An Engineered Cytidine Deaminase for Biocatalytic Production of a Key Intermediate of the Covid-19 Antiviral Molnupiravir

Ashleigh J. Burke^[a], William R. Birmingham^[a, +], Ying Zhuo^[a, +], Thomas W. Thorpe^[a, +], Bruna Zucoloto da Costa^[a], Rebecca Crawshaw^[a], Ian Rowles^[a], James D. Finnigan^[b], Carl Young^[b], Gregory M. Holgate^[c], Mark P. Muldowney^[c], Simon J. Charnock^[b], Sarah L. Lovelock^{[a]*}, Nicholas J. Turner^{[a]*} and Anthony P. Green^{[a]*}

[a] Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK

[b] Prozomix Ltd, Building 4, West End Ind. Estate, Haltwhistle, NE49 9HA, UK

[c] Sterling Pharma Solutions, Sterling Place, Dudley, Northumberland, NE23 7QG, UK

[‡] These authors contributed equally

Methods

Materials.

All chemicals and biological materials were obtained from commercial suppliers. *N*-Hydroxy-cytidine from Cambridge Bioscience; cytidine, uridine, Lysozyme, DNase I and kanamycin were purchased from Sigma Aldrich; polymyxin B sulfate from AlfaAesar; LB agar, LB media, 2×YT media and arabinose from Formedium; *Escherichia coli* BL21(DE3), Q5 DNA polymerase, T4 DNA ligase and restriction enzymes from New England BioLabs; and oligonucleotides were synthesized by Integrated DNA Technologies.

Construction of pET29b(+)_CD.

The *E. coli*-optimized gene (synthesized by Integrated DNA Technologies) for cytidine deaminase (CD) from *E. coli* was cloned into pET29b(+) using *NdeI* and *XhoI* restriction sites to yield pET29b(+)_CD.

Protein production and purification.

For expression of CD and variants, chemically competent *E. coli* BL21 (DE3) were transformed with the relevant pET29b(+)_CD constructs. Single colonies of freshly transformed cells were cultured for 18 h in 5 mL LB medium containing 50 μ g mL⁻¹ kanamycin. Starter cultures (500 μ L) were used to inoculate 50 mL 2×YT medium supplemented with 50 μ g mL⁻¹ kanamycin. Cultures were grown at 37 °C, 200 r.p.m. to an optical density at 600 nm (OD600) of around 0.5. Protein expression was induced with the addition of IPTG to a final concentration of 0.1 mM. Induced cultures were incubated for 20 h at 30 °C and the cells were subsequently collected by centrifugation (3,220 x *g* for 10 min). Pelleted cells were resuspended in lysis buffer (50 mM HEPES, 300 mM NaCl, pH 7.5 containing 20 mM imidazole) and lysed by sonication. Cell lysates were cleared by centrifugation (27,216 x *g* for 30 min) and supernatants were subjected to affinity chromatography using Ni-NTA Agarose (Qiagen). Purified protein was eluted using 50 mM HEPES, 300 mM NaCl, pH 7.5 containing 250 mM imidazole. Proteins were desalted using 10DG desalting columns (Bio-Rad) with PBS pH 7.4 and analyzed by SDS PAGE. Proteins were aliquoted, flash-frozen in liquid nitrogen and stored at -80 °C. Protein concentrations were determined by measuring the absorbance at 280 nm and assuming an extinction coefficient of 29910 M⁻¹ cm⁻¹.

Mass spectrometry.

Purified protein samples were buffer-exchanged into 0.1% acetic acid using a 10k MWCO Vivaspin (Sartorius) and diluted to a final concentration of 0.5 mg ml⁻¹. To determine whether the protein is modified in the presence of NH₂OH, CD and it's variants (2.5 μ M) were incubated in 10% NH2OH (~3M, pH 7) for 20 minutes prior to buffer exchanging. Mass spectrometry was performed using a 1200 series Agilent LC, 5 μ L injection into 5% acetonitrile (with 0.1% formic acid) and desalted inline for 1 min. Protein was eluted over 1 min using 95% acetonitrile with 5% water. The resulting multiply charged spectrum was analysed using an Agilent QTOF 6510 and deconvoluted using Agilent MassHunter Software.

Library construction.

Saturation mutagenesis. Positions were individually randomized using NNK codon degeneracy. DNA libraries were constructed by overlap extension PCR. The linear library fragments and the pET29b(+) vector were digested using *Ndel* and *Xhol* endonucleases, gel-purified and subsequently ligated using T4 DNA ligase.

Recombination of beneficial mutations by overlap extension PCR.

After each round of evolution, beneficial diversity was combined by rational recombination of fragments generated by overlap extension PCR. Primers were designed that encoded either the parent amino acid or the identified mutation. These primers were used to generate short fragments which were gel-purified and mixed appropriately in overlap extension PCR to generate genes containing all possible combinations of mutations. Genes were cloned as described above.

Library screening.

For protein expression and screening, all transfer and aliquotting steps were performed using Hamilton liquid-handling robots. Chemically competent E. coli BL21(DE3) cells were transformed with the ligated libraries. Freshly transformed clones were used to inoculate 150 µL of LB medium supplemented with 50 µg mL⁻¹ kanamycin in Corning®Costar®96-well microtitre round bottom plates. For reference, each plate contained 6 freshly transformed clones of the parent template and 2 clones containing an empty pET29b(+) vector. Plates were incubated overnight at 30 °C, 80 % humidity in a shaking incubator at 850 r.p.m. 20 µL of overnight culture was used to inoculate 480 µL 2xYT medium supplemented with 50 µg mL⁻¹ kanamycin. The cultures were incubated at 30 °C, 80 % humidity with shaking at 850 r.p.m. until an OD600 of about 0.5 was reached, and IPTG was added to a final concentration of 0.1 mM. Induced plates were incubated for 20 h at 30 °C, 80 % humidity with shaking at 850 r.p.m. Cells were harvested by centrifugation at 2,900 x g for 10 min. The supernatant was discarded, the pelleted cells were resuspended in 400 µL lysis buffer (PBS pH 7.4 buffer supplemented with 1.0 mg mL⁻¹ lysozyme, 0.5 mg mL⁻¹ polymixin B and 10 μg mL¹ DNase I) and incubated for 2 h at 30 °C, 80 % humidity with shaking at 850 r.p.m. Cell debris was removed by centrifugation at 2,900 x g for 10 min. 10 µL clarified lysate was transferred to 96-well microtitre plates containing 170 µL 1% (~300 mM) NH₂OH pH 7. Reactions were initiated with the addition of 20 µL cytidine (50 mM final concentration) in PBS pH 7.4. The reaction was monitored spectrophotometrically at 340 nm, over 30 minutes using a CLARIOstar plate reader (BMG Labtech). Reaction rates of individual variants were normalized to the average of the 6 parent clones. Following each round, the most active variants were rescreened as purified proteins using the HPLC assay. Proteins were produced and purified as described above, however starter cultures were inoculated from glycerol stocks prepared from the original overnight cultures.

General procedure for analytical scale biotransformation.

To compare the activity of CD and its variants, analytical scale biotransformations were performed using 2 (750 mM) and the relevant biocatalyst (25μ M) in hydroxylamine (10 % in water, pH 7). For HPLC analysis, reactions were quenched with the addition of 2 volumes of acidified acetonitrile. Samples were vortexed and precipitated proteins were removed by centrifugation (14,000 x *g* for 5 minutes). Preparative scale biotransformations.

Cytidine (5 g, 750 mM, 180 g L⁻¹) was dissolved in hydroxylamine (26.6 mL, 10 % in water, pH 7) in a 50 mL falcon tube and cooled to 4 °C. CD1.3 purified enzyme (0.2 mL, 7.5 μ M, 0.25 g L⁻¹ final concentration) was added to the reaction mixture. The reaction was left on a tabletop roller for 3 hours at 4 °C during which time the *N*-hydroxy-cytidine product crystallized in situ. The reaction mixture was centrifuged at 2900 x *g* for 5 minutes and the supernatant removed. The remaining solid was washed with cold acidified water (10 mL, 10% AcOH) and then freeze dried overnight to give the monohydrated product as a free flowing white powder (4.85 g, 85% yield, >98% purity). A Karl Fischer titration was used to confirm the product crystallizes as a monohydrate (6.7 wt% H₂O) as described previously in the literature (reference 7 in the manuscript). ¹H NMR (400 MHz, D₂O) δ 7.01 (d, *J* = 8.2 Hz, 1H), 5.77 (d, *J* = 5.7 Hz, 1H), 5.67 (d, *J* = 8.2 Hz, 1H), 4.21 (t, *J* = 5.6 Hz, 1H), 4.10 (t, *J* = 5.0 Hz, 1H), 4.01 – 3.93 (m, 1H), 3.75 (dd, *J* = 12.7, 3.2 Hz, 1H), 3.66 (dd, *J* = 12.6, 4.6 Hz, 1H). ¹³C NMR (101 MHz, D₂O) δ 150.91, 146.84, 131.69, 98.43, 88.00, 84.00, 72.54, 69.76, 61.05. MS: 260 (M+H)*.

Cytidine (37.6 g, 770 mM, 188 g L⁻¹) was dissolved in hydroxylamine (200 mL, 10 % in water, pH 7) in a 500 mL flask and cooled to 4 °C. CD1.3 cell free extract (376 mg, 1 % wt) was added to the reaction mixture. The reaction was left on a tabletop shaker for 3 hours at 4 °C during which time the *N*-hydroxy-cytidine product crystallized in situ. The reaction mixture was centrifuged at 2900 x *g* for 10 minutes and the supernatant removed. The remaining solid was washed with cold acidified water (30 mL, 10% AcOH) and then freeze dried overnight to give the monohydrated product as a white powder (40.8 g, 89 % yield, >96 % purity). ¹H NMR (400 MHz, D₂O) δ 7.00 (d, *J* = 8.3 Hz, 1H), 5.79 (d, *J* = 5.6 Hz, 1H), 5.68 (d, *J* = 8.2 Hz, 1H), 4.23 (t, *J* = 5.7 Hz, 1H), 4.12 (t, *J* = 5.0 Hz, 1H), 3.99 (q, *J* = 4.2 Hz, 1H), 3.81 – 3.61 (m, 2H). ¹³C NMR (101 MHz, D₂O) δ 151.27, 146.63, 131.34, 98.69, 87.95, 84.00, 72.50, 69.79, 61.07. MS: 260 (M+H)⁺.

Cytidine (169.2 g, 0.69 mol, 1 eq) was dissolved in 10% hydroxylamine (900 mL, 2.92 mol, 4.2 eq, pH 7) in a 2L Mettler Toledo AP01 jacketed vessel and cooled to 4°C. CD1.3 crude lysate (730 mg, 0.45 % wt) was suspended in pH 7 phosphate buffer and brought to a volume of 6.75 mL, this solution was added to the reaction mix. The reaction was stirred at 300 rpm for 3 hours at 4 °C during which time the *N*-hydroxy-cytidine 4 product crystallized in situ. The reaction mixture was filtered through 20 μ m cloth, and the remaining solid was washed with 10% AcOH in water (340 mL, 2 vol). The solid was then dried in a vacuum oven at 30°C for 18 hours giving a white solid (136.8 g, 71% yield, >95% purity by NMR & HPLC). ¹H NMR (400 MHz, D₂O) δ 7.1 (d, 1H), 5.8 (d, 1H), 5.6 (d, 1H), 4.1 (t, 1H), 4.1 (t, 1H), 3.9 (q, 1H), 3.7 (dd, 1H), 3.6 (dd, 1H).

Chromatographic analysis.

HPLC and LCMS analysis was performed on a 1200 Series Agilent LC or LC/MSD system with an InfinityLab Poroshell 120 EC-C18, 4.6 mm x 100 mm, 4µm LC Column (Agilent). Substrates and products were eluted over 14 minutes using a gradient of 2-20% acetonitrile in 20 mM NH₄OAc pH 4.5 at 0.3 mL min⁻¹. Peaks were assigned by comparison to chemically synthesized standards or analysis of MS data and the peak areas were integrated using Agilent OpenLab software. 2'deoxycytidine and resulting products were eluted over 64 minutes using a gradient of 1.6-3% acetonitrile.

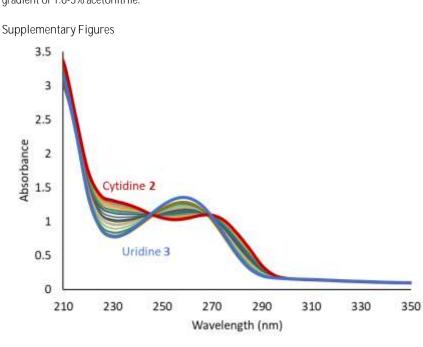


Figure S1: UV-Vis spectra showing the hydrolysis of cytidine 2 (100 μ M) to uridine 3 catalyzed by CD (10 nM). Spectra of authentic standards of 2 and 3 are shown in red and blue, respectively.

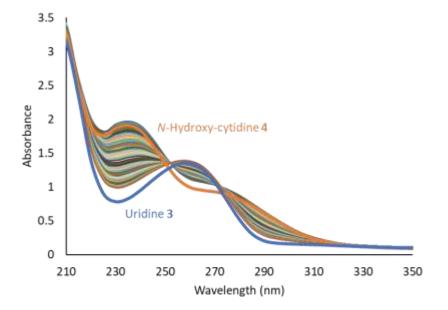
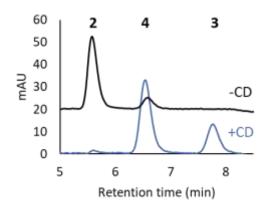
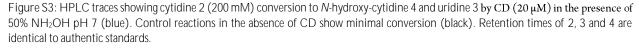




Figure S2: UV-Vis spectra showing the hydrolysis of N-hydroxy-cytidine 4 (100 μ M) to uridine 3 catalyzed by CD (100 nM). Spectra of authentic standards of 4 and 3 are shown in orange and blue, respectively.

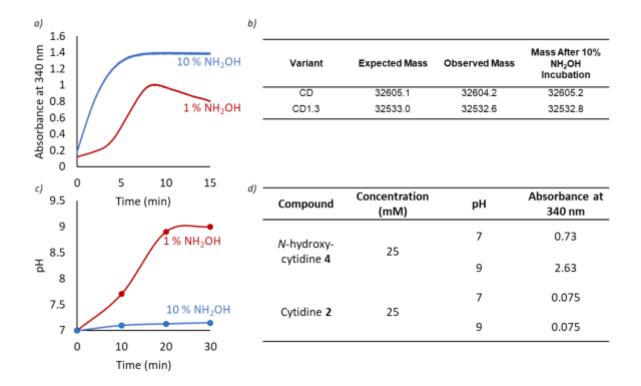


Figure S4: a) The conversion of cytidine 2 (50 mM) to *N*-hydroxy-cytidine 4 catalyzed by CD1.3 (2.5 μ M) in 1% NH₂OH (~300 mM, pH 7, red) and 10% NH₂OH (~3 M, pH 7, blue), monitored by increasing absorbance at 340 nm. An apparent initial lag phase is observed at low (1%) NH₂OH concentrations. b) Expected and observed masses of CD and CD1.3. The data shows there is no observed changed to the mass of the protein following incubation in 10% NH₂OH. This suggests the apparent lag phase in S4a is not caused by enzyme modification during the reaction. c) Observed pH changes under reaction conditions of 1% and 10% NH₂OH. A pH change from 7 to 9 is observed at 1% NH₂OH which is not seen at 10% NH₂OH. d) The extinction coefficient of *N*-hydroxy-cytidine 4 is sensitive to pH changes, this is not observed for cytidine 2.

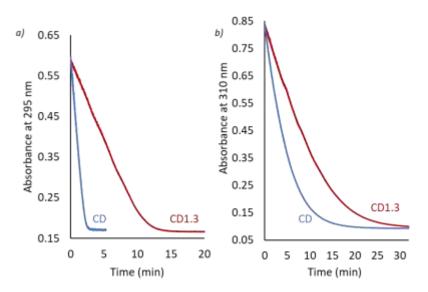


Figure S5: a) The conversion of cytidine 2 (1 mM) to uridine 3 catalyzed by CD1.3 (50 nM, red) and CD (50 nM, blue) in PBS (pH 7.4) monitored by decreasing absorbance at 295 nm. $k_{obs} = 30 \text{ s}^{-1}$ and 140 s⁻¹ for CD1.3 and CD, respectively. b) The conversion of *N*-hydroxy-cytidine 4 (1 mM) to uridine 3 catalyzed by CD1.3 (500 nM, red) and CD (500 nM, blue) in PBS (pH 7.4) monitored by decreasing absorbance at 310 nm. $k_{obs} = 2 \text{ s}^{-1}$ and 5 s⁻¹ for CD1.3 and CD, respectively. Reduced rates of hydrolysis contribute to improved performance of CD1.3 for the production of *N*-hydroxy-cytidine 4.

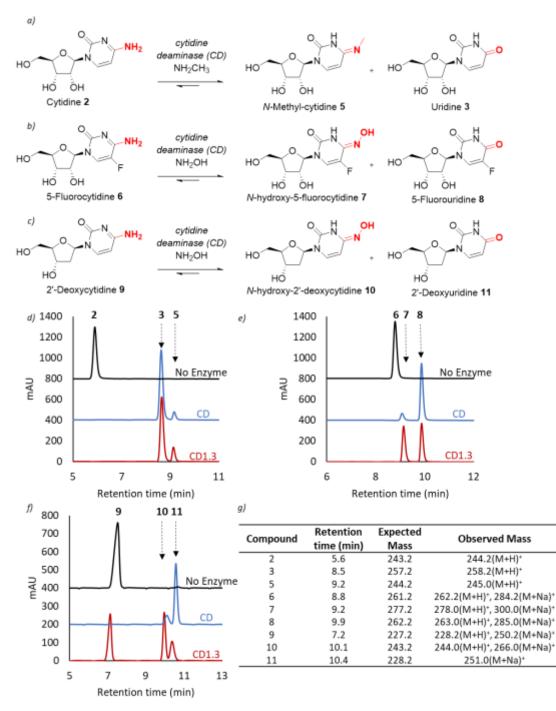


Figure S6: a) Reaction scheme showing the conversion of cytidine 2 to *N*-methylcytidine 5 and uridine 3 catalyzed by cytidine deaminase in the presence of methylamine (NH₂CH₃). b) Reaction scheme showing the conversion of 5-fluorocytidine 6 to *N*-hydroxy-5-fluorocytidine 7 and 5-fluorouridine 8 catalyzed by cytidine deaminase in the presence of NH₂OH. c) Reaction scheme showing the conversion of 2'deoxycytidine 9 to *N*-hydroxy-2'-deoxycytidine 10 and 2'-deoxyuridine 11 catalyzed by cytidine deaminase in the presence of NH₂OH. d) HPLC traces showing the conversion of cytidine 2 (50 mM) to *N*-methylcytidine 5 and uridine 3 catalyzed by CD1.3 (1 μ M, red), CD (1 μ M, blue) and no enzyme (black) in the presence of NH₂CH₃ (50% w/v) after 5 minutes. CD1.3 shows improved activity for the production of 5 compared to CD. e) HPLC traces showing the conversion of 5-fluorocytidine 6 (50 mM) to *N*-hydroxy-5-fluorocytidine 7 and 5fluorouridine 8 catalyzed by CD1.3 (1 μ M, red), CD (1 μ M, blue) and no enzyme (black) in the presence of 10% NH₂OH (~3 M, pH 7) after 5 minutes. CD1.3 shows improved activity for the production of 7 compared to CD. f) HPLC traces showing the conversion of 2'deoxycytidine 9 (50 mM) to *N*-hydroxy-2'-deoxycytidine 10 and 2'-deoxyuridine 11 catalyzed by CD1.3 (1 μ M, red), CD (1 μ M, blue) and no enzyme (black) in the presence of 10% NH₂OH (~3 M, pH 7) after 30 minutes. CD1.3 shows improved activity for the production of 10 compared to CD. g) Compound identities were confirmed by LCMS. Expected and observed masses of compounds are shown in a table.

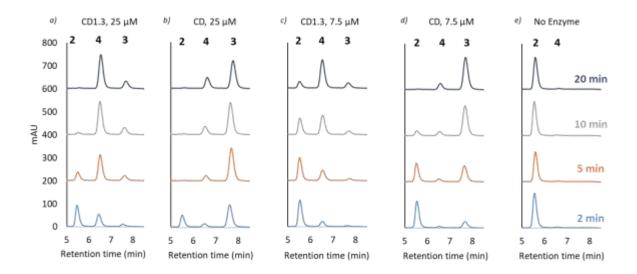


Figure S7: HPLC traces showing cytidine 2 (750 mM) conversion to *N*-hydroxy-cytidine 4 and uridine 3 at 2, 5, 10 and 20 minute time points catalyzed by a) CD1.3 (25μ M), b) CD (25μ M), c) CD1.3 (7.5μ M), d) CD (7.5μ M), e) no enzyme, in the presence of 10% (~3 M) NH₂OH pH 7. CD1.3 operates predominantly via pathway A (direct conversion of 2 to 4) whereas CD operates via pathway B (hydrolysis of 2 to 3 then equilibrium distribution of 4 and 3). Retention times of 2, 3 and 4 are identical to authentic standards.

Figure S8: a) A 1 L scale biotransformation was carried out in a 2L Mettler Toledo AP01 jacketed vessel cooled to 4°C. b) *N*-Hydroxy-cytidine 4 crystallized in situ to give 137 g of a white solid in 71% isolated yield and >95% purity following filtration, washing and drying.

Supplementary Table 1: Directed evolution workflow.

Round	Description	Number of clones screened	Beneficial mutations	Bestvariant
1a	Saturation mutagenesis at 42 positions	3,700	A88W, T123G, N125S, N125G	CD1.1 = CD + T123G
1b	Rational combination of beneficial diversity by overlap extension PCR	7	No improved variants	CD1.1 = CD + T123G
2a	Saturation mutagenesis at 10 positions	970	N72P, A88G, N125T, L149V	CD1.1 + L149V
2b	Rational combination of beneficial diversity by overlap extension PCR	7	All combinations of variants showed some improvement in activity	CD1.2 = CD1.1 + N72P, A88G, N125T, L149V
За	Saturation mutagenesis at 36 positions	2,300	A53E, T125S, I147V, R152L	CD1.2 + I147V
3b	Rational combination of beneficial diversity by overlap extension PCR	11	All combinations of variants showed some improvement in activity	CD1.3 = CD1.2 + A53E, T125S, I147V

NAME	SEQUENCE			
FLANKING PRIMERS				
CD_NDEI_F	CATGCATGCATATGCACCCGCGTTTT			
CD_XHOI_R	CATGCATGCTCGAGGGCTAACAGCA			
	ROUND 1A SATURATION MUTAGENESIS			
CD_RD1_A61NNK_F	CTGCTTCCACTTGCTNNKGCTTGTGCACGTACC			
CD_RD1_A61NNK_R	AGCAAGTGGAAGCAGTG			
CD_RD1_C63NNK_F	CCACTTGCTGCAGCTNNKGCACGTACCCCTTTG			
CD_RD1_C63NNK_R	AGCTGCAGCAAGTGGAA			
CD_RD1_T66NNK_F	GCAGCTTGTGCACGTNNKCCTTTGTCCAACTTCAATGT			
CD_RD1_T66NNK_R	ACGTGCACAAGCTGCA			
CD_RD1_L68NNK_F	TGTGCACGTACCCCTNNKTCCAACTTCAATGTCGGT			
CD_RD1_L68NNK_R	AGGGGTACGTGCACAAG			
CD_RD1_S69NNK_F	GCACGTACCCCTTTGNNKAACTTCAATGTCGGTGCG			
CD_RD1_S69NNK_R	CAAAGGGGTACGTGCACA			
CD_RD1_N70NNK_F	CGTACCCCTTTGTCCNNKTTCAATGTCGGTGCGA			
CD_RD1_N70NNK_R	GGACAAAGGGGTACGTG			
CD_RD1_F71NNK_F	ACCCCTTTGTCCAACNNKAATGTCGGTGCGATTGC			
CD_RD1_F71NNK_R	GTTGGACAAAGGGGTACG			
CD_RD1_N72NNK_F	CCTTTGTCCAACTTCNNKGTCGGTGCGATTGCG			
CD_RD1_N72NNK_R	GAAGTTGGACAAAGGGGT			
CD_RD1_V73NNK_F	TTGTCCAACTTCAATNNKGGTGCGATTGCGCG			
CD_RD1_V73NNK_R	ATTGAAGTTGGACAAAGGG			
CD_RD1_G74NNK_F	TCCAACTTCAATGTCNNKGCGATTGCGCGTGG			
CD_RD1_G74NNK_R	GACATTGAAGTTGGACAAAGG			
CD_RD1_A75NNK_F	AACTTCAATGTCGGTNNKATTGCGCGTGGTGTA			
CD_RD1_A75NNK_R	ACCGACATTGAAGTTGGA			
CD_RD1_A88NNK_F	ACCTGGTATTTCGGGNNKAACATGGAGTTTATCGGGG			
CD_RD1_A88NNK_R	CCCGAAATACCAGGTTCC			
CD_RD1_N89NNK_F	TGGTATTTCGGGGCANNKATGGAGTTTATCGGGGC			
CD_RD1_N89NNK_R	TGCCCCGAAATACCAGG			
CD_RD1_M90NNK_F	TATTTCGGGGCAAACNNKGAGTTTATCGGGGCGACT			
CD_RD1_M90NNK_R	GTTTGCCCCGAAATACCA			
CD_RD1_E91NNK_F	TTCGGGGCAAACATGNNKTTTATCGGGGCGACTATG			
CD_RD1_E91NNK_R	CATGTTTGCCCCGAAATA			
CD_RD1_F92NNK_F	GGGGCAAACATGGAGNNKATCGGGGCGACTATG			
CD_RD1_F92NNK_R	CTCCATGTTTGCCCCGA			
CD_RD1_Q98NNK_F	ATCGGGGCGACTATGNNKCAAACCGTTCATGCTGAA			
CD_RD1_Q98NNK_R	CATAGTCGCCCCGATAAACTC			
CD_RD1_Q99NNK_F	GGGGCGACTATGCAGNNKACCGTTCATGCTGAACA			
CD_RD1_Q99NNK_R	CTGCATAGTCGCCCC			
CD_RD1_T100NNK_F	GCGACTATGCAGCAANNKGTTCATGCTGAACAGAGC			
CD_RD1_T100NNK_R	TTGCTGCATAGTCGCC			

CD RD1 V101NNK F CD_RD1_V101NNK_R CD_RD1_H102NNK_F CD_RD1_H102NNK_R CD_RD1_A103NNK_F CD_RD1_A103NNK_R CD_RD1_Q105NNK_F CD_RD1_Q105NNK_R CD_RD1_S106NNK_F CD_RD1_S106NNK_R CD_RD1_A107NNK_F CD_RD1_A107NNK_R CD_RD1_I122NNK_F CD_RD1_I122NNK_R CD_RD1_T123NNK_F CD_RD1_T123NNK_R CD_RD1_V124NNK_F CD_RD1_V124NNK_R CD_RD1_N125NNK_F CD_RD1_N125NNK_R CD_RD1_Y126NNK_F CD_RD1_Y126NNK_R CD_RD1_T127NNK_F CD_RD1_T127NNK_R CD_RD1_P128NNK_F CD_RD1_P128NNK_R CD_RD1_C129NNK_F CD_RD1_C129NNK_R CD_RD1_G130NNK_F CD_RD1_G130NNK_R CD_RD1_H131NNK_F CD_RD1_H131NNK_R CD_RD1_C132NNK_F CD_RD1_C132NNK_R CD_RD1_R133NNK_F CD_RD1_R133NNK_R CD_RD1_Q134NNK_F CD_RD1_Q134NNK_R CD_RD1_M136NNK_F CD_RD1_M136NNK_R CD_RD1_H148NNK_F CD_RD1_H148NNK_R CD_RD1_L149NNK_F CD_RD1_L149NNK_R

ACTATGCAGCAAACCNNKCATGCTGAACAGAGCGC GGTTTGCTGCATAGTCGC ATGCAGCAAACCGTTNNKGCTGAACAGAGCGCG AACGGTTTGCTGCATAGT CAGCAAACCGTTCATNNKGAACAGAGCGCGATC ATGAACGGTTTGCTGCAT ACCGTTCATGCTGAANNKAGCGCGATCAGCCAT TTCAGCATGAACGGTTTG GTTCATGCTGAACAGNNKGCGATCAGCCATGCG CTGTTCAGCATGAACGGT CATGCTGAACAGAGCNNKATCAGCCATGCGTGG GCTCTGTTCAGCATGAAC AAGGCATTAGCCGCGNNKACCGTGAATTACACGCC CGCGGCTAATGCCTTC GCATTAGCCGCGATCNNKGTGAATTACACGCCATGC GATCGCGGCTAATGCCT TTAGCCGCGATCACCNNKAATTACACGCCATGCG GGTGATCGCGGCTAATG GCCGCGATCACCGTGNNKTACACGCCATGCGGA CACGGTGATCGCGG GCGATCACCGTGAATNNKACGCCATGCGGACA ATTCACGGTGATCGCGG ATCACCGTGAATTACNNKCCATGCGGACACTGT GTAATTCACGGTGATCGC ACCGTGAATTACACGNNKTGCGGACACTGTCG CGTGTAATTCACGGTGATC GTGAATTACACGCCANNKGGACACTGTCGCCAG TGGCGTGTAATTCACGGT AATTACACGCCATGCNNKCACTGTCGCCAGTTTATG GCATGGCGTGTAATTCAC TACACGCCATGCGGANNKTGTCGCCAGTTTATGAATG TCCGCATGGCGTGTAATT ACGCCATGCGGACACNNKCGCCAGTTTATGAATGAGTT GTGTCCGCATGGCG CCATGCGGACACTGTNNKCAGTTTATGAATGAGTTGAACTCA ACAGTGTCCGCATGG TGCGGACACTGTCGCNNKTTTATGAATGAGTTGAACTCAGG GCGACAGTGTCCGC CACTGTCGCCAGTTTNNKAATGAGTTGAACTCAGGCT AAACTGGCGACAGTGTCC TTGGATCTTCGTATCNNKCTGCCGGGACGTGAA GATACGAAGATCCAAGCCT GATCTTCGTATCCACNNKCCGGGACGTGAAGC GTGGATACGAAGATCCAAGC

CD_RD1_P150NNK_F	CTTCGTATCCACCTGNNKGGACGTGAAGCCCAT				
CD_RD1_P150NNK_R	CAGGTGGATACGAAGATCC				
ROUND 1B RECOMBINATION					
CD_RD1_A88W_F	ACCTGGTATTTCGGGTGGAACATGGAGTTTATCGGGG				
CD_RD1_A88_R	CCCGAAATACCAGGTTCC				
CD_RD1_T123G_N125S_F	GCATTAGCCGCGATCGGGGTGTCGTACACGCCATGCGGA				
CD_RD1_T123_R	GATCGCGGCTAATGCCT				
CD_RD1_T123G_N125G_F	GCATTAGCCGCGATCGGGGTGGGGTACACGCCATGCGGA				
	ROUND 2A SATURATION MUTAGENESIS				
CD_RD2_N125NNK_F	GCCGCGATCGGGGTGNNKTACACGCCATGCGGA				
CD_RD2_N125NNK_R	CACCCCGATCGCGG				
CD_RD2_I76NNK_F	TTCAATGTCGGTGCGNNKGCGCGTGGTGTAAG				
CD_RD2_I76NNK_R	CGCACCGACATTGAA				
CD_RD2_V124NNK_F	TTAGCCGCGATCGGGNNKAATTACACGCCATGCG				
CD_RD2_V124NNK_R	CCCGATCGCGGCTAA				
CD_RD2_I122NNK_F	AAGGCATTAGCCGCGNNKGGGGTGAATTACACGC				
CD_RD2_I122NNK_R	CGCGGCTAATGCCTT				
	ROUND 2B RECOMBINATION				
CD_RD2_A88G_F	ACCTGGTATTTCGGGGGCAACATGGAGTTTATCGGGG				
CD_RD2_A88_R	CCCGAAATACCAGGTTCC				
CD_RD2_N72P_F	CCTTTGTCCAACTTCCCTGTCGGTGCGATTGCG				
CD_RD2_N72_R	GAAGTTGGACAAAGGGGT				
CD_RD2_N125D_F	GCCGCGATCGGGGTGGATTACACGCCATGCGGA				
CD_RD2_N125_R	CACCCCGATCGCGGC				
CD_RD2_N125T_F	GCCGCGATCGGGGTGACGTACACGCCATGCGGA				
CD_RD2_L149V_F	GATCTTCGTATCCACGTGCCGGGACGTGAAGC				
CD_RD2_L149_R	GTGGATACGAAGATCCAAGC				
	ROUND 3A SATURATION MUTAGENESIS				
CD_RD3_P72NDT_F	CCTTTGTCCAACTTCNDTGTCGGTGCGATTGC				
CD_RD3_P72VHG_F	CCTTTGTCCAACTTCVHGGTCGGTGCGATTGC				
CD_RD3_P72TGG_F	CCTTTGTCCAACTTCTGGGTCGGTGCGATTGC				
CD_RD3_P72_R	GAAGTTGGACAAAGGGG				
CD_RD3_G88NDT_F	ACCTGGTATTTCGGGNDTAACATGGAGTTTATCGGG				
CD_RD3_G88VHG_F	ACCTGGTATTTCGGGVHGAACATGGAGTTTATCGGG				
CD_RD3_G88TGG_F	ACCTGGTATTTCGGGTGGAACATGGAGTTTATCGGG				
CD_RD3_G88_R	CCCGAAATACCAGGTT				
CD_RD3_T125NDT_F	GCCGCGATCGGGGTGNDTTACACGCCATGCGGA				
CD_RD3_T125VHG_F	GCCGCGATCGGGGTGVHGTACACGCCATGCGGA				
CD_RD3_T125TGG_F	GCCGCGATCGGGGTGTGGTACACGCCATGCGGA				
CD_RD3_T125_R	CACCCCGATCGCGG				
CD_RD3_D50NNK_F	ACGGGACTGGACGAANNKGCTCTTGCGTTTGCAC				
CD_RD3_D50_R	TTCGTCCAGTCCCGT				
CD_RD3_A53NNK_F	GACGAAGATGCTCTTNNKTTTGCACTGCTTCCAC				
CD_RD3_A53_R	AAGAGCATCTTCGTCCA				

CD RD3 F54NNK F CD_RD3_F54_R CD_RD3_L57NNK_F CD_RD3_L57_R CD_RD3_A60NNK_F CD_RD3_A60_R CD_RD3_A61NNK_F CD_RD3_A61_R CD_RD3_C63NNK_F CD_RD3_C63_R CD_RD3_A64NNK_F CD_RD3_A64_R CD_RD3_T66NNK_F CD_RD3_T66_R CD_RD3_N70NNK_F CD_RD3_N70_R CD_RD3_F71NNK_F CD_RD3_F71_R CD_RD3_V73NNK_F CD_RD3_V73_R CD_RD3_G74NNK_F CD_RD3_G74_R CD_RD3_I76NNK_F CD_RD3_176_R CD RD3 R78NNK F CD_RD3_R78_R CD_RD3_F86NNK_F CD_RD3_F86_R CD_RD3_G87NNK_F CD_RD3_G87_R CD_RD3_N89NNK_F CD_RD3_N89_R CD_RD3_M90NNK_F CD_RD3_M90_R CD_RD3_A103NNK_F CD_RD3_A103_R CD_RD3_S106NNK_F CD_RD3_S106_R CD_RD3_A121NNK_F CD_RD3_A121_R CD_RD3_I122NNK_F CD_RD3_I122_R CD_RD3_V124NNK_F CD_RD3_V124_R

GAAGATGCTCTTGCGNNKGCACTGCTTCCACTT CGCAAGAGCATCTTCG CTTGCGTTTGCACTGNNKCCACTTGCTGCAGCT CAGTGCAAACGCAAGA GCACTGCTTCCACTTNNKGCAGCTTGTGCACG AAGTGGAAGCAGTGCA CTGCTTCCACTTGCTNNKGCTTGTGCACGTACC AGCAAGTGGAAGCAGT CCACTTGCTGCAGCTNNKGCACGTACCCCTTTG AGCTGCAGCAAGTGG CTTGCTGCAGCTTGTNNKCGTACCCCTTTGTCC ACAAGCTGCAGCAAG GCAGCTTGTGCACGTNNKCCTTTGTCCAACTTCCC ACGTGCACAAGCTG CGTACCCCTTTGTCCNNKTTCCCTGTCGGTGC GGACAAAGGGGTACGT ACCCCTTTGTCCAACNNKCCTGTCGGTGCGATT GTTGGACAAAGGGGTAC TTGTCCAACTTCCCTNNKGGTGCGATTGCGC AGGGAAGTTGGACAAAGG TCCAACTTCCCTGTCNNKGCGATTGCGCGTG GACAGGGAAGTTGGACA TTCCCTGTCGGTGCGNNKGCGCGTGGTGTAAG CGCACCGACAGGGA GTCGGTGCGATTGCGNNKGGTGTAAGCGGAACC CGCAATCGCACCGA AGCGGAACCTGGTATNNKGGGGGGCAACATGGAG ATACCAGGTTCCGCTT GGAACCTGGTATTTCNNKGGCAACATGGAGTTTATCG GAAATACCAGGTTCCGCT TGGTATTTCGGGGGCNNKATGGAGTTTATCGGGGC GCCCCCGAAATACCA TATTTCGGGGGCAACNNKGAGTTTATCGGGGCGA GTTGCCCCCGAAATAC CAGCAAACCGTTCATNNKGAACAGAGCGCGATC ATGAACGGTTTGCTGC GTTCATGCTGAACAGNNKGCGATCAGCCATGC CTGTTCAGCATGAACGG GAGAAGGCATTAGCCNNKATCGGGGTGACGTAC GGCTAATGCCTTCTCC AAGGCATTAGCCGCGNNKGGGGTGACGTACACG CGCGGCTAATGCCT TTAGCCGCGATCGGGNNKACGTACACGCCATGC CCCGATCGCGGCTA

CD_RD3_Y126NNK_F	GCGATCGGGGTGACGNNKACGCCATGCGGAC
CD_RD3_Y126_R	CGTCACCCCGATCG
CD_RD3_T127NNK_F	ATCGGGGTGACGTACNNKCCATGCGGACACTGT
CD_RD3_T127_R	GTACGTCACCCCGAT
CD_RD3_I147NNK_F	GGCTTGGATCTTCGTNNKCACGTGCCGGGA
CD_RD3_I147_R	ACGAAGATCCAAGCCT
CD_RD3_H148NNK_F	TTGGATCTTCGTATCNNKGTGCCGGGACGTG
CD_RD3_H148_R	GATACGAAGATCCAAGCCT
CD_RD3_P150NNK_F	CTTCGTATCCACGTGNNKGGACGTGAAGCCCAT
CD_RD3_P150_R	CACGTGGATACGAAGATCC
CD_RD3_G151NNK_F	CGTATCCACGTGCCGNNKCGTGAAGCCCATGCT
CD_RD3_G151_R	CGGCACGTGGATACG
CD_RD3_R152NNK_F	ATCCACGTGCCGGGANNKGAAGCCCATGCTTTACG
CD_RD3_R152_R	TCCCGGCACGTGGA
CD_RD3_E153NNK_F	CACGTGCCGGGACGTNNKGCCCATGCTTTACGTGACT
CD_RD3_E153_R	ACGTCCCGGCACGT
CD_RD3_H155NNK_F	CCGGGACGTGAAGCCNNKGCTTTACGTGACTACTTGC
CD_RD3_H155_R	GGCTTCACGTCCCG
CD_RD3_Y160NNK_F	CATGCTTTACGTGACNNKTTGCCTGATGCCTTC
CD_RD3_Y160_R	GTCACGTAAAGCATGGG
CD_RD3_N248NNK_F	GCGCTGATTCTTTTANNKTTGAAGGGCTATGACTACC
CD_RD3_N248_R	TAAAAGAATCAGCGCTCCT
CD_RD3_L249NNK_F	CTGATTCTTTTAAATNNKAAGGGCTATGACTACCC
CD_RD3_L249_R	ATTTAAAAGAATCAGCGCTCC
	ROUND 3B RECOMBINATION
CD_RD3_T125S_F	GCCGCGATCGGGGTGAGTTACACGCCATGCGGA
CD_RD3_T125_R	CACCCCGATCGCGGC
CD_RD3_A53E_F	GACGAAGATGCTCTTGAGTTTGCACTGCTTCCAC
CD_RD3_A53_R	AAGAGCATCTTCGTCCA
CD_RD3_I147V_F	GGCTTGGATCTTCGTGTTCACGTGCCGGGA
CD_RD3_I147_R	ACGAAGATCCAAGCCT
CD_RD3_R152L_F (I147)	ATCCACGTGCCGGGACTGGAAGCCCATGCTTTACG
CD_RD3_R152L_F (I147V)	GTTCACGTGCCGGGACTGGAAGCCCATGCTTTACG
CD_RD3_R152_R (I147)	TCCCGGCACGTGGAT
CD_RD3_R152_R (I147V)	TCCCGGCACGTGAAC

CD - EC 3.5.4.5, UniProt accession: POABF6, NCBI protein accession code: WP_000553555.1

ATGCACCCGCGTTTTCAGACGGCGTTCGCCCAGTTAGCTGACAATCTGCAGAGTGCCTTGGAGCCTATCTTGGCAGAT AAGTATTTTCCGGCCCTGCTGACCGGGGAGCAAGTTTCCTCCTTGAAAAGCGCTACGGGACTGGACGAAGATGCTCTT GCGTTTGCACTGCTTCCACTTGCTGCAGCTTGTGCACGTACCCCTTTGTCCAACTTCAATGTCGGTGCGATTGCGCGT GGTGTAAGCGGAACCTGGTATTTCGGGGCAAACATGGAGTTTATCGGGGCGACTATGCAGCAAACCGTTCATGCTGAA CAGAGCGCGATCAGCCATGCGTGGCTGAGCGGGGGAGAAGGCATTAGCCGCGATCACCGTGAATTACACGCCATGCGGA CACTGTCGCCAGTTTATGAATGAGTTGAACTCAGGCTTGGATCTTCGTATCCACCTGCCGGGACGTGAAGCCCATGCT TTACGTGACTACTTGCCTGATGCCTTCGGTCCCAAGGACTTAGAAATCAAGACCCTTCTTATGGACGAACAAGACCACG GATATGCGCTTACTGGAGATGCACTGTCCCAGGCTGCAATCGCTGCGGCCAACCGTAGCCACATGCCCTACTCCAAGA GTCCGAGCGGTGTCGCACTGGAGTGTAAAGATGGACGTATTTTCAGCGGCTCATACGCGGAGAATGCGGCTTTCAATC CCACTCTTCCCCCGTTACAAGGAGCGCTGATTCTTTTAAATTTGAAGGGCTATGACTACCCAGACATTCAACGTGCAGT GCTTGCCGAGAAGGCGGACGCACCATTGATCCAATGGGATGCTACCAGGCAACTCTGAAAGCTTTAGGGTGTCACAG CATCGATCGCGTGCTGTTAGCCCCCGAGCACCACCACCACCACCACCG

MHPRFQTAFAQLADNLQSALEPILADKYFPALLTGEQVSSLKSATGLDEDALAFALLPLAAACARTPLSNFNVGAIARGVSGTWY FGANMEFIGATMQQTVHAEQSAISHAWLSGEKALAAITVNYTPCGHCRQFMNELNSGLDLRIHLPGREAHALRDYLPDAFGPK DLEIKTLLMDEQDHGYALTGDALSQAAIAAANRSHMPYSKSPSGVALECKDGRIFSGSYAENAAFNPTLPPLQGALILLNLKGYD YPDIQRAVLAEKADAPLIQWDATSATLKALGCHSIDRVLLALEHHHHHH

DNA and protein sequence of CD1.3

Mutations from wild-type CD: A53E N72P A88G T123G T125S I147V L149V

ATGCACCCGCGTTTTCAGACGGCGTTCGCCCAGTTAGCTGACAATCTGCAGAGTGCCTTGGAGCCTATCTTGGCAGAT AAGTATTTTCCGGCCCTGCTGACCGGGGAGCAAGTTTCCTCCTTGAAAAGCGCTACGGGACTGGACGAAGATGCTCTT GAGTTTGCACTGCTTCCACTTGCTGCAGCTTGTGCACGTACCCCTTTGTCCAACTTCCCTGTCGGTGCGATGCGCGT GGTGTAAGCGGAACCTGGTATTTCGGGGGCAACATGGAGTTTATCGGGGCGACTATGCAGCAAACCGTTCATGCTGAA CAGAGCGCGATCAGCCATGCGTGGCTGAGCGGGGGAGAAGGCATTAGCCGCGATCGGGGTGAGTTACACGCCATGCGG ACACTGTCGCCAGTTTATGAATGAGTTGAACTCAGGCTTGGATCTTCGTGTTCACGTGCCGGGACGTGAAGCCCATGC TTTACGTGACTACTTGCCTGATGCCTTCGGTCCCAAGGACTTAGAAATCAAGACCCTTCTTATGGACGAACAAGACCAC GGATATGCGCTTACTGGAGATGCACTGTCCCAGGCTGCAATCGCTGCGGCCAACCGTAGCCACATGCCCTACTCCAAG AGTCCGAGCGGTGTCGCACTGGAGTGTAAAGATGGACGTATTTTCAGCGGCTCATACGCGGAGAATGCGGCTTTCAAT CCCACTCTTCCCCCGTTACAAGGAGCGCTGATTCTTTTAAATTTGAAGGGCTATGACTACCCAGACATTCAACGTGCAG TGCTTGCCGAGAAGGCGGACGCACCATTGATCCAATGGGATGCTACCAGCGCAACTTTAGGGTGTCACA GCATCGATCGCGTGCTGTTAGCCCTCGAGCACCACCACCACCACCAC

MHPRFQTAFAQLADNLQSALEPILADKYFPALLTGEQVSSLKSATGLDEDALEFALLPLAAACARTPLSNFPVGAIARGVSGTWYF GGNMEFIGATMQQTVHAEQSAISHAWLSGEKALAAIGVSYTPCGHCRQFMNELNSGLDLRVHVPGREAHALRDYLPDAFGPK DLEIKTLLMDEQDHGYALTGDALSQAAIAAANRSHMPYSKSPSGVALECKDGRIFSGSYAENAAFNPTLPPLQGALILLNLKGYD YPDIQRAVLAEKADAPLIQWDATSATLKALGCHSIDRVLLALEHHHHHH