Sequential delivery of different microRNAs nanocarriers facilitates the M1-to-M2 transition of macrophages

Xueping Li^a, Suling Xue^a, Qi Zhan^a, Xiaolei Sun^a, Ning Chen^a, Sidi Li^b, Jin Zhao^{a*}, Xin Hou^a, Xubo Yuan^a

^aTianjin Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
^bCollege of Chemistry and Chemical Engineering, Yantai University, Yantai 264005,
Shandong Province, China

*Corresponding author. zhaojin@tju.edu.cn

Figure S1. Flow cytometric analyses of macrophages phenotypes treated with PBS (A) or Ng(NC) (B). C) Quantitative analyses of fluorescence of A and B. ns indicates that the groups are not significantly different from each other.

Figure S2. Flow cytometric analyses of macrophages phenotypes treated with Ng(miR-21). A) The M1 macrophages related marker CCR7. B) The M2 macrophages related marker CD206. **p<0.01; ***p<0.001; ns indicates that the groups are not significantly different from each other.

Figure S3. Immunofluorescence images of macrophages with the treatment of Ng(miR-21). A) The expression of iNOS (M1 phenotypes related marker). B) The expression of CD206 (M2 phenotypes related marker). The nuclei were counterstained with DAPI. The scale bars were 50 μ m.

Figure S4. A) ELISA assay for TNF- α and iL-10 in the supernatant of RAW264.7 cells treated with Ng(miR-21). B) Real-time PCR analysis of relative genes expression of the M1-related iNOS and M2-related IL-10 and TGF- β . *p<0.05; **p<0.01; ns indicates that the groups are not significantly different from each other.