Supporting Information

Crystal structure and thermoelectric properties of novel quaternary $Cu_2MHf_3S_8$ (*M* – Mn, Fe, Co, Ni) thiospinels with low thermal conductivity

Oleksandr Cherniushok¹, Oleksandr V. Smitiukh², Janusz Tobola³, Rafal Knura¹, Oleg V. Marchuk², Taras Parashchuk^{1*}, Krzysztof T. Wojciechowski^{1*}

 ¹Thermoelectric Research Laboratory, Department of Inorganic Chemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland
 ²Department of Chemistry and Technology, Volyn National University, Voli Ave 13, Lutsk, 43025, Ukraine
 ³Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland

> *Corresponding author(s): Taras Parashchuk, E-mail: <u>parashchuk@agh.edu.pl.</u> Krzystof T. Wojciechowski, E-mail: <u>wojciech@agh.edu.pl</u>

Table of contents

Figure S1. Powder XRD patterns of $Cu_2MHf_3S_8$ samples after synthesis and pellets after measurements.

Figure S2. Heating and cooling data of electrical conductivity (a), Seebeck coefficient (b), and thermoelectric power factor PF (c) for Cu₂*M*Hf₃S₈.

Figure S3. The optical absorption spectra versus photon energy of $Cu_2MHf_3S_8$ (*M*=Mn, Fe, Co, and Ni) thiospinels at room temperature.

Equations S1-S8. Details of elastic properties calculations.

Equations S9-S10. Details of thermal transport properties calculations.

Figure S1. Powder XRD patterns of $Cu_2MHf_3S_8$ samples after synthesis (a) and pellets after measurements (b).

Figure S2. Heating and cooling data of electrical conductivity (a), Seebeck coefficient (b), and thermoelectric power factor PF (c) for Cu₂ MHf_3S_8 .

Figure S3. The optical absorption spectra versus photon energy of $Cu_2MHf_3S_8$ (*M*=Mn, Fe, Co, and Ni) thiospinels at room temperature.

Elastic properties

The bulk modulus was calculated using the following equation [1-3]:

$$B = \rho \left(\upsilon_L^2 - \frac{4}{3} \upsilon_T^2 \right). \tag{S1}$$

where ρ is the material density.

The shear modulus was calculated as:

$$G = v_T^2 \rho. \tag{S2}$$

The Young's modulus is calculated as:

$$E = \frac{9BG}{3B+G}.$$
(S3)

The Poisson's ratio is calculated as:

$$v = \frac{E - 2G}{2G}.$$
(S4)

The Debye temperatures were calculated using the following expression [4]:

$$\Theta_D = \frac{h}{k_B} \left[\frac{3n}{4\pi} \left(\frac{N_A \rho}{M} \right) \right]^{1/3} v_m \,, \tag{S5}$$

where *h* is Planck's constant, k_B is Boltzmann's constant, N_A is Avogadro's number, *M* is the molecular weight, *n* is the number of atoms in the molecule, and v_m is the averaged wave velocity integrated over several crystal directions [5]:

$$v_m = \left[\frac{1}{3}\left(\frac{2}{v_i^3} + \frac{1}{v_l^3}\right)\right]^{-1/3},$$
 (S6)

where v_l and v_t are the longitudinal and transverse sound velocities.

Effect of the difference between the longitudinal and transverse speed of sound on the Grüneisen parameter

Grüneisen parameters γ were calculated using the following equation [5]:

$$\gamma = \frac{3}{2} \left(\frac{1+\nu}{2-3\nu} \right). \tag{S7}$$

where v is the Poisson ratio. The square of the ratio of the longitudinal and transverse speed of sound $\left(\frac{v_l}{v_t}\right)^2$ can be found using the following equation [5]:

$$\left(\frac{v_l}{v_t}\right)^2 = \left(\frac{2-2\nu}{1-2\nu}\right) \tag{S8}$$

Let us consider that $\alpha = \left(\frac{v_l}{v_t}\right)^2$. Then α is greater if the ratio $v_L:v_S$ is greater. After solving the

system of equations (S7) and (S8), we obtain:
$$\gamma = \frac{\frac{3}{2} + \frac{3}{2(2-\alpha)}}{2 - \frac{3(2-\alpha)}{2-2\alpha}}$$
. After plotting the derivative $\frac{d\gamma}{d\alpha}$

and analyzing this dependence we have found that it is an increasing function over the interval (1; 10) ($\alpha < 1$ is not considered because it would mean that $v_L < v_T$, the values of $\alpha > 10$ were not considered as $v_L > \sqrt{10} v_T$ is very unlikely). The performed analysis indicates that γ increases with increasing α , therefore γ increases with increasing $\frac{v_l}{v_L}$ ratio.

Thermal transport properties

From the kinetic theory, the lattice thermal conductivity is expressed as [6]:

$$\kappa_{lat} = \frac{1}{3} C_V v_m l_{ph} \tag{S9}$$

where κ_{lat} is experimental lattice thermal conductivity, C_V is the specific heat at constant volume, v_m is the average sound velocity. Considering this, the phonon mean free path can be calculated using the following equation [7]:

$$l_{ph} = \frac{3\kappa_{lat}}{C_V v_m} \tag{S10}$$

For the calculation of l_{ph} at 298 K, the κ_{lat} was assumed equal to the measured κ due to very low electrical conductivity ($\sigma < 10$ S/cm), specific heat capacity was estimated using the Dulong-Petit approximation, and average sound velocity was obtained from the acoustic data of longitudinal v_1 and transverse v_t sound velocities using Equation S9.

References

- Y.I. Ravich, B.A. Efimova, I.A. Smirnov, Semiconducting Lead Chalcogenides, Springer US, 1970. https://doi.org/10.1007/978-1-4684-8607-0.
- [2] B.M. Askerov, Electron Transport Phenomena in Semiconductors, WORLD SCIENTIFIC, 1994. https://doi.org/10.1142/1926.
- [3] Thermoelectrics Handbook: Macro to Nano 1st Edition D.M. Rowe H, (n.d.).

https://www.routledge.com/Thermoelectrics-Handbook-Macro-to-Nano/Rowe/p/book/9780849322648 (accessed February 13, 2021).

- [4] O.L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids. 24 (1963) 909–917. https://doi.org/10.1016/0022-3697(63)90067-2.
- [5] D.S. Sanditov, V.N. Belomestnykh, Relation between the parameters of the elasticity theory and averaged bulk modulus of solids, Tech. Phys. 56 (2011) 1619–1623. https://doi.org/10.1134/S106378421111020X.
- [6] T. M. Tritt, *Thermal conductivity: theory, properties, and applications*, Springer Science & Business Media, 2005.
- [7] H. Xie, S. Hao, S. Cai, T.P. Bailey, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity in diamondoid lattices: high thermoelectric performance in chalcopyrite Cu_{0.8+y}Ag_{0.2}In_{1-y}Te₂, Energy Environ. Sci. 13 (2020) 3693–3705. https://doi.org/10.1039/D0EE02323J.