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Supplementary Note 1. Elastic constants of a linear elastic, nearly incompressible, 
transversely isotropic (NITI) material 

The elastic modulus matrix of a linear-elastic, transversely isotropic (TI) material can be 
represented in a form 1, 2: 

𝐶𝐶 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝐶𝐶11 𝐶𝐶12 𝐶𝐶13
𝐶𝐶12 𝐶𝐶11 𝐶𝐶13
𝐶𝐶13 𝐶𝐶13 𝐶𝐶33

𝐶𝐶44
𝐶𝐶44

𝐶𝐶66⎦
⎥
⎥
⎥
⎥
⎥
⎤

 ,    (S1) 

where 𝐶𝐶12 = 𝐶𝐶11 − 2𝐶𝐶66 due to symmetry conditions 1, 2. Considering that two of three principal 
planes in a TI material are isotropic, we will use a modified notation of moduli based on the 
notation common of isotropic materials 3:  

𝐶𝐶 =

⎣
⎢
⎢
⎢
⎢
⎡𝜆𝜆 + 2𝜇𝜇 𝜆𝜆 𝜆𝜆 + 𝑄𝑄1

𝜆𝜆 𝜆𝜆 + 2𝜇𝜇 𝜆𝜆 + 𝑄𝑄1
𝜆𝜆 + 𝑄𝑄1 𝜆𝜆 + 𝑄𝑄1 𝜆𝜆 + 2𝜇𝜇 + 𝑄𝑄2

𝐺𝐺
𝐺𝐺

𝜇𝜇 ⎦
⎥
⎥
⎥
⎥
⎤

 .    (S2) 

An additional modulus 𝐺𝐺 shows that shear deformation can be different if shear stress is applied 
along the symmetry axis 𝐳𝐳 compared to that applied across it. Parameters 𝑄𝑄1 and 𝑄𝑄2 indicate 
that differences between 𝐶𝐶33 and 𝐶𝐶11, and between 𝐶𝐶12 and 𝐶𝐶13 may be nonzero 3.  
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Using the elasticity matrix (S.2), the stress-strain relation in a TI material for small deformations 
is described by Hook’s law and takes the form (in Voigt notation) 3: 
 

⎣
⎢
⎢
⎢
⎢
⎡
𝜎𝜎11
𝜎𝜎22
𝜎𝜎33
𝜎𝜎23
𝜎𝜎31
𝜎𝜎12⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡𝜆𝜆 + 2𝜇𝜇 𝜆𝜆 𝜆𝜆 + 𝑄𝑄1

𝜆𝜆 𝜆𝜆 + 2𝜇𝜇 𝜆𝜆 + 𝑄𝑄1
𝜆𝜆 + 𝑄𝑄1 𝜆𝜆 + 𝑄𝑄1 𝜆𝜆 + 2𝜇𝜇 + 𝑄𝑄2

𝐺𝐺
𝐺𝐺

𝜇𝜇 ⎦
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎡
𝜀𝜀11
𝜀𝜀22
𝜀𝜀33

2𝜀𝜀23
2𝜀𝜀31
2𝜀𝜀12⎦

⎥
⎥
⎥
⎥
⎤

 ,   (S3) 

where 𝜎𝜎𝑖𝑖𝑖𝑖 and 𝜀𝜀𝑘𝑘𝑘𝑘 are the components of the stress and strain tensors, respectively.  

For any arbitrary load applied to a TI medium, the strain field is computed by inverting the stress-
strain relation, where the inverse of the elastic modulus matrix is the compliance matrix 𝛼𝛼 = 𝐶𝐶−1: 

⎣
⎢
⎢
⎢
⎢
⎡
𝜀𝜀11
𝜀𝜀22
𝜀𝜀33

2𝜀𝜀23
2𝜀𝜀31
2𝜀𝜀12⎦

⎥
⎥
⎥
⎥
⎤

 =
1
∆

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝛼𝛼11 −𝛼𝛼12 −𝛼𝛼13
−𝛼𝛼12 𝛼𝛼11 −𝛼𝛼13
−𝛼𝛼13 −𝛼𝛼13 𝛼𝛼33

∆ ∙ 𝛼𝛼44
∆ ∙ 𝛼𝛼44

∆ ∙ 𝛼𝛼66⎦
⎥
⎥
⎥
⎥
⎥
⎤

  

⎣
⎢
⎢
⎢
⎢
⎡
𝜎𝜎11
𝜎𝜎22
𝜎𝜎33
𝜎𝜎23
𝜎𝜎31
𝜎𝜎12⎦

⎥
⎥
⎥
⎥
⎤

   ,                         (S4) 

where the components of the compliance matrix 𝛼𝛼𝑖𝑖𝑖𝑖 can be expressed in the form: 

𝛼𝛼 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡1/𝐸𝐸𝑇𝑇

−𝜈𝜈𝑇𝑇𝑇𝑇
𝐸𝐸𝑇𝑇

−𝜈𝜈𝐿𝐿𝑇𝑇
𝐸𝐸𝐿𝐿

−𝜈𝜈𝑇𝑇𝑇𝑇
𝐸𝐸𝑇𝑇

1/𝐸𝐸𝑇𝑇
−𝜈𝜈𝐿𝐿𝑇𝑇
𝐸𝐸𝐿𝐿

−𝜈𝜈𝐿𝐿𝑇𝑇
𝐸𝐸𝐿𝐿

−𝜈𝜈𝐿𝐿𝑇𝑇
𝐸𝐸𝐿𝐿

1/𝐸𝐸𝐿𝐿
1/𝐺𝐺

1/𝐺𝐺
1/𝜇𝜇⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  ,                                   (S5) 

where E𝑇𝑇 and E𝐿𝐿 are the transversal and longitudinal Young’s moduli, respectively, and 𝜈𝜈𝑇𝑇𝑇𝑇 and 
𝜈𝜈𝐿𝐿𝑇𝑇 are Poisson’s ratios, respectively. These parameters can be expressed through the 
components of the compliance matrix as 3: 
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𝐸𝐸𝑇𝑇 =
Δ
𝛼𝛼11

 ,   

𝐸𝐸𝐿𝐿 =
Δ
𝛼𝛼33

 ,   

ν𝑇𝑇𝑇𝑇 =
𝛼𝛼12

𝛼𝛼11
 ,

ν𝑇𝑇𝐿𝐿 =
𝛼𝛼13

𝛼𝛼11
   

ν𝐿𝐿𝑇𝑇 =
𝛼𝛼13

𝛼𝛼33
 ,

                                                                         (S6) 

where 

                          Δ = 4𝜇𝜇 ��𝜆𝜆 + 2𝜇𝜇 + 𝑄𝑄2�(𝜆𝜆 + 𝜇𝜇) − �𝜆𝜆 + 𝑄𝑄1�
2� , 

                     α11 = �𝜆𝜆 + 2𝜇𝜇 + 𝑄𝑄2�(𝜆𝜆 + 2𝜇𝜇) − �𝜆𝜆 + 𝑄𝑄1�
2

 , 

α12 = 𝜆𝜆�𝜆𝜆 + 2𝜇𝜇 + 𝑄𝑄2� − �𝜆𝜆 + 𝑄𝑄1�
2
 ,                 (S7) 

α13 = 2𝜇𝜇�𝜆𝜆 + 𝑄𝑄1� ,                          
α33 = 4𝜇𝜇(𝜆𝜆 + 𝜇𝜇) .                                 

 

We also note also that  
𝜈𝜈𝐿𝐿𝐿𝐿
𝐸𝐸𝐿𝐿

= 𝜈𝜈𝐿𝐿𝐿𝐿
𝐸𝐸𝐿𝐿

 . 

The incompressibility condition appropriate for materials such as soft tissue constrains the strain 
such that 

 𝑇𝑇𝑇𝑇(𝜺𝜺) ≡ 𝜃𝜃 = 0 .      (S8) 

For an accurate description of an incompressible TI material, this condition must be applied 
directly to the stress strain relations in the limit that θ  approaches zero and the longitudinal 
modulus λ approaches infinity, i.e. 

𝑃𝑃 = lim
𝜆𝜆→∞
𝜃𝜃→0

(𝜆𝜆𝜃𝜃) ,      (S9) 

where 𝑃𝑃 is defined as the scalar pressure. As demonstrated in Ref 3, a strict application of the 
incompressibility condition produces stress-strain relations in which the longitudinal terms 
include the scalar pressure P and inversion of this equation to compute the Young’s moduli and 
Poisson’s ratios of an incompressible TI material is not strictly defined. However, following an 
approach presented in Ref 3 for an isotropic incompressible material, the Young’s moduli and 
Poisson’s ratios can be approximated using the formulas presented above and taking the limit as 
λ approaches infinity. Under these conditions, the Young’s moduli and Poisson’s ratios for a 
nearly-incompressible TI material, i.e. NITI material, can be approximated as: 
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                            𝐸𝐸𝑇𝑇 = 3𝜇𝜇 + 𝜇𝜇 �
𝛿𝛿

4𝜇𝜇 + 𝛿𝛿
�  ,

         𝐸𝐸𝐿𝐿 = 3𝜇𝜇 + 𝛿𝛿 ,

                                               𝜈𝜈𝑇𝑇𝑇𝑇 =
1
2
�1 +

𝛿𝛿
4𝜇𝜇 + 𝛿𝛿

� = 1 −
1
2
𝐸𝐸𝑇𝑇
𝐸𝐸𝐿𝐿

  ,

                                     𝜈𝜈𝑇𝑇𝐿𝐿 =
1
2
�1 −

𝛿𝛿
4𝜇𝜇 + 𝛿𝛿

� =
1
2
𝐸𝐸𝑇𝑇
𝐸𝐸𝐿𝐿

,

 𝜈𝜈𝐿𝐿𝑇𝑇 =
1
2

 ,

                                                         (S10) 

where 𝛿𝛿 = 𝑄𝑄2 − 2𝑄𝑄1. 

Note that in the limit of an isotropic material, where 𝑄𝑄1 = 𝑄𝑄2 = 0,    𝐸𝐸𝑇𝑇 = 𝐸𝐸𝐿𝐿 = 3𝜇𝜇,   and  ν𝑇𝑇𝑇𝑇 =
ν𝑇𝑇𝐿𝐿 = ν𝐿𝐿𝑇𝑇 = 1/2. 

We will further differentiate a fast-axis NITI material (i.e. the material with a unidirectional fiber 
orientation and, thereby, the symmetry axis collinear with fibers) considered in this paper for 
skin, from a slow-axis NITI material (i.e. the material where fibers arbitrary distributed in a plane 
and, thereby, the symmetry axis is perpendicular to the fiber direction) previously introduced for 
cornea 4.  

 
Supplementary Figure S1. Young’s moduli (a) and Poisson’s ratios (b) along and across NITI material 
symmetry axis 𝐳𝐳 (fiber direction) scaled to the shear modulus 𝜇𝜇 (𝐸𝐸𝐿𝐿/𝜇𝜇 and 𝐸𝐸𝑇𝑇/𝜇𝜇 respectively) as a function 
of the ratio 𝛿𝛿/𝜇𝜇. Dashed line in panel (a) corresponds to the isotropic case of 𝐸𝐸𝑇𝑇 = 𝐸𝐸𝐿𝐿 = 3𝜇𝜇. 

Supplementary Figure 1 shows how Young’s moduli and Poisson’s ratios can change with 𝛿𝛿. 
Clearly, 𝐸𝐸𝑇𝑇 has a very narrow range, with a lower limit of 2𝜇𝜇 and upper limit of 4𝜇𝜇 as 𝛿𝛿 → ∞, and 
𝐸𝐸𝐿𝐿 is a linear function of 𝛿𝛿. 
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A lower limit for the argument 𝛿𝛿/𝜇𝜇 is defined by the restriction for Poisson’s ratio 𝜈𝜈𝑇𝑇𝑇𝑇 to be 
positive.  

The case when 𝛿𝛿/𝜇𝜇 < 0 corresponds to the slow-axis NITI medium, when 𝐶𝐶33 < 𝐶𝐶11. This 
situation is realized in cornea, when lamellae are oriented randomly in-plane of the cornea, and, 
therefore, the symmetry Z-axis corresponds to the direction perpendicular to fibers.  

The case when 𝛿𝛿/𝜇𝜇 > 0 corresponds to the fast-axis NITI medium, when 𝐶𝐶33 > 𝐶𝐶11. This situation 
is typical for skin and muscle, where fibers can be considered locally unidirectional, and, 
therefore, the symmetry Z-axis corresponds to the direction along the fibers.  
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Supplementary Note 2. Bulk waves in a linear elastic, fast-axis NITI material 

An isotropic solid supports two unique waves – one longitudinal with speed 𝑐𝑐𝐿𝐿 and one shear 
with speed 𝑐𝑐𝑆𝑆. Biological tissue is nearly incompressible, meaning that the longitudinal wave 
speed (typically ≈ 1540 m/s) is much larger than the shear wave speed (typically ≈ 1-10 m/s).  

In biological tissue such as the skin, the natural orientation of collagen fibers in the dermis are 
traditionally described using Langer’s lines and correspond with estimates of mechanical 
anisotropy. Thus, in skin, a single shear modulus is not sufficient to describe elastic behavior. The 
simplest constitutive model that may account for skin’s structure is a NITI model, recently 
introduced for describing elastic anisotropy in cornea 4. In cornea, however, the orientation of 
fibers is in plane but quite random. This creates a symmetry axis perpendicular to the fiber 
structure. Thus, the symmetry axis for cornea is a slow axis. In contrast, the orientation of 
collagen fibers in skin is locally unidirectional, which creates a symmetry axis (which is the fast 
axis) in the plane of skin.  

First, we consider propagation of bulk acoustic waves in a fast-axis NITI medium in the YZ plane 
(see Fig S2a below), parallel to the skin surface, but within the skin volume. Wave speeds can be 
found from the solution of the Christoffel equation 2:   

[𝛤𝛤𝑖𝑖𝑘𝑘 − 𝜌𝜌𝑐𝑐2𝛿𝛿𝑖𝑖𝑘𝑘]𝐚𝐚 = 0                                                                 (S11) 

where 𝛤𝛤𝑖𝑖𝑘𝑘 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘 is the Christoffel tensor; 𝑚𝑚𝑖𝑖,𝑘𝑘 (𝑖𝑖,𝑘𝑘 = 1, 2, 3) are the directional cosines of 
the propagation vector 𝐫𝐫; 𝛿𝛿𝑖𝑖𝑘𝑘 is the Kronecker operator; 𝐚𝐚 is the wave polarization unit vector, 
which is also the eigenvector of tensor 𝛤𝛤𝑖𝑖𝑘𝑘;  and 𝑐𝑐 is the velocity of the propagating mechanical 
wave. 

In the YZ plane, the unit vector for directional cosines takes the form 𝑚𝑚𝑖𝑖,𝑘𝑘 = [0, sin 𝜗𝜗, cos 𝜗𝜗]. In 
this plane, the solution points to three bulk waves: a quasi-longitudinal, a quasi-shear (𝑐𝑐𝑞𝑞𝑆𝑆), and 
a shear wave, that propagate with speeds 𝑐𝑐𝑞𝑞𝐿𝐿, 𝑐𝑐𝑞𝑞𝑆𝑆 and 𝑐𝑐𝑆𝑆, respectively 5: 

𝑐𝑐𝑞𝑞𝐿𝐿,𝑆𝑆 =  �
𝐶𝐶11sin2𝜗𝜗 + 𝐶𝐶33cos2𝜗𝜗 + 𝐶𝐶44 ± �𝑀𝑀(𝜗𝜗)

2𝜌𝜌
  ,                                 (S12) 

where 

𝑀𝑀(𝜗𝜗) = [(𝐶𝐶11 − 𝐶𝐶44)sin2𝜗𝜗 + (𝐶𝐶44 − 𝐶𝐶33) cos2 𝜗𝜗]2 + (𝐶𝐶13 + 𝐶𝐶44)2sin22𝜗𝜗 ,  (S13) 

𝑐𝑐𝑆𝑆 = �
𝐺𝐺 cos2 𝜗𝜗 +𝜇𝜇 sin2𝜗𝜗

𝜌𝜌
 .                                                            (S14) 

Velocities 𝑐𝑐𝑞𝑞𝐿𝐿 or 𝑐𝑐𝑞𝑞𝑆𝑆 can be calculated using the positive or negative discriminants, respectively. 
Because 𝜆𝜆 ≫ 𝜇𝜇,𝐺𝐺, 𝛿𝛿 in nearly incompressible media, variations of quasi-longitudinal wave speed 
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𝑐𝑐𝑞𝑞𝐿𝐿 are negligible over all angles and can be approximately set as 𝑐𝑐𝐿𝐿 = �𝜆𝜆/𝜌𝜌, and the speed 𝑐𝑐𝑞𝑞𝑆𝑆 
of quasi-shear wave can be expressed as: 

𝑐𝑐𝑞𝑞𝑆𝑆 = �
𝐺𝐺 + (𝜇𝜇 + 𝛿𝛿/4 − 𝐺𝐺)sin22𝜗𝜗

𝜌𝜌
= �𝐺𝐺 + �𝐸𝐸𝐿𝐿𝐸𝐸𝑇𝑇

𝜇𝜇 − 𝐺𝐺� sin22𝜗𝜗

𝜌𝜌
 .                   (S15) 

The shear wave is always polarized along the X-axis. It can also be shown, that in the near-
incompressible limit, the polarization of a quasi-shear wave is orthogonal to its propagation 
direction and lies in plane (YZ plane). 

 
Supplementary Figure S2: (a) – Diagram of wave propagation in a fast-axis NITI medium. Fiber direction 
is in the Z direction and the wave propagation direction is represented by 𝒓𝒓 in the YZ plane. (b) – Phase 
velocity of bulk shear, 𝑐𝑐𝑆𝑆, (black dashed line) and quasi-shear, 𝑐𝑐𝑞𝑞𝑆𝑆, waves in YZ plane of fast-axis NITI 
medium for 𝐺𝐺/𝜇𝜇 =  3 and 𝛿𝛿/𝜇𝜇 = 0, 1, 2, 5, 10 as a function of angle with respect to the fiber direction z. 
Speeds are scaled to the speed of a shear wave (�𝜇𝜇/𝜌𝜌) along the Y direction. 

Propagation speeds for shear and quasi-shear waves in the YZ plane are illustrated in Suppl. Fig. 
S2b scaled to the shear wave speed (�𝜇𝜇/ρ) along the Y direction for 𝐺𝐺/𝜇𝜇 = 3 and variable 𝛿𝛿/𝜇𝜇. 
Clearly, the shear wave speed 𝑐𝑐𝑆𝑆 (black dotted line) monotonically decreases from �𝐺𝐺/𝜌𝜌 along 
the Z direction (e.g., along the fibers in skin) to �𝜇𝜇/𝜌𝜌 along the Y direction (e.g., across the fibers).  

Propagation of the quasi-shear wave (solid lines) is more complicated. Along the fibers, it is 
converted to a pure shear wave with a speed of �𝐺𝐺/𝜌𝜌. It is also converted to a pure shear wave 
propagating across the fibers (at 𝜗𝜗 = 90°). Because this wave is polarized in the YZ plane, the 
propagation across fibers corresponds to its polarization along fibers and vice versa. Both 
situations result in the same propagation speed �𝐺𝐺/𝜌𝜌. It is interesting that at 𝜗𝜗 = 45°, the 
propagation speed does not depend on 𝐺𝐺 and approaches �𝜇𝜇/𝜌𝜌 as 𝛿𝛿 → 0. 
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Supplementary Note 3: Rayleigh wave Propagation in a linear elastic, fast-axis NITI material 

A well-defined surface imposes additional constraints on propagating waves so that traction 
forces should be taken into account. A real root of the wave motion equation corresponds to a 
Rayleigh wave with amplitude decreasing exponentially with depth. In nearly incompressible 
isotropic materials, its speed is directly related to 𝑐𝑐𝑆𝑆, 𝑐𝑐𝑅𝑅 ≈ 0.9553𝑐𝑐𝑆𝑆. Propagation velocities of 
shear and Rayleigh waves can then be converted into the Young’s modulus 𝐸𝐸 = 3𝜌𝜌𝑐𝑐𝑆𝑆2. 

Now consider wave propagation in the same YZ plane, but over the surface of a fast-axis NITI 
medium. In addition to the unit propagation vector 𝐦𝐦 = [0, sin θ, cos θ], a surface unit normal 
vector 𝐧𝐧 = [1, 0, 0] should be introduced. The solution for the Rayleigh wave speed 𝑐𝑐𝑅𝑅 can be 
found using the Stroh formalism with 3x3 matrices 6: 

𝑄𝑄𝑖𝑖𝑘𝑘 = 𝑐𝑐𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘 − 𝜌𝜌𝑐𝑐2𝛿𝛿𝑖𝑖𝑘𝑘 , (S16) 

𝑅𝑅𝑖𝑖𝑘𝑘 = 𝑐𝑐𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑛𝑛𝑘𝑘 , (S17) 

𝑇𝑇𝑖𝑖𝑘𝑘 = 𝑐𝑐𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖𝑛𝑛𝑘𝑘 . (S18) 

Matrices (S16) – (S18) can be combined to form the 6x6 Stroh eigenvalue problem: 

𝐍𝐍 �𝐚𝐚𝐛𝐛� = 𝑝𝑝 �𝐚𝐚𝐛𝐛� , 
(S19) 

where 𝑘𝑘 is the wave number and the matrix N  

𝐍𝐍 = � −𝐓𝐓−𝟏𝟏𝐑𝐑𝐓𝐓 𝐓𝐓−𝟏𝟏
𝐑𝐑𝐓𝐓−𝟏𝟏𝐑𝐑𝐓𝐓 − 𝐐𝐐 −𝐓𝐓−𝟏𝟏𝐑𝐑𝐓𝐓� . 

(S20) 
 

Eigenvectors contain polarization 𝐚𝐚 and traction 𝐛𝐛 vectors of harmonic waves that satisfy the free 
surface boundary conditions and whose displacement 𝐮𝐮 and traction 𝐭𝐭 are represented in the 
form:  

𝐮𝐮 = 𝐚𝐚𝒆𝒆𝑖𝑖𝑘𝑘(𝐦𝐦∙𝐫𝐫+𝑝𝑝𝐧𝐧∙𝐫𝐫−𝑐𝑐𝑐𝑐) , (S21) 

𝐭𝐭 = 𝑖𝑖𝑘𝑘𝐛𝐛𝒆𝒆𝑖𝑖(𝑘𝑘𝐦𝐦∙𝐫𝐫−𝑐𝑐𝑐𝑐) .      (S22) 

The amplitude of a Rayleigh wave must decay with depth, and therefore 𝑝𝑝 has a positive 

imaginary part. Six eigenvalues occur in complex conjugate pairs �𝐚𝐚𝐛𝐛�, but only three depth-

decaying modes form Rayleigh waves. In addition, the free surface boundary condition implies 
that the linear combination of tractions must equal zero:  

�𝑐𝑐𝑖𝑖𝐭𝐭𝑖𝑖 = 0
3

𝑐𝑐=1

        ,                                                              (S23) 

which can be rewritten as: 
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𝑖𝑖𝑘𝑘 �
| | |
𝐛𝐛1 𝐛𝐛2 𝐛𝐛3
| | |

� �
𝑐𝑐1
𝑐𝑐2
𝑐𝑐3
� 𝑒𝑒𝑖𝑖𝑘𝑘(𝐦𝐦⋅𝐫𝐫−𝑐𝑐𝑐𝑐) = 𝐁𝐁𝐁𝐁 = 𝟎𝟎 , 

(S24) 

with a nontrivial solution if and only if the determinant of 𝐁𝐁 is zero.  

To solve for the Rayleigh wave speed, an iterative algorithm is used. At each iteration, a trial wave 
speed 𝑣𝑣 is considered, and the Stroh eigenvalue problem is solved to obtain the relevant 
eigenvectors, as described above. The traction vectors are extracted and used to form the 
matrix  𝐁𝐁 and calculate its determinant. This process is repeated until the absolute value of the 
determinant is minimized. The resulting wave speed corresponds to the Rayleigh wave speed 𝑐𝑐𝑅𝑅. 

The simplest scenario occurs when a Rayleigh wave propagates across fibers in the fast-axis NITI 
medium. Its speed has the same relationship with the shear wave speed as in an isotropic 
material, and it is fully defined by modulus 𝜇𝜇 without any dependence on 𝐺𝐺 and 𝛿𝛿. 

Obtaining an analytic solution for the Rayleigh wave speed at an arbitrary angle to the symmetry 
axis Z (fiber direction for skin) and its dependence on 𝐺𝐺/𝜇𝜇 and 𝛿𝛿/𝜇𝜇 is complicated and possible 
only for a few cases. It can be shown (see Ref 7) that that the velocity of Rayleigh waves along 
fibers obeys the secular equation below, similar to that for the isotropic case 8, but with different 
coefficients: 

𝜉𝜉3 − 2𝜅𝜅𝜉𝜉2 + 𝜅𝜅(2𝐺𝐺1 + 𝜅𝜅)𝜉𝜉 − 𝐺𝐺1𝜅𝜅2 = 0 ,                                               (S25) 

where  

 𝜉𝜉 = 𝜌𝜌𝐶𝐶𝑅𝑅2/𝜇𝜇, 

 𝜅𝜅 = (4𝜇𝜇 + 𝛿𝛿)/𝜇𝜇                 (S26) 

𝐺𝐺1 = 𝐺𝐺/𝜇𝜇.  

Equation (S25) can also be written in an alternative form:  

𝜉𝜉3 − 8(1 + 𝛿𝛿
4𝜇𝜇

)𝜉𝜉2 + 24 �2
3
�1 + 𝛿𝛿

4𝜇𝜇
� �1 + 𝛿𝛿

4𝜇𝜇
+ 𝐺𝐺

2𝜇𝜇
�� 𝜉𝜉 − 16 𝐺𝐺

𝜇𝜇
(1 + 𝛿𝛿

4𝜇𝜇
)2 = 0 ,  (S27) 

As noted in Ref 5, the speed of the quasi-shear wave is not limited by �𝐺𝐺/𝜌𝜌 and can change 
broadly with 𝛿𝛿; however, the speed of a Rayleigh wave in a NITI medium cannot exceed �𝐺𝐺/𝜌𝜌. 
This limit is reached when 𝛿𝛿/𝜇𝜇 → ∞.  

Note that in the isotropic limit, the equation reduces to the well-known Rayleigh equation 7: 

𝜉𝜉3 − 8𝜉𝜉2 + 24𝜉𝜉 − 16 = 0 .      (S28) 

Supplementary Figure S3 shows the behavior of the Rayleigh wave speed in the fast-axis NITI 
medium (typical for skin and muscles) at different values of 𝛿𝛿/𝜇𝜇. Clearly, the absolute limitation 
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on the Rayleigh wave speed is the speed 𝑐𝑐𝑆𝑆 of bulk shear waves polarized perpendicular to the 
surface (along the X-axis).  

  

Supplementary Figure S3: Rayleigh mechanical waves on the surface of a bulk NITI medium. Simulated in 
OnScale wavefields for propagation along (a), and across (b) the symmetry axis z (fiber direction) of a NITI 
medium for 𝐺𝐺/𝜇𝜇 =  3 and 𝛿𝛿/𝜇𝜇 = 1. Black solid lines in panels (a) and (b) correspond to calculated 
Rayleigh wave speed. (c) Speed, 𝑐𝑐𝑅𝑅, of propagating Rayleigh wave in YZ plane of a fast-axis NITI medium 
scaled to the shear wave speed (�𝜇𝜇/𝜌𝜌) along the Y direction for 𝐺𝐺/𝜇𝜇 =  3 and  𝛿𝛿/𝜇𝜇 = 0, 1, 5, 10, 50 as a 
function of angle with respect to the symmetry axis. The speed 𝑐𝑐𝑆𝑆 of bulk shear waves polarized 
perpendicular to the surface is shown by the black dash-dot line for comparison.  
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Supplementary Note 4: Influence of a thin isotropic layer (epidermis) on Rayleigh wave 
propagation in a fast-axis NITI material 

Skin is a multilayered structure consisting of epidermis, dermis, and hypodermis layers. Here we 
investigate skin’s elastic properties assuming that they are dominated by the dermis and that the 
dermis represents a NITI medium. The epidermis in skin is much thinner than the dermis and, 
therefore, cannot strongly affect the skin’s elastic behavior and its deformation. However, adding 
a layer on top of a NITI material might affect the propagation speed of a Rayleigh wave depending 
on the relationship between its wavelength and the layer thickness, i.e. on the parameter 𝑘𝑘ℎ (ℎ 
is the layer thickness and 𝑘𝑘 is 2π times the wavelength). Indeed, when the layer thickness is much 
smaller than the wavelength, 𝑘𝑘ℎ ≪ 1, the speed of a Rayleigh wave is defined by the speed in 
the substrate, i.e., the layer can be ignored 8. In contrast for a very thick layer, 𝑘𝑘ℎ ≫ 1, the 
Rayleigh wave speed is solely determined by the properties of the layer 8, 10.   

In our AµT-OCE measurements in skin, the maximum frequency of Rayleigh waves is usually 
limited to about 3 kHz, which corresponds to about 1 mm wavelength in dermis. It is evident that 
the epidermal thickness around 50 µm to 100 µm is much smaller that the wavelength. Thus, 
intuitively, the epidermis should not affect the Rayleigh wave speed, but considering that the 
difference in Young’s moduli between epidermal and dermal layers can be dramatic, it is worth 
checking this effect quantitatively. 

The influence of medium loading with a thin layer on the propagation characteristics of Rayleigh 
waves was investigated in multiple past studies, mostly for solids. In the majority of cases, a softer 
coating was considered 8. Studies for a stiffer coating than the substrate are limited 10. However, 
Rayleigh waves in a layered soft media, to our knowledge, were not quantitatively described.  

For skin the substrate (dermis) is an anisotropic NITI medium, whereas the epidermis was shown 
to be isotropic (at least optically) in multiple studies (see Ref 11, for example). Considering this 
structure analytically is not a simple task; therefore, numerical simulations were performed in 
OnScale instead. 

We have used OnScale to build numerical AµT-OCE models in several numerical studies before, 
including simulating nearly incompressible anisotropic media 4. Details on the simulation 
parameters for nearly incompressible media and numerical model testing can be found in Refs 4, 

11. The simulation script for the model used here is shared in Supplementary Software Library. 
Supplementary Figures S4a,b present diagrams of  wave propagation along and across fibers. 
Examples of Rayleigh wavefields, and corresponding 2-D spectra, are shown in Supplementary 
Figures S4c-f.  

Because epidermis provides mainly protection, we set its shear modulus to be 𝜇𝜇 = 500 kPa, 
which is much larger than that in dermis. Note that the Young’s modulus in epidermis may be 
different in different body sites, may vary with age, gender, and an individual’s lifestyle and 
environment, and many other conditions. As seen in Suppl. Figure S4c-f, even if the modulus in 
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the epidermis is 50 time larger than that for dermis, it does not change the Rayleigh wave speed 
appreciably. Thus, we can conclude that ignoring the epidermis in reconstructing elastic moduli 
in skin is justified for the case of 𝑘𝑘ℎ ≪ 1.   

 
Supplementary Figure S4: Diagram of Rayleigh wave propagation over the surface of a 2-layer 
(epidermis/dermis) system along (a) and across (b) the symmetry axis of the second layer. Epidermis is 
modeled as a 50 𝜇𝜇m thick isotropic material with 𝜇𝜇 = 500 kPa; dermis is modeled as a fast-axis NITI 
hemispace with 𝜇𝜇 = 𝛿𝛿 = 10 kPa, 𝐺𝐺 = 30 kPa. Simulated wavefields of vertical vibration velocity and 2D 
Fourier spectra of Rayleigh waves are shown accordingly for propagation along (c), (e) and across (d), (f) 
the symmetry axis of the NITI medium. Solid lines in panels (c)-(f) correspond to Rayleigh wave speeds in 
a bulk NITI medium, and dashed lines correspond to fitting. The color bar is linear in panels (c) and (d) and 
shown in arbitrary units. The color bar for spectral amplitudes in panels (e) and (f) is shown in dB relative 
to the maximum signal.  
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Supplementary Note 5: Guided waves in a bounded (with hypodermis) NITI layer (epidermis). 

As demonstrated in Supplementary Note 4 above, a thin epidermal layer has little influence on 
the propagation of Rayleigh waves in dermis due to its small thickness compared to the 
wavelength, i.e. under the condition 𝑘𝑘ℎ ≪ 1. However, the thickness of dermis itself is not 
infinite and usually on the order of 1 mm, representing a 𝑘𝑘ℎ ≈ 1. For this case, guided wave 
behavior can be expected. Below, we investigate how a mismatch between elastic properties of 
dermis and hypodermis influence mechanical wave propagation over the skin surface.  

Because the hypodermis (or subcutaneous tissue) is mainly connective tissue with a large fraction 
of fat and almost no fibers, we assume subcutaneous tissue to be isotropic and having a lower 
Young’s modulus than that in dermis due to the very low elastic modulus of fat. In simulations, 
we considered it to be 𝐸𝐸𝑠𝑠𝑐𝑐 = 2 kPa. The hypodermis was simulated as a hemispace bounded with 
the dermis on top (see Suppl. Figure S5a,b). 

Since the dermal layer is anisotropic (assumed as a fast-axis NITI medium), we explored wave 
propagation along and across fibers. The epidermis was assumed to be 50 𝜇𝜇m thick and the 
dermis was assumed to be 1 mm thick.  The elastic properties of epidermis and dermis are listed 
in the caption to Suppl. Figure S5 and are the same as those used in Suppl. Figure S4.  

As seen in Suppl. Figure S5c,d, bounding of the dermal layer on its bottom modifies the wavefields 
for Rayleigh wave propagation both along and across the symmetry axis (fiber direction). The 
wavefield also changes for wave propagation along other directions in the YZ plane. Fourier 
analysis shows evidence of guided waves when propagation over multiple wavelengths is used 
for analysis. However, at small distances from the AµT source, as shown by the fit lines in Figure 
S5c,d, the wavefields closely resemble the unbounded case, strongly suggesting that group 
velocity measurements represent Rayleigh wave speeds.    
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Supplementary Figure S5: Diagram of Rayleigh wave propagation over the surface of a 3-layer 
(epidermis/dermis/subcutaneous tissue) system along (a) and across (b) the symmetry axis of the second 
layer. Epidermis is modeled as a 50 𝜇𝜇m thick isotropic material with 𝜇𝜇 = 500 kPa; dermis is modeled as a 
1 mm thick fast-axis NITI medium with 𝜇𝜇 = 𝛿𝛿 = 10 kPa, 𝐺𝐺 = 30 kPa; and subcutaneous tissue is modeled 
as an isotropic hemispace with 𝜇𝜇 = 2 kPa. Simulated OnScale wavefields and 2D Fourier spectra of 
Rayleigh waves are shown accordingly for propagation along (c), (e) and across (d), (f) the symmetry axis 
of the NITI medium. Solid lines in panels (c)-(f) correspond to Rayleigh wave speeds in a bulk NITI medium, 
and dashed lines correspond to fitting. The color bar is linear in panels (c) and (d) and shown in arbitrary 
units. The color bar for spectral amplitudes in panels (e) and (f) is shown in dB relative to the maximum 
signal.
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Supplementary Note 6: Experimental study of guided waves in ex vivo chicken skin. 
AµT-OCE experiments were performed in ex vivo chicken samples to investigate the influence of 
subcutaneous tissue on the propagation of mechanical waves in skin. Chicken drumsticks were 
bought in a grocery store.  

In the first set of experiments, whole chicken drumsticks (Suppl. Fig. S6a) were explored. 
Waveforms were recorded at different propagation directions for several positions in the 
drumstick. Ten different waveforms of surface-propagating mechanical waves were recorded. A 
typical wavefield for the whole drumstick is represented in Suppl. Fig. S6d. Clearly, guided 
behavior is not seen in this case, and the wavefield can be fit with a linear function, indicating 
nondispersive wave propagation. The slope of the wavefield corresponds to the group velocity 
of the propagating wave, which equals the Rayleigh wave speed when dispersion is not observed. 
The mean propagating wave speed calculated by the ensemble of 10 measurements was 𝑐𝑐𝑅𝑅 =
(7 ± 1) m/s corresponding to the shear modulus 𝜇𝜇 = (54 ± 15) kPa, assuming chicken skin 
isotropy. The calculated standard deviation corresponds to the statistical variation of the 
propagation wave speed that can be due to sample inhomogeneity or some anisotropy. 

In the second set of experiments, skin was removed from muscle (see Suppl. Fig. S6b) and placed 
on top of a container filled with water (see Suppl. Fig. S6c). In this case, skin had an interface with 
a medium having zero shear modulus, which should produce guided waves in skin with (see 
Suppl. Fig. S6e) a strong geometrical dispersion of wave velocity (see Suppl. Fig. S6f) typical for 
Lamb/Scholte waves 8. Fitting the dispersion curve with the analytical expression for a Scholte 
wave propagating in the layer bounded with air on one side and with water on the other 12, 13, 
gives a modulus estimate 𝜇𝜇 = (53 ± 2) kPa. Because estimation of the mean is performed by 
fitting over a wide frequency range, its accuracy is much higher than that obtained from the mean 
group velocity.  

The results of this study strongly support the assumption that when skin is bounded with a tissue 
having a similar shear modulus, guided behavior is not observed. Hence, wave propagation over 
the skin surface may be considered as a Rayleigh wave propagating over the surface of a bulk 
material with moduli corresponding to that of skin. A detailed investigation of the effect of 
subcutaneous tissue on wave propagation in skin is outside of the scope of this study. Definitely, 
when skin is thin and located on top of bones, or in close proximity to blood vessels, guided 
propagation is much more possible.   
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Supplementary Fig. S6. Propagation of AµT-generated mechanical waves in chicken skin. (a) - 
Photograph for experiment where the mechanical wave propagates over the surface of whole chicken 
drumstick. (b) - Photograph of the skin removed from muscle. (c) - Photograph of chicken skin positioned 
on top of a container filled with water after being removed from muscle. (d) - Typical wavefield for the 
case (a). (e) - Typical wavefield for the case (c). Dispersion of wave velocity for case (c). Bold blue line 
corresponds to the averaged dispersion curve; red line corresponds to its fit to an analytical solution 12, 13.  
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