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REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

The manuscript demonstrates a way to improve the accuracy of AF2 predicted hetero-dimeric protein 

complexes by optimising the multiple sequence alignment. It also tests if it is possible to distinguish 

interacting from non-interacting pairs by analysis the proposed interfaces. The code is available as open 

source licensed under Apache2 and distributed via GitLab. 

Authors state that flexibility can limit the accuracy of rigid-body docking and correctly point that flexible 

docking too slow and inaccurate for large scale applications, however it should also be mentioned that 

these are not the only possible routes and many docking software have a semi-flexible approach, and 

can, to some degree, consider the flexibility during docking. 

It is also stated that (L94) "We find that the results in terms of successful docking using AF2 are superior 

to all other docking methods." However the authors have shown a comparison using two, out of dozens 

of possible docking methods, including others that could factor interface flexibility and thus more 

suitable for fold and dock comparison. This statement could be rewritten to best reflect the observed 

results. 

In the light of open science and FAIR data, authors should make all the data used in this manuscript 

available to the community (via Zenodo, SBGrid databases, etc). 

Please indicate on L211 and L251 the exact commit which relates to this edit. 

For GRAMM, the bound forms of the test set are used as input, which would represent an "easy 

scenario" for docking. This is an adequate approach since the objective of the comparison is not to 

evaluate how well this rigid-body method would be able to model the flexibility. For template-based 

docking, it is unclear if the bound or unbound forms were used. 

The scoring for the AF2 structures is done only over the backbone atoms, it is not clear if this same 

approach is used for the comparison with GRAMM and TMdock. The choice completely excluding the 

side-chains instead of adding them to the only method that does not predict it, thus reducing the 

resolution of solutions seems to go against the overall goal of the manuscript which is the increase of 

accuracy, the rationale for this should be explicit in the text. 



It is not specified if the cutoff for the frequency of the native contacts was changed, which could 

indicate a sub-evaluation of this metric since it might only be capturing backbone-to-backbone contacts. 

The authors report the DockQ score, however it would be beneficial to have a table containing the fnat, 

lrms, irms and DockQ of the scored models (could be deposited together with the rest of the data). 

Two small details that could increase readability is to add the short names in L350 and a horizontal line 

with the DockQ cutoff on Figure 2, but not entirely necessary. 

I have no comments on the sections "Distinguishing acceptable from incorrect models", "model 

variation and ranking", "Bacterial protein pairs with large interfaces and many homologs are easier to 

predict" and "CASP14 and novel proteins without templates"; the results are presented clearly and well 

discussed. 

Based on the results observed for identifying interacting proteins, could the authors propose a "cutoff" 

that can be used by researchers to judge if a given pair is a true interaction? The text seems to imply 

that this was the direction of this analysis. The number of interface contacts and number of residues in 

the interface have a higher AUC, it would be interesting to analyse the identification in subsets of 

differently sized interfaces (or expand the discussion to include this observation). 

L528 should be rewritten to "the tested docking methods" since the authors do not present a through 

comparison with many different software. 

The fast MSA generation presented in this manuscript is a noteworthy result and the differentiation 

between true-interacting and non-interacting proteins (given its described limitations) sets a solid base 

for further studies in this direction. 

Reviewer #2 (Remarks to the Author): 

This paper evaluates the performance of the currently available implementation of AlphaFold 2 (AF2) DL 

model in predicting the 3D structure of heteromeric protein complexes and investigates quantitative 

measures for discriminating between AF2 predicted structures corresponding to correct versus incorrect 

predictions. 



This AF2 model was trained on individual protein structures, and shown to 1) outperform competing 

methods in ab-initio structure predictions of single protein chains as well as for template-based 

predictions, in the CASP14 challenge, 2) produce protein models rivaling in accuracy with experimentally 

determined structures, 3) achieve this performance for individual domains in multi-domain proteins, or 

for individual subunits of larger oligomers, without explicitly taking into account the domain architecture 

or quaternary structure of the protein. The latter achievement suggested that this AF2 DL model 

captures information that transcended the fold of individual proteins and may be exploited for 

predicting the 3D structure of multi-domain proteins and protein complexes. Several follow up studies 

(most not (yet) peer reviewed) showed indeed that that providing pseudo-multimer inputs to the single- 

chain AF2 model (joining two protein sequence with a gap insertion or a flexible linker) often yields 

successful predictions of multimer interactions. The present study is part of these efforts. 

Using protein complexes from the Dockground benchmark 4 (the development set) the authors test 

various settings for the inference procedure in the available AF2 implementation and select the settings 

that yield the best performance on this set (without templates), as measured by the fraction of recalled 

complexes of acceptable quality or better (DockQ >0.23). 

Evolutionary signals derived from multiple sequence alignments (MSA) (informing on residue-residue 

interactions) are an important component of the single-chain AF2 model. Expecting this component to 

also play a key role in the effective generalization of the model to the prediction of complexes, the 

authors test different methods for generating the MSAs. The combination of MSAs generated by 2 

methods, the default AF2 MSA generation method (producing MSAs containing gaps for one of the two 

query proteins in each row) and the paired MSAs method (the highest-ranked hit for chain A from one 

organism is paired with the highest-ranked hit of chain B from the same organism), is shown to perform 

best in predictions for the development set. 

Using the optimized inference protocol and MSAs generation, AF2 performance is evaluated for the task 

of predicting complexes from a test set (1481 complexes with known interfaces from Green et al.) and 

on CASP14 targets, again as measured by the fraction of recalled complexes of acceptable quality or 

better. The best AF2 protocol evaluated for the test set achieves about 60% of correctly recalled of the 

complexes, a roughly similar performance to or sometime lower than those cited in other works (using 

different test sets). 

In a more controversial part of the study AF2 performance is compared to that obtained for the same 

test set using a single ‘ab-initio’ rigid-body docking procedure (GRAMM), taking as input the bound 

conformations of the interacting subunits. A comparison was also made to results obtained using two 

version of so-called template-based docking (TMdock, and TMdock interface). Both the ab-initio and 

TMdock procedures are shown to achieve significantly lower recall rates (~21% for GRAMM, and 34-35% 

for TM-dock). A very low recall fraction (~10%), the lowest overall, is obtained using the RoseTTAFold 

(RF) end-to-end version. 



Based on these comparisons the authors claim that the AF2 outperforms the other approaches, and in 

particular docking protocols by a large margin. Or such claim cannot be made on the basis of a 

comparison with the performance of a single docking procedure, which is furthermore not 

representative of the field as it stands now. Indeed, a number of other docking procedures (also 

available as servers) such as CLUSPRO, LZERD, MDOCKPP, tackle conformational flexibility at some level 

and systematically outperform GRAMM in more recent blind prediction challenges, including the 

CASP14 assembly prediction. The computational costs of some of these algorithms may be higher than 

for pure rigid body docking algorithms like GRAMM, but this can hardly be used to justify the analysis, 

and the conclusions drawn. 

The study also evaluates the ability to segregate correct models from incorrect ones in AF2 structures 

predicted for a test dataset of complexes that include both positive and negative examples (respectively, 

protein complexes with experimentally determined structures, and protein pairs assumed not to 

interact). Analyzing ROCs as a function of various quantitative measures, the pIDDT score computed by 

AF2 is found to perform on par (AUC: 85%) with measures that directly correlated with interface size, 

such as the total number of inter-subunits residue-residue interactions, and the total number of 

interface residues (AUC : 86%). This is not surprising and agrees with earlier finding that stable 

complexes, which form larger interfaces are easier to predict correctly, than transient complexes, which 

form smaller interfaces, a property picked up by pIDDT, but not by pDDT, which evaluate the predicted 

model accuracy for the entire complex and not only for the residues at the binding interface. 

Overall, this study provides useful information on how to adapt the single-chain AF2 protocol for the 

prediction of protein hetero complexes, more particularly on how to improve the signal extracted from 

MSAs for this purpose. On the other hand, the comparisons with the performance of ab-initio docking 

and template-based docking are suboptimal and do not justify the general claims made here. The 

comparison with RF may likewise be suboptimal, since no parameter optimization was performed for 

the RF procedure. On the whole, the text is very technical and offers only limited insightful discussion. 

Lastly, one may question the overall impact of the presented work in view of the recent publication by 

the DeepMind team describing AlphaFold-Multimer (https://doi.org/10.1101/2021.10.04.463034) , an 

AlphaFold deep learning model trained on complexes of known structure, and shown to outperform the 

single-chain AlpahFold model by 11 to 25 percentage points. Moreover, DeepMind recently announced 

that the AlphaFold-Multimer code is about to be publicly released. 

Specific comments 



Introduction: 

-The authors define ab-initio docking methods as methods relying solely on shape complementarity. 

Initially this was indeed the case, but methods have evolved since then to optimize not only shape 

complementarity but also various additional energetic contributions. State of the art docking algorithms 

are also capable of modeling limited conformational adjustments. 

Methods section 

-The number of complexes in the Dockground benchmark 4 (the development dataset) and their species 

composition should be provided 

- A short description in terms of species composition should be provided of the test dataset of positive 

example (complexes of known interfaces) from Green et al. 

-The description of the datasets of non-interacting proteins is confusing. Two paragraphs mention the 

Negatome DB as the source of negative examples: one is part of the section describing the test dataset 

and lists a total 1715 pairs of non-interacting proteins. The second appears in the section on non-

interacting proteins, and lists 1705 pairs from the Negatome DB. The same section also mentions 

another dataset of non-interacting proteins (also from Green et al.). What was the species compositions 

of these datasets? In which of the analyses on the segregation of correct versus incorrect complexes, 

were these datasets used? 

-The notoriously difficult problem of defining non-interacting proteins should be given some 

consideration, as some of the cited criteria are problematic. F.e. Y2H screens are well known for their 

high rate of false negatives, e.g. proteins that interact in-vivo, whose interaction is not detected using 

Y2H for various reasons. Likewise, considering proteins from different well annotated APMS complexes 

as non-interacting may also be misleading as many proteins are found to be part of multiple APMS 

complexes. BTW: ref 31 seems to be incorrect 

- How is the number of effective sequences computed. Relying on the literature citation (ref 62) is not 

satisfactory. 

Results 

- Is the superior performance of the combined AF2 + paired MSA’s really only a consequence of the 

larger size of the resulting MSA ? 



- As already mentioned above, the comparison of the AF2 performance with that of a single docking 

algorithm (GRAMM), which moreover doesn’t represent the state of the art, is unfair. It may indeed be 

the case that a fairer comparison may prove the authors right, but this needs to be based on a valid 

evidence. 

-The template-based docking procedure used in this study seems to be quite different from the 

procedure the authors refer to (ref 7). Here, it seems, target complexes from the test dataset are 

structurally aligned either to the backbone of the full template complex, or only to the template 

interface residues. Or in blind predictions, where the structure of the target complex is unknown, 

template-based ‘docking’ involves aligning the sequences of each protein of the target complex to that 

of its homolog in the template complex and going on from there. 

-The legend of Figure 3 reads: ‘ROC curve as a function of different metrics for the development dataset 

(first run). But the text refers to Figure 3 as representing the results for the test set. Indeed, the ROC of 

Figure 3A represents a plot of the TPR versus FPR and requires scoring & ranking predicted structures for 

both the TP and TN examples, which the text does not describe for the development set. What then is 

the difference between the ROCs in Figures 3A and 6A ? 



 

 

ANSWER TO REVIEWERS COMMENTS 

We want to thank the reviewers for the number of fascinating discussion points they 

provided us, which allowed us to considerably improve our manuscript. We here provide a 

detailed answer to all remarks. The main new additions are  

1. The comparison in performance with the docking method MDockPP and AlphaFold-

multimer 

2. Addition of a continuous metric for model quality assessment, the predicted DockQ 

score, pDockQ. 

3. We have changed the naming of the “fused” MSAs to “block diagonalisation” to better 

reflect the phrasing being used by others. 

 

 

 

REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The manuscript demonstrates a way to improve the accuracy of AF2 predicted hetero-

dimeric protein complexes by optimising the multiple sequence alignment. It also tests if it is 

possible to distinguish interacting from non-interacting pairs by analysis the proposed 

https://www.nature.com/documents/ncomms-formatting-instructions.pdf


interfaces. The code is available as open source licensed under Apache2 and distributed via 

GitLab. 

 

Authors state that flexibility can limit the accuracy of rigid-body docking and correctly point 

that flexible docking too slow and inaccurate for large scale applications, however it should 

also be mentioned that these are not the only possible routes and many docking software 

have a semi-flexible approach, and can, to some degree, consider the flexibility during 

docking. 

 

We have added a point about this in the introduction: 

“There also exists semi-flexible docking approaches that are more computationally feasible 

and can consider flexibility to some degree during docking.” 

and also included an analysis using the top-performing available server method from 

CASP14-CAPRI MDOCKPP -  

 

It is also stated that (L94) "We find that the results in terms of successful docking using AF2 

are superior to all other docking methods." However the authors have shown a comparison 

using two, out of dozens of possible docking methods, including others that could factor 

interface flexibility and thus more suitable for fold and dock comparison. This statement 

could be rewritten to best reflect the observed results. 

 

To address this issue, we have added a comparison using the top-performing available 

server method from CASP14-CAPRI, MDOCKPP. and as expected AF2 clearly outperforms 

that server (which is on par with GRAMM that we included in our original analysis) 

 

In the light of open science and FAIR data, authors should make all the data used in this 

manuscript available to the community (via Zenodo, SBGrid databases, etc). 

 

We have made all data available through Figshare: 

https://doi.org/10.17044/scilifelab.16866202.v1 and the results used to produce all figures 

can be found in the supplementary information. 

 

Please indicate on L211 and L251 the exact commit which relates to this edit. 

 

We have added this information in the code availability section 

(https://gitlab.com/ElofssonLab/FoldDock, commit 

2e4c96aa352338976260ece0646ceaaa75392dec). 

 

For GRAMM, the bound forms of the test set are used as input, which would represent an 

"easy scenario" for docking. This is an adequate approach since the objective of the 

comparison is not to evaluate how well this rigid-body method would be able to model the 

flexibility. For template-based docking, it is unclear if the bound or unbound forms were 

used. 

 

We have tried to clarify that the bound forms have been used under the “template-based 

docking” section - as these were the only available forms for the test set. 

 

https://doi.org/10.17044/scilifelab.16866202.v1
https://gitlab.com/ElofssonLab/FoldDock


The scoring for the AF2 structures is done only over the backbone atoms, it is not clear if this 

same approach is used for the comparison with GRAMM and TMdock. The choice 

completely excluding the side-chains instead of adding them to the only method that does 

not predict it, thus reducing the resolution of solutions seems to go against the overall goal of 

the manuscript which is the increase of accuracy, the rationale for this should be explicit in 

the text. 

 

The reason for using only backbone atoms is to make the comparison fair towards 

RoseTTAFold, since this method only predicts the N, CA and C atoms. Adding these atoms 

to RoseTTAFold creates another conundrum as this will be highly dependent on the program 

used to add these atoms. This would further allow an argument regarding that the 

performance of RoseTTAFold is related to the performance of the program used for the atom 

addition.  

 

Regardless, we have rerun the analysis using all predicted atoms from AlphaFold2, while 

leaving the RoseTTAFold analysis as it is to not introduce further bias and due to the fact 

that RoseTTAFold actually only predicts backbone atoms. For GRAMM and TMdock we 

already used all atoms, which is why these SRs remain the same. We have also added the 

best server docking methods from CASP14-CAPRI - MDOCKPP - evaluated using all atoms 

as well. 

 

Note that this has also changed the results on the development set, although the 

relationships between all modeling strategies remain the same (Table 1). For the pdb files 

with a discrepancy in the amount of atoms towards the AlphaFold2 predictions, due to e.g. 

incomplete residues (1.6% of structures) we have used the method from before, only 

analysing the backbone atoms (N,CA,C).  

 

The results in the test sets are improved from 59% to 63% SR using the best method and 

ranking(Figure 1). Now, the interface contacts outperform the interface plDDT in model 

ranking but the difference is small. 

 

During revision we realised that it is possible to combine these metrics in a simple 

multiplication, resulting in an AUC of 0.95 and a significant improvement at low FPRs 

compared to using each ranking metric alone (Figure 2A). We also create a continuous 

score from this combined metric to provide users with a straightforward measure of interface 

quality, the predicted DockQ (pDockQ). This score estimates the DockQ score by applying a 

simple sigmoidal curve fit, resulting in an average error of 0.1 in DockQ score (see pDockQ 

in methods). We do believe this is a useful measure.  

 

 

 

It is not specified if the cutoff for the frequency of the native contacts was changed, which 

could indicate a sub-evaluation of this metric since it might only be capturing backbone-to-

backbone contacts. The authors report the DockQ score, however it would be beneficial to 

have a table containing the fnat, lrms, irms and DockQ of the scored models (could be 

deposited together with the rest of the data). 

 



No cutoff was made, the DockQ program was run in its default mode. We have added a note 

about this under “scoring models”. The DockQ score is a combination of fnat, lrms and irms, 

creating a continuous score that considers multiple interface metrics. DockQ is also the 

continuous score reported for evaluations such as CASP14-CAPRI 

(https://onlinelibrary.wiley.com/doi/epdf/10.1002/prot.26222) why we do think it  is sufficient 

to include it and adding more measures would just confuse the reader. Obviously for small 

differences between methods alternative methods might provide small different rankings, but 

here we discuss  more than a doubling of the number of acceptable models, and so large 

differences would not change using any measure. 

 

Two small details that could increase readability is to add the short names in L350 and a 

horizontal line with the DockQ cutoff on Figure 2, but not entirely necessary. 

 

We thank you for the suggestion. We have reduced the information in Figure 2 (now Figure 

1) since more comparisons have been added (MDockPP), making the figure crowded. We 

now report the main results in this figure in the form of boxplots and more detailed results for 

all comparisons in Table 2. 

 

I have no comments on the sections "Distinguishing acceptable from incorrect models", 

"model variation and ranking", "Bacterial protein pairs with large interfaces and many 

homologs are easier to predict" and "CASP14 and novel proteins without templates"; the 

results are presented clearly and well discussed. 

 

We thank you for this kind statement. 

 

Based on the results observed for identifying interacting proteins, could the authors propose 

a "cutoff" that can be used by researchers to judge if a given pair is a true interaction? The 

text seems to imply that this was the direction of this analysis.  

 

With the introduction of pDockQ this has become much easier.  A reasonable cutoff can be 

deduced depending on modelling necessities according to statistics indicated in Table S4. 

Such a cutoff is e.g. pDockQ=0.5 for a PPV of 0.9 and using the default DockQ cutoff for an 

acceptable model (0.23) results in a PPV of 0.75. However, these estimates are probably 

conservative as a few of the false positives are likely to be alternative binding sites.   

 

The number of interface contacts and number of residues in the interface have a higher 

AUC, it would be interesting to analyse the identification in subsets of differently sized 

interfaces (or expand the discussion to include this observation). 

 

We analyse this in Figure 3B, where we show that true interfaces that are larger have higher 

DockQ scores, meaning that more of these models will be called successful. This is 

explained in the text as “We divided the dataset by the size of the interface, and it is clear 

that pairs with larger interfaces are easier to predict, as the SR increases from 48 to 79% 

between the smallest and biggest tertiles (Figure 3B).” 

 

L528 should be rewritten to "the tested docking methods" since the authors do not present a 

through comparison with many different software. 

 



We have changed this to “What is most striking is that AF2 outperforms all other tested 

docking methods by a large margin.“ 

 

The fast MSA generation presented in this manuscript is a noteworthy result and the 

differentiation between true-interacting and non-interacting proteins (given its described 

limitations) sets a solid base for further studies in this direction. 

 

We agree and thank you for noticing this result that has significant importance for large-scale 

practical applications. 

 

Reviewer #2 (Remarks to the Author): 

 

This paper evaluates the performance of the currently available implementation of AlphaFold 

2 (AF2) DL model in predicting the 3D structure of heteromeric protein complexes and 

investigates quantitative measures for discriminating between AF2 predicted structures 

corresponding to correct versus incorrect predictions. 

This AF2 model was trained on individual protein structures, and shown to 1) outperform 

competing methods in ab-initio structure predictions of single protein chains as well as for 

template-based predictions, in the CASP14 challenge, 2) produce protein models rivaling in 

accuracy with experimentally determined structures, 3) achieve this performance for 

individual domains in multi-domain proteins, or for individual subunits of larger oligomers, 

without explicitly taking into account the domain architecture or quaternary structure of the 

protein. The latter achievement suggested that this AF2 DL model captures information that 

transcended the fold of individual proteins and may be exploited for predicting the 3D 

structure of multi-domain proteins and protein complexes. Several follow up studies (most 

not (yet) peer reviewed) showed indeed that that providing pseudo-multimer inputs to the 

single- chain AF2 model (joining two protein sequence with a gap insertion or a flexible 

linker) often yields successful predictions of multimer interactions. The present study is part 

of these efforts. 

Using protein complexes from the Dockground benchmark 4 (the development set) the 

authors test various settings for the inference procedure in the available AF2 implementation 

and select the settings that yield the best performance on this set (without templates), as 

measured by the fraction of recalled complexes of acceptable quality or better (DockQ 

>0.23). 

 

Evolutionary signals derived from multiple sequence alignments (MSA) (informing on 

residue-residue interactions) are an important component of the single-chain AF2 model. 

Expecting this component to also play a key role in the effective generalization of the model 

to the prediction of complexes, the authors test different methods for generating the MSAs. 

The combination of MSAs generated by 2 methods, the default AF2 MSA generation method 

(producing MSAs containing gaps for one of the two query proteins in each row) and the 

paired MSAs method (the highest-ranked hit for chain A from one organism is paired with the 

highest-ranked hit of chain B from the same organism), is shown to perform best in 

predictions for the development set. 

 

Using the optimized inference protocol and MSAs generation, AF2 performance is evaluated 

for the task of predicting complexes from a test set (1481 complexes with known interfaces 

from Green et al.) and on CASP14 targets, again as measured by the fraction of recalled 



complexes of acceptable quality or better. The best AF2 protocol evaluated for the test set 

achieves about 60% of correctly recalled of the complexes, a roughly similar performance to 

or sometime lower than those cited in other works (using different test sets). 

 

Although some papers have reported these high numbers, we are not aware of any methods 

that can perform this well on the first ranked models for a set of unbound protein models. We 

have added the current state-of-the-art server method from CASP14-CAPRI, MDockPP, 

which performs significantly worse than any AlphaFold2 configuration (Figure 1). 

 

In a more controversial part of the study AF2 performance is compared to that obtained for 

the same test set using a single „ab-initio‟ rigid-body docking procedure (GRAMM), taking as 

input the bound conformations of the interacting subunits. A comparison was also made to 

results obtained using two version of so-called template-based docking (TMdock, and 

TMdock interface). Both the ab-initio and TMdock procedures are shown to achieve 

significantly lower recall rates (~21% for GRAMM, and 34-35% for TM-dock). A very low 

recall fraction (~10%), the lowest overall, is obtained using the RoseTTAFold (RF) end-to-

end version. 

 

 

 

Based on these comparisons the authors claim that the AF2 outperforms the other 

approaches, and in particular docking protocols by a large margin. Or such claim cannot be 

made on the basis of a comparison with the performance of a single docking 

procedure, which is furthermore not representative of the field as it stands now. 

Indeed, a number of other docking procedures (also available as servers) such as 

CLUSPRO, LZERD, MDOCKPP, tackle conformational flexibility at some level and 

systematically outperform GRAMM in more recent blind prediction challenges, 

including the CASP14 assembly prediction. The computational costs of some of these 

algorithms may be higher than for pure rigid body docking algorithms like GRAMM, but this 

can hardly be used to justify the analysis, and the conclusions drawn. 

 

 

 

We agree that GRAMM might not be state-of-art. To obtain a more complete comparison, we 

have therefore included MDOCKPP (the top performing server method from CASP14-

CAPRI). As can be seen in Table2 the performance of MDOCKPP and GRAMM are very 

similar.  

 

 

The study also evaluates the ability to segregate correct models from incorrect ones in AF2 

structures predicted for a test dataset of complexes that include both positive and negative 

examples (respectively, protein complexes with experimentally determined structures, and 

protein pairs assumed not to interact). Analyzing ROCs as a function of various quantitative 

measures, the pIDDT score computed by AF2 is found to perform on par (AUC: 85%) with 

measures that directly correlated with interface size, such as the total number of inter-

subunits residue-residue interactions, and the total number of interface residues (AUC : 

86%). This is not surprising and agrees with earlier finding that stable complexes, which form 

larger interfaces are easier to predict correctly, than transient complexes, which form smaller 



interfaces, a property picked up by pIDDT, but not by pDDT, which evaluate the predicted 

model accuracy for the entire complex and not only for the residues at the binding 

interface. 

 

We have rerun all analysis using all atoms for scoring, as suggested by another reviewer. 

The results are improved from 59% to 63% SR using the best method and ranking(Figure 1). 

Now, the interface contacts outperform the interface plDDT in model ranking. More 

importantly now we combine these metrics into the predicted DockQ (pDockQ) score, by 

using a simple multiplication, resulting in an AUC of 0.95 and a significant improvement at 

low FPRs compared to using each ranking metric alone (Figure 2A). The creation of the 

continuous pDockQ score from this combined metric provides users with a straightforward 

measure of interface quality. This score estimates the DockQ score by applying a simple 

sigmoidal curve fit, resulting in an average error of 0.1 in DockQ score (see pDockQ in 

methods).  

 

Overall, this study provides useful information on how to adapt the single-chain AF2 protocol 

for the prediction of protein hetero complexes, more particularly on how to improve the signal 

extracted from MSAs for this purpose. On the other hand, the comparisons with the 

performance of ab-initio docking and template-based docking are suboptimal and do not 

justify the general claims made here. The comparison with RF may likewise be suboptimal, 

since no parameter optimization was performed for the RF procedure. On the whole, the text 

is very technical and offers only limited insightful discussion. 

 

We have made it clear that the RF protocol was not optimised in any way in the 

RoseTTAFold methods section: “No optimisation of the RF protocol was made here. “ It is 

possible that using another scheme for alignments would result in better results. However, 

we are not able to achieve this, and it can also be highlighted that the Baker group (see 

https://www.biorxiv.org/content/biorxiv/early/2021/09/30/2021.09.30.462231.full.pdf) choose 

to use AlphaFold2 to model eukaryotic complexes, indicating that even the developers of 

RoseTTAFold achieve better results using AF2. 

 

As mentioned above, we have also added MDOCKPP to obtain a more complete docking 

comparison. 

 

Lastly, one may question the overall impact of the presented work in view of the recent 

publication by the DeepMind team describing AlphaFold-Multimer 

(https://doi.org/10.1101/2021.10.04.463034) , an AlphaFold deep learning model trained on 

complexes of known structure, and shown to outperform the single-chain AlpahFold model 

by 11 to 25 percentage points. Moreover, DeepMind recently announced that the AlphaFold-

Multimer code is about to be publicly released. 

 

We have indeed noticed this new work by DeepMind. However, this was not available at the 

time of submission and it is stated that this work is still in progress at their github (“This 

represents a work in progress and AlphaFold-Multimer isn't expected to be as stable as our 

monomer AlphaFold system.”). We have added a comparison with AlphaFold-multimer 

anyhow, resulting in SR=72%, 9% better than our updated FoldDock pipeline (63%). We 

note that AlphaFold-multimer is developed using the same data as the test set here, which 

makes a direct comparison difficult.  

https://www.biorxiv.org/content/biorxiv/early/2021/09/30/2021.09.30.462231.full.pdf
https://doi.org/10.1101/2021.10.04.463034


 

Specific comments 

 

Introduction: 

-The authors define ab-initio docking methods as methods relying solely on shape 

complementarity. Initially this was indeed the case, but methods have evolved since then to 

optimize not only shape complementarity but also various additional energetic contributions.  

We have reformulated the introduction to properly reflect this issue stating in a more general 

manner that it is possible to “select the correct docking through a scoring function” and that 

there are other more flexible methods: 

“A possible compromise is represented by semi-flexible docking approaches 13 that are more 

computationally feasible and can consider flexibility to some degree during docking.” 

 

State of the art docking algorithms are also capable of modeling limited conformational 

adjustments. 

We have added a note about this in the introduction: 

“A possible compromise is represented by semi-flexible docking approaches 13 that are more 

computationally feasible and can consider flexibility to some degree during docking.” 

 

 

Methods section 

-The number of complexes in the Dockground benchmark 4 (the development dataset) and 

their species composition should be provided 

 

These are already provided in the methods section. There are in total 216 protein complexes 

in the development set and “The dataset consists of 54% Eukaryotic proteins, 38% Bacterial 

and 8% from mixed kingdoms,  e.g. one bacterial protein interacting with one eukaryotic.” 

(see methods under development set). The exact kingdom/species for each protein is 

available in the supplementary data. 

- A short description in terms of species composition should be provided of the test dataset 

of positive example (complexes of known interfaces) from Green et al. 

 

This information is provided in the Methods sections under “Test set”: “These proteins are 

mainly from H. Sapiens (25%), S. Cerevisiae (10%), E.coli (5%) and other Eukarya (30%).” 

The exact species/kingdom is provided in the supplementary data.  

 

-The description of the datasets of non-interacting proteins is confusing. Two paragraphs 

mention the Negatome DB as the source of negative examples: one is part of the section 

describing the test dataset and lists a total 1715 pairs of non-interacting proteins. The 

second appears in the section on non-interacting proteins, and lists 1705 pairs from the 

Negatome DB. The same section also mentions another dataset of non-interacting proteins 

(also from Green et al.). What was the species compositions of these datasets? In which of 

the analyses on the segregation of correct versus incorrect complexes, were these datasets 

used? 

 

We are sorry that this was confusing. Two datasets have been used as negative controls for 

the purpose of separating interacting and non-interacting proteins. The species composition 

and origin of these datasets is described in methods under “non-interacting proteins”: 

https://paperpile.com/c/TaeuGk/TOAz
https://paperpile.com/c/TaeuGk/TOAz


Two datasets of known non-interacting proteins were used, one from the same study as the 

positive test set27. Here, all proteins are from E.coli.  The second set contains 1964 unique 

mammalian protein complexes filtered against the IntAct35 dataset from Negatome36. 

 

-The notoriously difficult problem of defining non-interacting proteins should be given some 

consideration, as some of the cited criteria are problematic. F.e. Y2H screens are well 

known for their high rate of false negatives, e.g. proteins that interact in-vivo, whose 

interaction is not detected using Y2H for various reasons. Likewise, considering proteins 

from different well annotated APMS complexes as non-interacting may also be misleading 

as many proteins are found to be part of multiple APMS complexes. BTW: ref 31 seems to 

be incorrect 

 

It is true the experiments supporting the annotation of interacting and non-interacting 

proteins may contain errors (and we have indeed seen that for some example). Still, this 

data is currently the best available and is used in various studies, including the recently 

published one we compare with (https://www.nature.com/articles/s41467-021-21636-z). To 

address some of the problems in these comparisons we combine two datasets, one of 

bacterial and one of mammalian origin, showing that the performance remains (AUC=0.87), 

giving support to the possibility of separating truli interacting from non-interacting proteins 

across kingdoms. 

 

Regarding REF31, we thank you for such a careful consideration and refer to that this is the 

reference requested to be cited by the authors of the HHpred webserver (see 

https://toolkit.tuebingen.mpg.de/tools/hhpred). 

 

- How is the number of effective sequences computed. Relying on the literature citation (ref 

62) is not satisfactory. 

 

We have rephrased the Neff methods section to clarify this point:  

“To estimate the information in each MSA, we clustered sequences at 62% identity, as 

described in a previous study45. The number of clusters obtained in this way has been used 

to indicate a Neff value for each MSA. 

“ 

 

Results 

- Is the superior performance of the combined AF2 + paired MSA‟s really only a 

consequence of the larger size of the resulting MSA ? 

 

 

Understanding exactly what information is used by AF2 is difficult. However, what is clear is 

that it is possible in some cases to use non-paired (often referred to as block 

diagonalisation) alignments and still obtain good predictions, while in other cases the 

“paired” alignments work well (and for some none or both work). It is also clear that in 

general, pairs with a stronger co-evolutionary signal perform better on average.  

 

Both methods rely on HHblits and Uniclust30 to generate MSAs, so the two different MSAs 

(AF default and paired) are partially redundant. Redundancy is complete when we combine 

Fused and Paired MSAs (they derive from the same single-chain MSAs). Subsequently, the 

https://paperpile.com/c/TaeuGk/9OgVB
https://paperpile.com/c/TaeuGk/ponsZ
https://paperpile.com/c/TaeuGk/GJMki
https://www.nature.com/articles/s41467-021-21636-z
https://paperpile.com/c/TaeuGk/Kf2nb


improved performance is not only due to the larger number of aligned sequences but also to 

the way those are combined. We try to make this clearer in the discussion.  

 

To further analyse the relationship between the SR and MSA quality, we analyse the 

relationship between the DockQ score and the interface PPV. The PPV is the number of  

correct interface contacts divided by the total number of interface contacts, calculated using 

GaussDCA on the paired alignments and taking the top N DCA signal as contact positions. 

E.g. If there are 100 true interface contacts, we take the top 100 interface DCA signal 

positions and calculate how many of these are accurate (see methods).  

 

We find that the SR increases with PPV in the interface using both paired and AF2 MSAs 

and only paired MSAs. At higher PPVs, the SR seems driven entirely by the PPV, while 

using both AF2 and paired MSAs outperforms using only the paired MSAs at lower PPVs. 

The relationship with the interface PPV underlines the importance of pairing the MSA 

correctly, as the SR is 1 at PPV>0.35 for both MSA modeling strategies. 

 

 
 

 

- As already mentioned above, the comparison of the AF2 performance with that of a single 

docking algorithm (GRAMM), which moreover doesn‟t represent the state of the art, is unfair. 

It may indeed be the case that a fairer comparison may prove the authors right, but this 

needs to be based on a valid evidence. 

 

We have added MDOCKPP to properly reflect a state-of-the-art comparison. MDOCKPP 

was ranked first in the server predictions during CASP14-CAPRI for modeling protein 

complexes. 

 

-The template-based docking procedure used in this study seems to be quite different from 

the procedure the authors refer to (ref 7). Here, it seems, target complexes from the test 



dataset are structurally aligned either to the backbone of the full template complex, or only to 

the template interface residues. Or in blind predictions, where the structure of the target 

complex is unknown, template-based „docking‟ involves aligning the sequences of each 

protein of the target complex to that of its homolog in the template complex and going on 

from there. 

 

We are sorry that an improper wording was used here, we superposed monomers extracted 

from the target to complexes in the library in order to select templates. We have 

reformulated this accordingly. 

 

-The legend of Figure 3 reads: „ROC curve as a function of different metrics for the 

development dataset (first run). But the text refers to Figure 3 as representing the results for 

the test set. Indeed, the ROC of Figure 3A represents a plot of the TPR versus FPR and 

requires scoring & ranking predicted structures for both the TP and TN examples, which the 

text does not describe for the development set. What then is the difference between the 

ROCs in Figures 3A and 6A ? 

 

Thank you for this remark. This was an error on our part and we have now made it clear that 

what is now figure 2 refers to the test set only. 

 

The figures you are referring to, now 2 and 5, refer to different comparisons. The first (now 

figure 2) refers to separating acceptable models in terms of DockQ score and the second 

(now figure 5) refers to separating interacting from non-interacting proteins. We have made 

this more clear in the figure legends and text, e.g.  

 

Figure 5. A) The ROC curve as a function of different metrics for discriminating between 

interacting and non-interacting proteins. 

 

 



REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

No further comments, my previous points have been properly addressed and the manuscript changed to 

reflect the changes. 

Reviewer #2 (Remarks to the Author): 

The revised version is largely improved. 

The comparison with the performance of another performant docking method MDockPP, adds 

credibility to the study. 

Particularly welcome is the development of the continuous model quality assessment criterion pDockQ, 

shown here to effectively outperform several versions of the AF2 pLDDT reliability criterion and other 

simple measures for ranking models and segregating interacting from non-interacting protein pairs. 

Also interesting is the deeper analysis of the MSA features contributing to successful prediction, which 

suggests that interface evolutionary signals as measured by the fraction of interface contacts recalled by 

DCA, have a strong impact on the prediction results. 

Evaluating the performance of AlphaFold-Multimer is a marginal addition given that the corresponding 

DL model was in fact trained on the dataset used here as the test set. 

I have only a few outstanding comments 



Results section: 

-Development versus test set performance: The significant discrepancy between the performance of AF2 

on development set (33.3% - 39.4%) and the test set (57.8% - 58,4%), is striking. This suggests that AF2 

performance is dataset dependent. While this is not unexpected, it begs for a comment. It doesn’t seem 

to result from an organism bias, since the AF2 performance on the smaller development dataset is much 

lower even though it features a higher proportion of bacterial proteins, for which the authors observe a 

higher SR level in AF2 predictions. 

Lines 95-97, 139-140 

…’protocol performs quite close to (63% vs 72%) the recently developed AF-Multimer which was 

developed using the same data as the test set here, making a direct comparison difficult. 

‘was developed’ should be replaced by ‘was trained’. 

Lines :132-134 

The sentence is misleading since the performance of the 3 docking methods is clearly not good. 

Suggestion: 

Replace “The reason for GRAMM’s, TMdock’s and MDockPP’s good performance is likely due” by “The 

reason GRAMM’s, TMdock’s and MDockPP’s reach this performance level is likely due” 

Lines 362-364 

Projecting the fraction of human heterodimers predicted at the current 1% error rate, on the basis of 

the number of pairwise human PPI in the String DB (11.9 million) is overdoing it, since it is well known 

that a sizable fraction of the interactions in String are non-physical. The paragraph should be rephrased 

accordingly. 



REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

No further comments, my previous points have been properly addressed and the manuscript 

changed to reflect the changes. 

We are delighted our changes were satisfactory and thank you for your excellent comments 

throughout the revision process.

Reviewer #2 (Remarks to the Author): 

The revised version is largely improved. 

The comparison with the performance of another performant docking method MDockPP, 

adds credibility to the study. 

We are happy this addition was satisfactory and thank you for this suggestion.

Particularly welcome is the development of the continuous model quality assessment 

criterion pDockQ, shown here to effectively outperform several versions of the AF2 pLDDT 



reliability criterion and other simple measures for ranking models and segregating interacting 

from non-interacting protein pairs. 

We thank you for this kind acknowledgement and agree this score is useful for both structure 

quality assessment and separating interacting from non-interacting proteins.

Also interesting is the deeper analysis of the MSA features contributing to successful 

prediction, which suggests that interface evolutionary signals as measured by the fraction of 

interface contacts recalled by DCA, have a strong impact on the prediction results. 

Indeed it appears so, that the evolutionary signal in the interface - here measured using DCA

- has a strong impact on the outcome, opening up for future improvements in docking by 

improving this signal.

Evaluating the performance of AlphaFold-Multimer is a marginal addition given that the 

corresponding DL model was in fact trained on the dataset used here as the test set. 

This is correct and we are in full agreement. 

I have only a few outstanding comments 

Results section: 

-Development versus test set performance: The significant discrepancy between the 

performance of AF2 on development set (33.3% - 39.4%) and the test set (57.8% - 58,4%), 

is striking. This suggests that AF2 performance is dataset dependent. While this is not 

unexpected, it begs for a comment. It doesn’t seem to result from an organism bias, since 

the AF2 performance on the smaller development dataset is much lower even though it 

features a higher proportion of bacterial proteins, for which the authors observe a higher SR 

level in AF2 predictions. 

We thank you for this comment. We agree there is a big difference and have added a comment 

about this under limitations, where we suggest that performance should be assessed on as 

large non-redundant datasets as possible to ensure any selection bias does not impact the 

results. We do not know exactly the origin of the difference. We tried to examine the most 

obvious differences between the two sets (protein size, species, size of MSAs etc) but did not 

find anything obvious that separated the sets. Unfortunately, trying to pinpoint the origin of the 

difference is beyond the goals of this study.

Lines 95-97, 139-140 

…’protocol performs quite close to (63% vs 72%) the recently developed AF-Multimer which 

was developed using the same data as the test set here, making a direct comparison 

difficult. 

‘was developed’ should be replaced by ‘was trained’.' 

We have changed this phrasing as suggested to clarify that it was indeed trained. 

Lines :132-134 



The sentence is misleading since the performance of the 3 docking methods is clearly not 

good. 

Suggestion: 

Replace “The reason for GRAMM’s, TMdock’s and MDockPP’s good performance is likely 

due” by “The reason GRAMM’s, TMdock’s and MDockPP’s reach this performance level is 

likely due” 

We thank you for this suggestion and have changed the phrasing as suggested. 

Lines 362-364 

Projecting the fraction of human heterodimers predicted at the current 1% error rate, on the 

basis of the number of pairwise human PPI in the String DB (11.9 million) is overdoing it, 

since it is well known that a sizable fraction of the interactions in String are non-physical. The 

paragraph should be rephrased accordingly. 

We have changed this statement to reflect a more realistic modeling scenario, which we 

have also applied in practice (https://www.biorxiv.org/content/10.1101/2021.11.08.467664v1).

https://www.biorxiv.org/content/10.1101/2021.11.08.467664v1

