Supplementary Information

Fusobacterium nucleatum Reduces METTL3-mediated m⁶A Modification and

Contributes to Colorectal Cancer Metastasis

Shujie Chen, Lu Zhang, Mengjie Li, Ying Zhang, Meng Sun, Lingfang Wang, Jiebo Lin, Yun Cui, Qian Chen, Chenqi Jin, Xiang Li, Boya Wang, Hao Chen, Tianhua Zhou, Liangjing Wang, Chih-Hung Hsu, Wei Zhuo

LoVo Migration Assay

d

а

LoVo Invasion Assay

HCT116

е

F. nucleatum-

h

F. nucleatum - + + + Vector + + - -METTL3 - - + -METTL3 mutant - - + METTL3 METTL3 ratio 1 0.50 1.99 2.08 GAPDH -35 KDa

Supplementary Fig. 1 *F. nucleatum* downregulates m⁶A levels and METTL3 expression in CRC cells.

a, mRNA dot blot analysis was performed to determine the m⁶A levels of LoVo cells co-cultured with or without *F. nucleatum*.

b, HCT116 cells were pretreated with *F. nucleatum*, *E. coli* DH5α or PBS control for 2 h and subjected to invasion assay (Left). The invaded cells were quantified by counting in five fields (Right). Scale bar, 100 μm.

c, LoVo cells were pretreated with *F. nucleatum*, *E.coli* DH5 or PBS control for 2 h and subjected to transwell assay (Left). The migrated cells were quantified by counting in six fields (Right). Scale bar, 100 μm.

d, LoVo cells were pretreated with *F. nucleatum*, *E.coli* DH5α or PBS control for 2 h and subjected to invasion assay (Left). The invaded cells were quantified by counting in five fields (Right). Scale bar, 100 μm.

e, The statistical analysis of METTL3 protein levels from three independent experiments of HCT116 cells treated with *F. nucleatum*, *E.coli* DH5α or PBS control.
f, Western blot was performed to determine the m⁶A modification-associated protein levels in LoVo cells treated with *F. nucleatum*, *E.coli* DH5 or PBS control.

g, The statistical analysis of METTL3 protein levels from three independent experiments of LoVo cells treated with *F. nucleatum*, *E. coli* DH5α or PBS control.

h, Western blot was performed to detect the expression of METTL3 in HCT116 cells transfected with siRNA targeting METTL3 or control siRNAs.

The methylene blue staining was used as a loading control in mRNA dot blot assay. Data are from one representative of three independent experiments (\mathbf{a} , \mathbf{f} , \mathbf{h}). Data are shown as mean \pm SD. *P*-values was shown. Two-tailed Student's t test (\mathbf{b} , \mathbf{c} , \mathbf{d} , \mathbf{e} , \mathbf{g}).

F. nucleatum Control NF2 Ξ. ratio 0.20 1 KIBRA ... 130 ratio 0.27 1 FRMD6 ratio 0.27 1 GAPDH - 35 kDa

HCT116

b

е

LoVo

d

f

Supplementary Fig. 2 F. nucleatum activates YAP signaling in CRC cells.

a, Western blot was performed to detect the levels of YAP and phospho-YAP, LATS1/2 and phospho-LATS1/2, MST1/2 and phospho-MST1/2 in LoVo cells treated with *F*. *nucleatum* or PBS control.

b, **c**, Western blot was performed to detect the expression levels of NF2, KIBRA and FRMD6 in HCT116 (**b**) or LoVo cells (**c**) treated with *F. nucleatum* or PBS control.

d, LoVo cells were transfected with two different siRNAs against YAP or scrambled control siRNAs and treated with *F. nucleatum* or PBS control. Transwell migration assay was performed. The migrated cells were quantified by counting in five fields.

e, HCT116 cells transfected with two different siRNAs against p65 or scrambled control siRNAs were subjected to western blot analysis of METTL3.

f, After treating with *F. nucleatum* or PBS control, HCT116 cells were administrated with BAY11-7082 and subjected to western blot analysis for METTL3, p-P65 and P65. Data are from one representative of three independent experiments (**a-c**, **e-f**). Data are shown as mean \pm SD. *P*-values was shown. Two-tailed Student's t test (**d**)

С

Supplementary Fig. 3 YAP and FOXD3 as the upstream regulators of METTL3 participate in its transcriptional regulation and the levels of FOXD3 were decreased in *F. nucleatum*-treated LoVo cells.

a, Quantitative RT-PCR was performed in HCT116 cells to detect the expression of *METTL3* mRNA after transfection with FOXD3 plasmid or control vector.

b, Quantitative RT-PCR was performed in HCT116 cells to detect the expression of *METTL3* mRNA after transfection with siRNA targeting FOXD3.

c, Western blot analysis of FOXD3 expression in LoVo cells treated with *F. nucleatum* or PBS control.

Data are from one representative of three independent experiments (c). Data are shown as mean \pm SD. *P*-values was shown. Two-tailed Student's t test (**a**, **b**)

peptidyl-lysine modification

microtubule cytoskeleton organization

DNA replication

histone modification

Ö

5

244

10

-log₁₀ (*p*. adj)

300

15

202

292

GO m⁶A-UP in utero embryonic development 201 regulation of microtubule-based process 127 Description regulation of chromosome organization 195 regulation of small GTPase mediated signal transduction 200 regulation of microtubule cytoskeleton organization 112 proteasomal protein catabolic process 273 microtubule cytoskeleton organization 301 peptidyl-lysine modification 251 **DNA** replication 207 histone modification 295 Ö 10 5 15 -log₁₀ (*p*. adj)

а

d

Supplementary Fig. 4 Enrichment analysis of m⁶A-regulated genes in CRC cells treated with *F. nucleatum*.

a, KEGG pathway analysis of a total number of 2004 genes with significant differential m^{6} A-down peaks in *F. nucleatum*-treated cells compared with untreated cells.

b, KEGG pathway analysis of a total number of 1585 genes with significant differential $m^{6}A$ -up peaks in *F. nucleatum*-treated cells compared with untreated cells.

c, Gene Ontology enrichment analysis of a total number of 2004 genes with differential m^{6} A-down peaks in *F. nucleatum*-treated cells compared with untreated cells.

d, Gene Ontology enrichment analysis of a total number of 1585 genes with differential $m^{6}A$ -up peaks in *F. nucleatum*-treated cells compared with untreated cells. -log10 (*p*.adj) of the 10 most enriched pathways or gene functions related to biological process are displayed.

KEGG and GO were analyzed using hypergeometric test adjusted with Benjamini-Hochberg method (*P*. adj).

Supplementary Fig. 5 KIF26B is a downstream target of METTL3.

a, b, LoVo cells treated with *F. nucleatum* or PBS control were subjected to quantitativeRT-PCR analysis (a) and western blot analysis (b) of KIF26B expression.

c, **d**, LoVo cells transfected with two different siRNAs targeting METTL3 or scrambled control siRNAs were subjected to quantitative RT-PCR analysis (**c**) and western blot analysis (**d**) of KIF26B expression.

e, HCT116 cells with the indicated treatment were subjected to western blot analysis of KIF26B.

f, HCT116 cells transfected with shRNAs targeting FOXD3 or control shRNA were subjected to western blot analysis of KIF26B

g, LoVo cells were pretreated with *F. nucleatum* or PBS for 2 h. The remaining levels of *KIF26B* mRNAs were analyzed by quantitative RT-PCR at the indicated time points after actinomycin D treatment. Data from one representative of three independent experiments.

h, **i**, Quantitative RT-PCR was performed in HCT116 cells to detect the expression of *KIF26B* mRNA after transfection with siRNA targeting YTHDF1 (**h**) or YTHDF3 (**i**). Data are from one representative of three independent experiments (**b**, **d**-**f**). Data are shown as mean \pm SD. *P*-values was shown. Two-tailed Student's t test (**a**, **c**, **h**, **i**)

Supplementary Fig. 6 *F. nucleatum* promotes CRC cell migration by upregulating KIF26B in *vitro*.

a, KEGG pathway analysis of the 123 downregulated genes from the RNA-seq data of the KIF26B-knockdown HCT116 cells and control cells. *P*. adjust, hypergeometric test with Benjamini-Hochberg adjusted.

b-d, HCT116 cells were transfected with two siRNAs targeting KIF26B or control siRNAs and subjected to western blot analysis (**b**), transwell migration analysis (**c**) and invasion analysis (**d**). Migrated cells were quantified by counting in five fields. Scale bar, 100 μm.

e-g, LoVo cells were transfected with two siRNAs targeting KIF26B or control siRNAs and subjected to western blot analysis (e), transwell migration analysis (e) and invasion analysis (g). Migrated cells were quantified by counting in five fields. Scale bar, 100 μ m.

h, **i**, LoVo cells transfected with two siRNAs targeting KIF26B or control siRNAs were treated with *F. nucleatum* for 2 h. Western blot analysis (**h**) and transwell migration analysis (**i**) were performed. Scale bar, 100 μm.

Data are from one representative of three independent experiments (**b**, **e**, **h**). Data are shown as mean \pm SD. *P*-values was shown. Two-tailed Student's t test (**c**, **d**, **f**, **g**, **i**)

Supplementary Fig. 7 *F. nucleatum* accelerates CRC aggressiveness and metastasis by upregulating KIF26B.

a, **b**, RKO cells (**a**) or SW620 cells (**b**) treated with *F. nucleatum* or PBS control were subjected to western blot analysis of METTL3 (Left) and KIF26B (Right) expression. **c**, **d**, RKO cells (**c**) or SW620 cells (**d**) were transfected with two siRNAs targeting KIF26B or control siRNAs and subjected to transwell migration analysis (Left). Migrated cells were quantified by counting in five fields (Right). Scale bar, 100 μ m. **e**, **f**, KIF26B-knockdown luciferase-labeled RKO cells or the corresponding control cells were intravenously injected into nude mice. Representative bioluminescence images and H&E stained bone sections of the mice are shown (Scale bar, 10 μ m) (**e**). BLI monitored the bone metastases formed from injected cells (**f**). (n = 6)

g, Western blot analysis of KIF26B expression in HCT116 cells infected with two different shRNAs targeting KIF26B or control shRNA.

h, HCT116 cells were stably infected with lentivirus-based KIF26B shRNAs or control shRNAs. The indicated cells were orthotopically injected into NOD SCID mice to develop liver metastasis. H&E stained liver sections of the mice are shown, Scale bar, 100 μm.

i, Liver micro-metastases per mice were quantified by counting in ten fields. (n = 4) Data are from one representative of three independent experiments (a, b, g). Data are shown as mean \pm SD. *P*-values was shown. Two-tailed Student's t test (c, d), Two-tailed Mann-Whitney test (f, i).

Supplementary Fig. 8 *F. nucleatum* is correlated with *METTL3* and *KIF26B* expressions in animal model.

a, **b**, Representative immunohistochemistry images of METTL3 (**a**) and KIF26B (**b**) proteins in colorectum tissues from mice with the indicated treatment. Scale bar, 20 μ m. **c**, Quantitative RT-PCR analysis of *F. nucleatum* in stool from the indicated APC^{*Min/+*} mice (n = 3). Data are presented as log₂ value of *F. nucleatum* 16S normalized to universal *Eubacteria* 16S.

d, **e**, Quantitative RT-PCR analysis of *METTL3* (**d**) and *KIF26B* (**e**) mRNA expression in colorectum tissues from the indicated APC $^{Min/+}$ mice (n = 3). Data are presented as log₂ value normalized to *GAPDH*.

Data are shown as mean \pm SD. *P*-values was shown. Two-tailed Mann-Whitney test (**c**-**e**).

Primer Names	Sequences (5'-3')
METTL3 Forward	CAAGCTGCACTTCAGACGAA
METTL3 Reverse	GCTTGGCGTGTGGTCTTT
FOXD3 Forward	GCAACTACTGGACCCTGGAC
FOXD3 Reverse	CTGTAAGCGCCGAAGCTCT
<i>c-Myc</i> Forward	AATGAAAAGGCCCCCAAGGTAGTTATCC
<i>c-Myc</i> Reverse	GTCGTTTCCGCAACAAGTCCTCTTC
<i>CD44</i> Forward	CTGCCGCTTTGCAGGTGTA
CD44 Reverse	CATTGTGGGCAAGGTGCTATT
AXIN2 Forward	TGTCTTAAAGGTCTTGAGGGTTGAC
AXIN2 Reverse	CAACAGATCATCCCATCCAACA
HES-1 Forward	CCTGTCATCCCCGTCTACAC
HES-1 Reverse	CACATGGAGTCCGCCGTAA
HEY1 Forward	GAAGTTGCGCGTTATCTGAGC
HEY1 Reverse	ATGCGAAACCAGTCGAACTCG
HEY2 Forward	CCTAACAGAAGTTGCGCGGTA
HEY2 Reverse	GAGGCGACAAGGGGTTGAC
CLN3 Forward	ATTCCGAGGGGGGGGGGGGGGGC
CLN3 Reverse	AGGGAACAATGTACCACAGCAG
<i>HIF-1</i> α Forward	TCCTGAGGAAGAACTAAATCCAAAG
<i>HIF-1</i> α Reverse	GGCTGCTGTAATAATGTTCCAATTC
<i>TNF-</i> α Forward	GAGGCCAAGCCCTGGTATG
<i>TNF-</i> α Reverse	CGGGCCGATTGATCTCAGC
<i>IL-1</i> Forward	TTCGACACATGGGATAACGAGG
<i>IL-1</i> Reverse	TTTTTGCTGTGAGTCCCGGAG
<i>IL-8</i> Forward	ACTGAGAGTGATTGAGAGTGGAC
<i>IL-8</i> Reverse	AACCCTCTGCACCCAGTTTTC
ANKRD1 Forward	AGTAGAGGAACTGGTCACTGG
ANKRD1 Reverse	TGGGCTAGAAGTGTCTTCAGAT
THBS1 Forward	CCTGACCGTCCAAGGAAAGC
THBS1 Reverse	CCTTTGCGATGCGGAGTCT
CYR61 Forward	GCATTCCTCTGTGTCCCCAA

Supplementary Table 1. Primers for qRT-PCR

CYR61 Reverse	CATTCCAAAAACAGGGAGCCG
CTGF Forward	ACCGACTGGAAGACACGTTTG
CTGF Reverse	CCAGGTCAGCTTCGCAAGG
ETS1 Forward	ACCGTGCTGACCTCAATAAGG
ETS1 Reverse	CCCCGCTGTCTTGTGGATG
<i>KIF26B</i> Forward	GCTGGGAATAAAGAGAGGCTTG
KIF26B Reverse	ACTCCTCGTATGCTTTCCGGT
YTHDF1 Forward	ATACCTCACCACCTACGGACA
YTHDF1 Reverse	GTGCTGATAGATGTTGTTCCCC
YTHDF2 Forward	CCTTAGGTGGAGCCATGATTG
YTHDF2 Reverse	TCTGTGCTACCCAACTTCAGT
YTHDF3 Forward	TCAGAGTAACAGCTATCCACCA
YTHDF3 Reverse	GGTTGTCAGATATGGCATAGGCT
GAPDH Forward	GGAGCGAGATCCCTCCAAAAT
GAPDH Reverse	GGCTGTTGTCATACTTCTCATGG
m <i>KIF26B</i> Forward	TCGGTAGCCGGAAATAAAGAGA
m <i>KIF26B</i> Reverse	CGACTCCTCGTAAGCCTTGC
mACTIN Forward	AGCCATGTACGTAGCCATCC
mACTIN Reverse	CTCTCAGCTGTGGTGGTGAA
universal Eubacteria 16s Forward	CGGCAACGAGCGCAACCC
universal Eubacteria 16s Reverse	CCATTGTAGCACGTGTGTAGCC
PTG Forward	ATCCCCAAAGCACCTGGTTT
PTG Reverse	AGAGGCCAAGATAGTCCTGGTAA
F. nucleatum Forward	CGGGTGAGTAACG CGTAAAG
F. nucleatum Reverse	ACATTGTGCCACG GACATCTTG
FOXD3-ChIP-1- Forward	TGGGTCATTAAACTTGGAGT
FOXD3-ChIP-1- Reverse	TTCACAGCATGAGGTAGCAT
FOXD3-ChIP-2- Forward	AGGAGCCATGCCAGTCAAAC
FOXD3-ChIP-2- Reverse	TTAATGGAGCTCCCTGAATG
FOXD3-ChIP-3- Forward	TCACCTCAGATTGGGGACCA
FOXD3-ChIP-3- Reverse	CACTAGTTCCTTTTGACAGT
FOXD3-ChIP-unrelate-Forward	TGGAGTGCTGTGGCACAATC
FOXD3-ChIP-unrelate-Reverse	TTAGCTGGGCACGGTGATGG
KIF26B-m ⁶ A-RT-qPCR-Forward	GAGGATGAAGGTTGGTGGCA

KIF26B-m ⁶ A-RT-qPCR-Reverse	TTCAGTCTCACAGGGCTTGG
---	----------------------

Supplementary Table 2. siRNA sequences

Oligonucleotide Names	Sequences (5'-3')
siCtl	UUCUCCGAACGUGUCACGUTT
si <i>YAP</i> -1	GACAUCUUCUGGUCAGAGATT
si <i>YAP-</i> 2	CCGUUUCCCAGACUACCUUTT
si <i>METTL3-</i> 1	AGGAGCCAGCCAAGAAAUCAATT
si <i>METTL3-</i> 2	CUGCAAGUAUGUUCACUAUGATT
siYTHDF1-1	CCGCGUCUAGUUGUUCAUGAA
si <i>YTHDF1-</i> 2	CAGGCUGGAGAAUAACGACAA
si <i>YTHDF2</i> -1	CCUACCAGAUGCAAUGUUUTT
si <i>YTHDF2-</i> 2	CCAGCUUUCAGUCCAGCAATT
si <i>YTHDF3-</i> 1	AUGGAUUAAAUCAGUAUCUAA
si <i>YTHDF3-</i> 2	UAAGUCAAAGAAGACGUAUUA
si <i>KIF26B</i> -1	GCUGGUACCGGAAAGCAUATT
si <i>KIF26B</i> -2	CGGACAGCCUCUCCUAUUA
siFOXD3	GCAAUAGGGACGCGCCAAUTT

Supplementary Table 3. Primers for vectors construction

Primer Names	Sequences (5'-3')
pcDNA3.1(+)-METTL3-	CTTGGTACCGAGCTCGGATCCATGTCGGACACGTGGAG
<i>FL</i> - Forward	СТС
pcDNA3.1(+)-METTL3-	TGCTGGATATCTGCAGAATTCGCTCTGTAAGGAAGTGCT
FL- Reverse	TC
pcDNA3.1(+)-FOXD3-	CTTGGTACCGAGCTCGGATCCATGACCCTCTCCGGCGG
FL Forward	CGG
pcDNA3.1(+)-FOXD3-	AACGGGCCCTCTATACTCGAGCTATTGCGCCGGCCATTT
FL Reverse	GGCT
pcDNA3.1(+)/myc-His	CTTGGTACCGAGCTCGGATCCATGACCCTCTCCGGCGG
C-FOXD3-Forward	CGGCA
pcDNA3.1(+)/myc-His	TGCTGGATATCTGCAGAATTCTTGCGCCGGCCATTTGGC
C-FOXD3-Reverse	ТТ

pLKO.1-sh <i>KIF26B#1-</i>	CCGGGGGACAACCGCTGTGACATTTTCTCGAGAGGGAC
Forward	AACCGCTGTGACATTTTTTTTG
pLKO.1-sh <i>KIF26B#1-</i>	AATTCAAAAAAGGGACAACCGCTGTGACATTTTCTCGA
Reverse	GAGGGACAACCGCTGTGACATTT
pLKO.1-sh <i>KIF26B#2-</i>	CCGGGCAACTCACACGTGTTCTTCATCTCGAGATGAAG
Forward	AACACGTGTGAGTTGCTTTTTTG
pLKO.1-sh <i>KIF26B#2-</i>	AATTCAAAAAAGCAACTCACACGTGTTCTTCATCTCGA
Reverse	GATGAAGAACACGTGTGAGTTGC
pLKO.1-shFOXD3#1-	CCGGGCCTAGTGAAGCCGCCTTACTTCTCGAGAAGTAA
Forward	GGCGGCTTCACTAGGCTTTTTG
pLKO.1-shFOXD3#1-	AATTCAAAAAGCCTAGTGAAGCCGCCTTACTTCTCGAG
Reverse	AAGTAAGGCGGCTTCACTAGGC
pLKO.1-shFOXD3#2-	CCGGATAGCTTTCCATACAGGTAAATCTCGAGATTTACC
Forward	TGTATGGAAAGCTATTTTTG
pLKO.1-shFOXD3#2-	AATTCAAAAAATAGCTTTCCATACAGGTAAATCTCGAGA
Reverse	TTTACCTGTATGGAAAGCTAT

Supplementary Table 4. Antibodies

Antibodies		
anti-human m ⁶ A polyclonal antibody	Synapic Systems	202003
(Dot Blot) (1:2000)		
anti-human m ⁶ A polyclonal antibody	ABclonal	A17924
(m ⁶ A-RT-qPCR) (1:100)		
anti-human METTL3 (1:1000)	ABclonal	A8370
anti-human METTL14 (1:1000)	ABclonal	A8530
anti-human FTO (1:1000)	Proteintech	27226-1-AP
anti-human ALKBH5 (1:1000)	Proteintech	16837-1-AP
anti-human YTHDF1 (1:1000)	Proteintech	17479-1-AP
anti-human YTHDF2 (1:1000)	Proteintech	24744-1-AP
anti-human YTHDF3 (1:1000)	Proteintech	25537-1-AP
anti-human YTHDC1 (1:1000)	Proteintech	14392-1-AP
anti-human YTHDC2 (1:1000)	Proteintech	27779-1-AP
anti-human P-YAP (Ser 127) (1:1000)	Cell Signaling Technology	13008

anti-human YAP (1:1000)	Proteintech	66900-1-Ig
anti-human P-MST1 (Thr183)/MST2(Thr180)	Cell Signaling Technology	49332
(1:1000)		
anti-human MST1 (1:1000)	Proteintech	22245-1-AP
anti-human P-LATS1 (Ser909) (1:1000)	Cell Signaling Technology	9157
anti-human LATS1 (1:1000)	Proteintech	17049-1-AP
anti-human FOXD3 (1:1000)	ABclonal	A2926
anti-human Lamin-B1 (1:1000)	Proteintech	12987-1-AP
anti-human KIF26B (1:500)	Proteintech	17422-1-AP
anti-human NF2 (1:1000)	ABclonal	A13626
anti-human KIBRA (1:1000)	ABclonal	A17110
anti-human FRMD6 (1:1000)	ABclonal	A9995
anti-human NF-ĸB p65 (1:1000)	Cell Signaling Technology	8242
anti-human Phospho-NF-KB p65 (1:1000)	Cell Signaling Technology	3033
anti-human Myc-Tag (1:100 for ChIP)	Cell Signaling Technology	2276S
Normal Rabbit IgG (5 µg for each IP sample)	Cell Signaling Technology	27298
anti-human GAPDH (1:3000)	ABclonal	AC002
anti-human β-actin (1:3000)	ABclonal	AC026
HRP Goat Anti-Rabbit IgG (H+L) (1:3000)	ABclonal	AS014
HRP Goat Anti-Mouse IgG (H+L) (1:3000)	ABclonal	AS003