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1 Youle-Walker method for Multivariate Autoregres-

sive Model (MVAR) parameterization

Our analysis assumes that the process under study is represented by multidimensional time

series, x(t) = {x1(t), ..., xK(t)}, propagated with a time step ∆t, that fulfills the condition

of being mean-ergodic and cross-covariance ergodic.1 This implies the existence of the first

and the second mixed statistical moments defined as:

〈x(t)〉 = lim
T→∞

1

T

T∑
t=1

x(t), (1)

Γ(r) = 〈x(t) xT (t− r∆t)〉. (2)

Furthermore, it holds that Γ(r) = ΓT (−r), since:

Γ(r) = lim
T→∞

1

T

T∑
t=1

x(t+ r) xT (t) = lim
T→∞

1

T

T∑
t′=r+1

x(t′ − r) xT (t′) = ΓT (−r). (3)
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Based on these assumptions one can postulate an MVAR model2 of order P , in the following

form:

x(t) =
P∑

p=1

Apx(t− p∆t) + e(t), (4)

where Ap are K × K real matrices and e(t) = {e1(t), ..., eK(t)} is the white noise vector

characterized by a covariance matrix Ṽ := 〈e(t)eT (t)〉. Once parameterized, the model can

be applied to predict signal value at time t based on P previous steps of the signal under

study:

xpred(t) =
P∑

p=1

Apx(t− p∆t). (5)

A possible way to parameterize an MVAR model (that is, to determine the Ṽ and a set of

{Ap} parameters) is provided by the Youle-Walker method,3,4 which seeks to minimize the

trace of the covariance matrix Ṽ,2 by solving the following set of P + 1 linear equations for

r ∈ {0, . . . , P}:

Γ(r) =
P∑

p=1

ApΓ(r − p) + δr,0Ṽ, (6)

where δ is a Kronecker delta. Under the assumption that the error of prediction from Eq. 5,

given by the difference between the real and the predicted signal, ∆x(t) = x(t)− xpred(t), is

a white noise, covariance matrices of ∆x(t) and e(t) are equal: V := 〈∆x(t)∆x(t)T 〉 = Ṽ,

which implies that diagonal elements of the covariance matrix V can be used as quality

indicators for model predictions for respective signal channels.

Below, we provide a brief derivation of Eq. 6. Starting from Eq. 4 and multiplying it by

xT (t− r∆t), we get:

x(t)xT (t− r∆t) =
P∑

p=1

Apx(t− p∆t)xT (t− r∆t) + e(t)xT (t− r∆t). (7)

Than, looking at an expected value leads to:

〈x(t)xT (t− r∆t)〉 =
P∑

p=1

Ap〈x(t− p∆t)xT (t− r∆t)〉+ 〈e(t)xT (t− r∆t)〉, (8)
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which, based on the fact that Γ(r) = ΓT (−r) and Γ(m − n) = 〈x(t − n∆t)xT (t −m∆t)〉,

can be expressed as:

Γ(r) =
P∑

p=1

ApΓ(r − p) + 〈e(t)xT (t− r∆t)〉. (9)

Given the white noise character of e(t), the term 〈e(t)xT (t − r∆t)〉 vanishes for r 6= 0.1 In

turn, in the case of r = 0, once xT (t) in this term is substituted according to Eq. 4, we get:

〈e(t)xT (t)〉 =
P∑

p=1

〈e(t)xT (t− p∆t)〉AT
p + 〈e(t)eT (t)〉 = 〈e(t)eT (t)〉, (10)

which together with Eq. 9 are equivalent to Eq. 6.

In a similar way it can be demonstrated that if prediction error ∆x(t) is white noise

its covariance matrix, V is equivalent to the one introduced in the Youle-Walker method,

Ṽ. Considering the expected value of ∆x(t)xT (t− r∆t), while substituting ∆x(t) = x(t)−∑P
p=1 Apx(t− p∆t) gives:

〈∆x(t)xT (t− r∆t)〉 = 〈x(t)xT (t− r∆t)〉 −
P∑

p=1

Ap〈x(t− p∆t)xT (t− r∆t)〉, (11)

which leads to:

〈∆x(t)xT (t− r∆t)〉 = Γ(r)−
P∑

p=1

ApΓ(r − p). (12)

Leaving the only non-vanishing term, that is for r = 0, and using the substitution of xT (t)

and further steps as for obtaining Eq. 10 we get:

〈∆x(t)∆x(t)T 〉 = Γ(0)−
P∑

p=1

ApΓ(−p) = Ṽ. (13)
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2 Reaction coordinate selection and validation

Figure S1: The comparison of considered reaction coordinates, ξ, in terms of the resulting
potential of mean force, PMF(ξ), and the conditional probability of finding the system on a
reactive path at a given ξ value, p(TP | ξ).5 Left to right: dominant independent component
(IC) of time lagged independent component analysis (TICA) based on the combination of
root mean square deviation (RMSD) from the native structure and sines and cosines of
peptide (φ, ψ) angles; the same, but without RMSD; RMSD with respect to the native
structure; the fraction of native contacts calculated according to Ref,6 with parameters
β = 1.0 and λ = 1.4. The optimal reaction coordinate was selected based on the proximity
of p(TP | ξ) maximum to the theoretical limit of 0.5.5
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Figure S2: The comparison of major hydrogen bonds formation along the chosen reac-
tion coordinate, ξ :TICA(RMSD,φ, ψ), and the reaction coordinate based on RMSD only,
ξ :RMSD. Both reaction coordinates similarly capture major rearrangements in the system
as described in the manuscript: gradual vanishing of the N-terminal structure and turn repo-
sitioning during folding (yellow lines), temporary formation of PRO4:GLY7 interaction (blue
line), turn nucleation (green lines), and hairpin arms stabilisation (red lines). TICA-based
reaction coordinate, which achieves considerably higher maximum p(TP | ξ) value, resolves
better the shift between turn formation and arms stabilisation around the transition state,
providing more clear interpretation of the Granger causality analysis results.

Figure S3: Free energy maps as a function of two dominant ICs for TICA solutions with
increasing lag time, τ . Optimal lag time was chosen as 120 ns, based on the requirement that
a) it results in two clear free energy minima corresponding to folded and unfolded states,
b) the lowest free energy path between them leads along the first IC (see also Fig. S4). We
note, that sets of frames and representative structures (mapped with black circles) used to
visualise the (un)folding process are similar for all considered lag times (see also Fig. S5).
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Figure S4: Root mean square deviation, d, from 0 in TICA space in all ICs ≥ 2, for 6
simulation frames representative for (un)folding steps obtained with different TICA lag times.
d provides a heuristic measure of how well the differences between consecutive frames are
explained just by the progress along the reaction coordinate (ξ = IC 1).

Figure S5: The overlap, measured by Tanimoto coefficient, between sets of trajectory frames
assigned to consecutive folding steps based on proximity to 6 equidistant centres along the
reaction coordinate, obtained for TICA analyses with increasing lag time. In most cases the
overlap is > 0.85, indicating little dependence of the results on particular lag time.
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3 Contacts formation and turn location during CLN025

folding

Figure S6: The frequency of contact formation in subsequent (un)folding phases based on
0.32 nm inter-residue distance cutoff. (2, 9)∗ denotes an additional statistics for the hy-
drophobic TYR2-TRP9 contact at a cutoff distance 0.5 nm.

Figure S7: Medians of plane angles between Cα atoms of i−2− i− i+2 residues (reported for
i-th residue) in subsequent (un)folding phases. Lines are guide for the eye.
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Figure S8: Representative structures for subsequent folding steps and schematic depiction
of inter-residue contact frequencies obtained for RMSD-only based reaction coordinate.
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4 Granger causality matrix

Figure S9: Full Granger causality matrix, J, for all inter-residue distances in CLN025.
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5 Statistical validation of contact-based causality de-

scriptors

Figure S10: Contact-based descriptors of Granger causality obtained for the shuffled trajec-
tory. Note that the Y axes are scaled by 10−4. Color codes for contact groups: magenta -
turn; blue - arms; green - ladder; black - direct.

Table S1: p-values for normality tests performed on sets of G values obtained form the
shuffled trajectory.

test G→ G← G+ G◦

D’Agostino-Pearson 90 41 62 68
Shapiro-Wilk 97 30 82 89
Kolmogorov-Smirnov 100 71 93 95
Lilliefors 99 30 71 78
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Figure S11: p-values for testing a null hypothesis that contact based descriptors of Granger
causality obtained from the original trajectory belong to the same distribution as those
obtained from the shuffled trajectory. Normal distributions were assumed for G values
obtained upon trajectory shuffling (see above), and the Student’s t-test was used to assess
the p-values. Color codes for contact groups: magenta - turn; blue - arms; green - ladder;
black - direct.
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