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Figure S1. Powder XRD patterns of Cu2MHf3S8 samples after synthesis (a) and pellets after 
measurements (b).
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Figure S2. Heating and cooling data of electrical conductivity (a), Seebeck coefficient (b), and 
thermoelectric power factor PF (c) for Cu2MHf3S8.



S3

(a) (b) 

(c) (d) 

0.0 0.2 0.4 0.6 0.8 1.0

0.32 eV

hν [eV]

(α
hν

)2 
[a

.u
.]

 Cu2MnHf3S8

1.0 eV

0.0 0.2 0.4 0.6 0.8 1.0

Cu2CoHf3S8

0.69 eV0.22 eV

(α
hν

)2 
[a

.u
.]

hν [eV]
0.0 0.2 0.4 0.6 0.8 1.0

Cu2NiHf3S8

0.69 eV0.22 eV

(α
hν

)2 
[a

.u
.]

hν [eV]

0.0 0.2 0.4 0.6 0.8 1.0

 Cu2FeHf3S8

0.69 eV0.22 eV

hν [eV]

(α
hν

)2 
[a

.u
.]

Figure S3. The optical absorption spectra versus photon energy of Cu2MHf3S8 (M=Mn, Fe, Co, and 
Ni) thiospinels at room temperature.

Elastic properties

The bulk modulus was calculated using the following equation [1-3]:
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where ρ is the material density.

The shear modulus was calculated as:
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The Young’s modulus is calculated as:
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The Poisson’s ratio is calculated as:
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The Debye temperatures were calculated using the following expression [4]:
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where h is Planck’s constant, kB is Boltzmann’s constant, NA is Avogadro’s number, M is the 

molecular weight, n is the number of atoms in the molecule, and νm is the averaged wave velocity 

integrated over several crystal directions [5]:
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where νl and νt are the longitudinal and transverse sound velocities. 

Effect of the difference between the longitudinal and transverse speed of sound on the 

Grüneisen parameter

Grüneisen parameters γ were calculated using the following equation [5]:
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where ν is the Poisson ratio. The square of the ratio of the longitudinal and transverse speed of sound 

 can be found using the following equation [5]:
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system of equations (S7) and (S8), we obtain: . After plotting the derivative  
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and analyzing this dependence we have found that it is an increasing function over the interval 

(1; 10) (α < 1 is not considered because it would mean that vL<vT, the values of α > 10 were not 

considered as  is very unlikely). The performed analysis indicates that γ increases with 10L Tv v

increasing α, therefore γ increases with increasing  ratio.l
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Thermal transport properties

From the kinetic theory, the lattice thermal conductivity is expressed as [6]: 

(S9)1
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where  is experimental lattice thermal conductivity,  is the specific heat at constant volume, lat VC

 is the average sound velocity. Considering this, the phonon mean free path can be calculated using mv

the following equation [7]:
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For the calculation of lph at 298 K, the  was assumed equal to the measured κ due to very low lat

electrical conductivity (σ < 10 S/cm), specific heat capacity was estimated using the Dulong-Petit 

approximation, and average sound velocity was obtained from the acoustic data of longitudinal vl and 

transverse vt sound velocities using Equation S9.
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