ∫ 𝐺𝑠𝜈𝑑𝑟 =
𝑉𝜌𝜈

𝜌𝜈
∞  to replace 𝑁𝜈 = 𝑉 𝜌𝜈 = 𝜌𝜈

∞∫ 𝐺𝑠𝜈𝑑𝑟. Furthermore, we substitute 

𝜌𝜈
0 ≈ 𝜌𝜈

∞ −
𝜌𝜈

02
𝑉𝑒𝑥,𝜈

𝑁𝜈
, as well as 𝜌𝜈

0 ≈
𝑁𝜈

𝑁𝜈′
𝜌𝜈′

0 . While the latter is an additional approximation compared 

to Lazaridis derivation, it is on the same order of magnitude as other approximations taken, since it is 

proportional to the difference between 𝜌∞ and 𝜌0, and will be multiplied only by a constant term 

independent of the system size (the volume 𝑉𝑒𝑥,𝜈 depends on the properties of the solute and 

solvents, but not on the system size). 

For the energy: 

−
1

2
∑ 𝑁𝜈 ∑ 𝜌𝜈′

0 ∫ 𝑔𝜈𝜈′
0 (𝒓′)𝑢𝜈𝜈′(𝒓′)𝑑𝒓′

𝜈′𝜈

= −
1

2
∑ 𝜌𝜈

∞∫ 𝐺𝑠𝜈𝑑𝑟 ∑  (𝜌𝜈′
∞ −

𝜌𝜈′
0 2

𝑉𝑒𝑥,𝜈

𝑁𝜈′
) ∫ 𝑔𝜈𝜈′

0 (𝒓′)𝑢𝜈𝜈′(𝒓′)𝑑𝒓′

𝜈′𝜈

= −
1

2
∑ 𝜌𝜈

∞∫ 𝐺𝑠𝜈𝑑𝑟 ∑  𝜌𝜈′
∞∫ 𝑔𝜈𝜈′

0 (𝒓′)𝑢𝜈𝜈′(𝒓′)𝑑𝒓′

𝜈′𝜈

+
1

2
∑ 𝑁𝜈 ∑  

𝜌𝜈′
0 2

𝑉𝑒𝑥,𝜈

𝑁𝜈′
∫ 𝑔𝜈𝜈′

0 (𝒓′)𝑢𝜈𝜈′(𝒓′)𝑑𝒓′

𝜈′𝜈

= −
1

2
∑ 𝜌𝜈

∞∫ 𝐺𝑠𝜈𝑑𝒓 ∑  𝜌𝜈′
∞∫ 𝑔𝜈𝜈′

0 (𝒓′)𝑢𝜈𝜈′(𝒓′)𝑑𝒓′

𝜈′𝜈

+
1

2
∑ ∑ 𝜌𝜈

0𝜌𝜈′
0 𝑉𝑒𝑥,𝜈∫ 𝑔𝜈𝜈′

0 (𝒓′)𝑢𝜈𝜈′(𝒓′)𝑑𝒓′

𝜈′𝜈

 

(30) 



For the entropy: 

1

2
∑ ∑ 𝑁𝜈𝜌𝜈′

0 ∫ 𝑔𝜈𝜈′
0 (𝒓′) 𝑙𝑛 𝑔𝜈𝜈′

0 (𝒓′) −  𝑔𝜈𝜈′
0 (𝒓′) + 1 𝑑𝒓′ 

𝜈′𝜈

=  
1

2
∑ ∑ 𝜌𝜈

∞ ∫ 𝐺𝑠𝜈𝑑𝒓 𝜌𝜈′
0 ∫ 𝑔𝜈𝜈′

0 (𝒓′) 𝑙𝑛 𝑔𝜈𝜈′
0 (𝒓′) −  𝑔𝜈𝜈′

0 (𝒓′) + 1 𝑑𝒓′ 

𝜈′𝜈

=  
1

2
∑ ∑ 𝜌𝜈

∞ ∫ 𝐺𝑠𝜈𝑑𝒓 (𝜌𝜈′
∞ −

𝜌𝜈′
0 2

𝑉𝑒𝑥,𝜈

𝑁𝜈′
) ∫ 𝑔𝜈𝜈′

0 (𝒓′) 𝑙𝑛 𝑔𝜈𝜈′
0 (𝒓′) − 𝑔𝜈𝜈′

0 (𝒓′)

𝜈′𝜈

+ 1 𝑑𝒓′ 

=  
1

2
∑ ∑ 𝜌𝜈

∞ ∫ 𝐺𝑠𝜈𝑑𝒓 𝜌𝜈′
∞∫ 𝑔𝜈𝜈′

0 (𝒓′) 𝑙𝑛 𝑔𝜈𝜈′
0 (𝒓′) −  𝑔𝜈𝜈′

0 (𝒓′) + 1 𝑑𝒓′

𝜈′𝜈

−  
1

2
∑ ∑ 𝑁𝜈

𝜌𝜈′
0 2

𝑉𝑒𝑥,𝜈

𝑁𝜈′
∫ 𝑔𝜈𝜈′

0 (𝒓′) 𝑙𝑛 𝑔𝜈𝜈′
0 (𝒓′) −  𝑔𝜈𝜈′

0 (𝒓′) + 1 𝑑𝒓′

𝜈′𝜈

=  
1

2
∑ ∑ 𝜌𝜈

∞ ∫ 𝐺𝑠𝜈𝑑𝒓 𝜌𝜈′
∞∫ 𝑔𝜈𝜈′

0 (𝒓′) 𝑙𝑛 𝑔𝜈𝜈′
0 (𝒓′) −  𝑔𝜈𝜈′

0 (𝒓′) + 1 𝑑𝒓′

𝜈′𝜈

−  
1

2
∑ ∑ 𝜌𝜈

0𝜌𝜈′
0 𝑉𝑒𝑥,𝜈∫ 𝑔𝜈𝜈′

0 (𝒓′) 𝑙𝑛 𝑔𝜈𝜈′
0 (𝒓′) − 𝑔𝜈𝜈′

0 (𝒓′) + 1 𝑑𝒓′ 

𝜈′𝜈

 

(31) 

Inserting equations 30 and 31 in equation 28 and 29, the energy expression becomes: 

�̅�𝑠
∞ =

3

2
𝑘𝑇 + ∑ 𝜌𝜈

∞∫ d𝒓 𝐺𝑠𝜈(𝒓)𝑢𝑠𝜈(𝒓)

𝜈

+
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞∫ ∫ d𝒓 d𝒓′𝐺𝑠𝜈(𝒓)[𝐺𝑠𝜈′(𝒓′)𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′)

𝜈′𝜈

− 𝑔𝜈𝜈′
0 (𝒓, 𝒓′)]𝑢𝜈𝜈′(𝒓, 𝒓′) +

1

2
∑ ∑  𝜌𝜈

0𝜌𝜈′
0 𝑉𝑒𝑥,𝜈∫ 𝑔𝜈𝜈′

0 (𝒓′)𝑢𝜈𝜈′(𝒓′)𝑑𝒓′

𝜈′𝜈

 

(32) 

And the entropy becomes 

�̅�∞

𝑘
=

3

2
−

𝑙𝑛(𝜌𝑠𝜆𝑠
3)

𝑘
− ∑ 𝜌𝜈𝑉𝑒𝑥,𝜈

𝜈

− ∑ ∫ 𝑑𝒓𝜌𝜈
∞𝐺𝑠𝜈(𝒓) 𝑙𝑛(𝐺𝑠𝜈(𝒓))

𝜈

−
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞∫ ∫ 𝑑𝒓 𝑑𝒓′𝐺𝑠𝜈(𝒓) [𝐺𝑠𝜈′(𝒓′) (𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′) 𝑙𝑛 (𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′))

𝜈′𝜈

− 𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′) + 1) − (𝑔𝜈𝜈′

0 (𝒓, 𝒓′) 𝑙𝑛 𝑔𝜈𝜈′
0 (𝒓, 𝒓′) −  𝑔𝜈𝜈′

0 (𝒓, 𝒓′) + 1)]

−
1

2
∑ ∑ 𝜌𝜈

0𝜌𝜈′
0 𝑉𝑒𝑥,𝜈∫ 𝑔𝜈𝜈′

0 (𝒓′) 𝑙𝑛 𝑔𝜈𝜈′
0 (𝒓′) −  𝑔𝜈𝜈′

0 (𝒓′) + 1 𝑑𝒓′ 

𝜈′𝜈

 

(33) 

As discussed above, 𝑔𝜈,𝜈′
𝑖𝑛ℎ  does not become equal to 𝑔𝜈,𝜈′

0  in the bulk, due to the different definition 

of the density. However, 𝐺𝑠𝜈 becomes 1 in the bulk. This allows us to split the integrals into a local 

(close to the solute) and a distant region. 



For the energy: 

1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞∫ ∫ 𝑑𝒓 𝑑𝒓′𝐺𝑠𝜈(𝒓)[𝐺𝑠𝜈′(𝒓′)𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′) − 𝑔𝜈𝜈′
0 (𝒓, 𝒓′)]𝑢𝜈𝜈′(𝒓, 𝒓′)

𝜈′

 

𝜈

=
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞ ∫ d𝒓 d𝒓′𝐺𝑠𝜈(𝒓)[𝐺𝑠𝜈′(𝒓′)𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′)
𝑙𝑜𝑐𝑎𝑙

𝜈′𝜈

− 𝑔𝜈𝜈′
0 (𝒓, 𝒓′)]𝑢𝜈𝜈′(𝒓, 𝒓′)

+  
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞𝑉 ∫ d𝒓′[𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓′) − 𝑔𝜈𝜈′
0 (𝒓′)]𝑢𝜈𝜈′(𝒓′)

𝑉
𝜈′

 

𝜈

 

(34) 

For the entropy: 

1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞ ∫ ∫ 𝑑𝒓 𝑑𝒓′𝐺𝑠𝜈(𝒓) [𝐺𝑠𝜈′(𝒓′) (𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′) 𝑙𝑛 (𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′)) − 𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′) + 1)

𝜈′𝜈

− (𝑔𝜈𝜈′
0 (𝒓, 𝒓′) 𝑙𝑛 𝑔𝜈𝜈′

0 (𝒓, 𝒓′) − 𝑔𝜈𝜈′
0 (𝒓, 𝒓′) + 1)]

=  
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞ ∫ 𝑑𝒓 𝑑𝒓′𝐺𝑠𝜈(𝒓) [𝐺𝑠𝜈′(𝒓′) (𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′) 𝑙𝑛 (𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′))

𝑙𝑜𝑐𝑎𝑙
𝜈′𝜈

− 𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′) + 1) − (𝑔𝜈𝜈′

0 (𝒓, 𝒓′) 𝑙𝑛 𝑔𝜈𝜈′
0 (𝒓, 𝒓′) − 𝑔𝜈𝜈′

0 (𝒓, 𝒓′) + 1)]

+
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞𝑉 ∫ 𝑑𝒓′[(𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓′) 𝑙𝑛 𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓′) − 𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓′) + 1)
𝑉

𝜈′𝜈

− (𝑔𝜈𝜈′
0 (𝒓′) 𝑙𝑛 𝑔𝜈𝜈′

0 (𝒓′) −  𝑔𝜈𝜈′
0 (𝒓′) + 1)] 

(35) 

In the distant region, the difference between g(inh) and g(0) is mainly due to the density difference. 

Therefore, we approximate the difference between the 𝑔 ln 𝑔 − 𝑔 + 1 terms in terms of the density-

difference, which in turn can be expressed as Δ𝜌𝜈′ = 𝜌𝜈′𝑉𝑒𝑥,𝜈′/𝑉. For the energy: 

1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞𝑉 ∫ 𝑑𝒓′[𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓′) − 𝑔𝜈𝜈′
0 (𝒓′)]𝑢𝜈𝜈′(𝒓′)

𝑉
𝜈′

 

𝜈

=
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞𝑉

𝜕

𝜕𝜌𝜈′
 ∫ 𝑑𝒓′[𝑔𝜈𝜈′

0 (𝒓′)𝑢𝜈𝜈′(𝒓′)]𝛥𝜌𝜈′

𝑉
𝜈′𝜈

=
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞2 𝜕

𝜕𝜌𝜈′
∫ 𝑑𝒓′[𝑔𝜈𝜈′

0 (𝒓′)𝑢𝜈𝜈′(𝒓′)]𝑉𝑒𝑥,𝜈′

𝑉
𝜈′𝜈

≈
1

2
∑ ∑ 𝜌𝜈

0𝜌𝜈′
0 2 𝜕

𝜕𝜌𝜈′
∫ 𝑑𝒓′[𝑔𝜈𝜈′

0 (𝒓′)𝑢𝜈𝜈′(𝒓′)]𝑉𝑒𝑥,𝜈′

𝑉
𝜈′𝜈

 

(36) 



For the entropy: 

1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞𝑉 ∫ 𝑑𝒓′[(𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓′) 𝑙𝑛 𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓′) − 𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓′) + 1)
𝑉

𝜈′𝜈

− (𝑔𝜈𝜈′
0 (𝒓′) 𝑙𝑛 𝑔𝜈𝜈′

0 (𝒓′) −  𝑔𝜈𝜈′
0 (𝒓′) + 1)]

=  
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞𝑉 ∫ 𝑑𝒓′

𝜕

𝜕𝜌𝜈′
[𝑔𝜈,𝜈′

0 (𝒓′) 𝑙𝑛 𝑔𝜈,𝜈′
0 (𝒓′) − 𝑔𝜈,𝜈′

0 (𝒓′) + 1]𝛥𝜌𝜈′

𝑉
𝜈′𝜈

=  
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞2

∫ 𝑑𝒓′
𝜕

𝜕𝜌𝜈′
[𝑔𝜈,𝜈′

0 (𝒓′) 𝑙𝑛 𝑔𝜈,𝜈′
0 (𝒓′) − 𝑔𝜈,𝜈′

0 (𝒓′) + 1]𝑉𝑒𝑥,𝜈′

𝑉
𝜈′𝜈

≈  
1

2
∑ ∑ 𝜌𝜈

0𝜌𝜈′
0 2

∫ 𝑑𝒓′
𝜕

𝜕𝜌𝜈′
[𝑔𝜈,𝜈′

0 (𝒓′) 𝑙𝑛 𝑔𝜈,𝜈′
0 (𝒓′) − 𝑔𝜈,𝜈′

0 (𝒓′) + 1]𝑉𝑒𝑥,𝜈′

𝑉
𝜈′𝜈

 

(37) 

In the following, we drop the index V on the integral. The 𝑉𝑒𝑥-dependent terms can be combined 

using the product rule for derivatives with 
𝜕

𝜕𝜌𝜈′
𝜌𝜈′ × ∫ 𝑔𝜈𝜈′

0 (𝒓′)𝑢𝜈𝜈′(𝒓′)d𝒓′
𝑉

. Inserting those results 

into the partial molar energy and entropy gives: 

For the energy: 

�̅�𝑠
∞ =

3

2
𝑘𝑇 + ∑ 𝜌𝜈

∞ ∫ 𝑑𝒓 𝐺𝑠𝜈(𝒓)𝑢𝑠𝜈(𝒓)

𝜈

+
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞ ∫ 𝑑𝒓 𝑑𝒓′𝐺𝑠𝜈(𝒓)[𝐺𝑠𝜈′(𝒓′)𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′)
𝑙𝑜𝑐𝑎𝑙

𝜈′𝜈

− 𝑔𝜈𝜈′
0 (𝒓, 𝒓′)]𝑢𝜈𝜈′(𝒓, 𝒓′) + 

1

2
∑ ∑ 𝜌𝜈

0𝜌𝜈′
0 2

𝑉𝑒𝑥,𝜈′

𝜕

𝜕𝜌𝜈′
∫ 𝑔𝜈𝜈′

0 (𝒓′)𝑢𝜈𝜈′(𝒓′)𝑑𝒓′

𝜈′𝜈

+
1

2
∑ ∑  𝜌𝜈

0𝜌𝜈′
0 𝑉𝑒𝑥,𝜈′ ∫ 𝑔𝜈𝜈′

0 (𝒓′)𝑢𝜈𝜈′(𝒓′)𝑑𝒓′

𝜈′𝜈

=
3

2
𝑘𝑇 + ∑ 𝜌𝜈

∞ ∫ 𝑑𝒓 𝐺𝑠𝜈(𝒓)𝑢𝑠𝜈(𝒓)

𝜈

+
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞ ∫ 𝑑𝒓 𝑑𝒓′𝐺𝑠𝜈(𝒓)[𝐺𝑠𝜈′(𝒓′)𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′)
𝑙𝑜𝑐𝑎𝑙

𝜈′𝜈

− 𝑔𝜈𝜈′
0 (𝒓, 𝒓′)]𝑢𝜈𝜈′(𝒓, 𝒓′)

+  
1

2
∑ ∑ 𝜌𝜈

0𝜌𝜈′
0 𝑉𝑒𝑥,𝜈′

𝜕

𝜕𝜌𝜈′
[𝜌𝜈′

0 ∫ 𝑔𝜈𝜈′
0 (𝒓′)𝑢𝜈𝜈′(𝒓′)𝑑𝒓′]

𝜈′𝜈

 

(38) 



For the entropy: 

�̅�∞

𝑘
=

3

2
−

𝑙𝑛(𝜌𝑠𝜆𝑠
3)

𝑘
− ∑ 𝜌𝜈𝑉𝑒𝑥,𝜈

𝜈

− ∑ ∫ 𝑑𝒓𝜌𝜈
∞𝐺𝑠𝜈(𝒓) 𝑙𝑛(𝐺𝑠𝜈(𝒓))

𝜈

−
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞ ∫ 𝑑𝒓 𝑑𝒓′𝐺𝑠𝜈(𝒓) [𝐺𝑠𝜈′(𝒓′) (𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′) 𝑙𝑛 (𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′))

𝑙𝑜𝑐𝑎𝑙
𝜈′𝜈

− 𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′) + 1) − (𝑔𝜈𝜈′

0 (𝒓, 𝒓′) 𝑙𝑛 𝑔𝜈𝜈′
0 (𝒓, 𝒓′) −  𝑔𝜈𝜈′

0 (𝒓, 𝒓′) + 1)]

−
1

2
∑ ∑ 𝜌𝜈

0𝜌𝜈′
0 2

𝑉𝑒𝑥,𝜈′

𝜕

𝜕𝜌𝜈′
∫ [𝑔𝜈,𝜈′

0 (𝒓′) 𝑙𝑛 𝑔𝜈,𝜈′
0 (𝒓′) − 𝑔𝜈,𝜈′

0 (𝒓′) + 1]𝑑𝒓′

𝑉
𝜈′𝜈

−
1

2
∑ ∑ 𝜌𝜈

0𝜌𝜈′
0 𝑉𝑒𝑥,𝜈′ ∫ 𝑔𝜈𝜈′

0 (𝒓′) 𝑙𝑛 𝑔𝜈𝜈′
0 (𝒓′) − 𝑔𝜈𝜈′

0 (𝒓′) + 1 𝑑𝒓′ 

𝜈′𝜈

=
3

2
−

𝑙𝑛(𝜌𝑠𝜆𝑠
3)

𝑘
− ∑ 𝜌𝜈𝑉𝑒𝑥,𝜈

𝜈

− ∑ ∫ 𝑑𝒓𝜌𝜈
∞𝐺𝑠𝜈(𝒓) 𝑙𝑛(𝐺𝑠𝜈(𝒓))

𝜈

−
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞ ∫ 𝑑𝒓 𝑑𝒓′𝐺𝑠𝜈(𝒓) [𝐺𝑠𝜈′(𝒓′) (𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′) 𝑙𝑛 (𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′))

𝑙𝑜𝑐𝑎𝑙
𝜈′𝜈

− 𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′) + 1) − (𝑔𝜈𝜈′

0 (𝒓, 𝒓′) 𝑙𝑛 𝑔𝜈𝜈′
0 (𝒓, 𝒓′) −  𝑔𝜈𝜈′

0 (𝒓, 𝒓′) + 1)]

−
1

2
∑ ∑ 𝜌𝜈

0𝜌𝜈′
0 𝑉𝑒𝑥,𝜈′

𝜕

𝜕𝜌𝜈′
𝜌𝜈′

0 ∫ [𝑔𝜈,𝜈′
0 (𝒓′) 𝑙𝑛 𝑔𝜈,𝜈′

0 (𝒓′) − 𝑔𝜈,𝜈′
0 (𝒓′) + 1]𝑑𝒓′

𝑉
𝜈′𝜈

   

(39) 

As in Lazaridis’ derivation, we split the energy and entropy into “local” and “liberation” terms. 

Lazaridis further replaces the remaining 𝜌0-terms by 𝜌∞, This simplification, together with assuming 

a single solvent and 𝑉𝑒𝑥 = −𝜅𝑘𝑇, makes our results equal to Lazaridis original equations: 

𝛥𝐸∗ =  ∑ 𝜌𝜈
∞ ∫ 𝑑𝒓 𝐺𝑠𝜈(𝒓)𝑢𝑠𝜈(𝒓)

𝜈

+
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞ ∫ 𝐺𝑠𝜈(𝒓)[𝐺𝑠𝜈′(𝒓′)𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′)
𝑙𝑜𝑐𝑎𝑙

𝜈′𝜈

− 𝑔𝜈𝜈′
0 (𝒓, 𝒓′)]𝑢𝜈𝜈′(𝒓, 𝒓′)𝑑𝒓 𝑑𝒓′ 

(40) 

𝛥𝑆∗

𝑘
= − ∑ ∫ 𝑑𝒓𝜌𝜈

∞𝐺𝑠𝜈(𝒓) 𝑙𝑛(𝐺𝑠𝜈(𝒓))

𝜈

−
1

2
∑ ∑ 𝜌𝜈

∞𝜌𝜈′
∞ ∫ 𝑑𝒓 𝑑𝒓′𝐺𝑠𝜈(𝒓) [𝐺𝑠𝜈′(𝒓′) (𝑔𝜈,𝜈′

𝑖𝑛ℎ (𝒓, 𝒓′) 𝑙𝑛 (𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′))

𝑙𝑜𝑐𝑎𝑙
𝜈′𝜈

− 𝑔𝜈,𝜈′
𝑖𝑛ℎ (𝒓, 𝒓′) + 1) − (𝑔𝜈𝜈′

0 (𝒓, 𝒓′) 𝑙𝑛 𝑔𝜈𝜈′
0 (𝒓, 𝒓′) −  𝑔𝜈𝜈′

0 (𝒓, 𝒓′) + 1)] 

(41) 

𝑒𝑙𝑖𝑏 =
3

2
𝑘𝑇 +  

1

2
∑ ∑ 𝜌𝜈

0𝜌𝜈′
0 𝑉𝑒𝑥,𝜈′

𝜕

𝜕𝜌𝜈′
[𝜌𝜈′

0 ∫ 𝑔𝜈𝜈′
0 (𝒓′)𝑢𝜈𝜈′(𝒓′)𝑑𝒓′]

𝜈′𝜈

 (42) 

 



𝑠𝑙𝑖𝑏

𝑘
=

3

2
−

𝑙𝑛(𝜌𝑠𝜆𝑠
3)

𝑘
− ∑ 𝜌𝜈𝑉𝑒𝑥,𝜈′

𝜈

−
1

2
∑ ∑ 𝜌𝜈

0𝜌𝜈′
0 𝑉𝑒𝑥,𝜈′

𝜕

𝜕𝜌𝜈′
𝜌𝜈′

0 ∫ [𝑔𝜈,𝜈′
0 (𝒓′) 𝑙𝑛 𝑔𝜈,𝜈′

0 (𝒓′) − 𝑔𝜈,𝜈′
0 (𝒓′) + 1]𝑑𝒓′

𝑉
𝜈′𝜈

 

(43) 
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