Supplemental file 3

Descriptive statistics

The presented preliminary analysis is based on survey data collected between May 1st and July 21st, 2020. Our dissemination strategy allowed recruitment of 75 participants who contributed a total of 295 ratings. Fifty-six survey participants had a background in research (74.6%) and 36 were healthcare professionals (50.6%). Thirty-four respondents (45.3%) were members of academia. Other major groups were participants from HTA organizations and professional societies (13.3% and 18.6%, respectively). Participants were equally randomized to case-scenarios descriptive of desirable and undesirable health effects (144/295, 49%; 151/295, 51%, respectively) and completed the entire exercise in the majority of cases (68/75, 90.7%).

Detailed descriptive characteristics of survey respondents and ratings are shown in Tables 1 and 2, respectively.

Characteristic ^a	Respondents, n = 75	
Background ^a	n (%)	
Clinical/Health Professional	38 (50.6)	
Policymaking	6 (8.0)	
Research	56 (74.6)	
Teaching	18 (24.0)	
Administrative	3 (4.0)	

Patient representative	2 (2.6)
Other	3 (4.0)
Degree ^a	
Degree in Nursing (RN)	1 (1.3)
Medical School (MD)	30 (4.0)
Master of Sciences (MSc)	17 (22.6)
Master of Public Health (MPH)	9 (0.12)
Doctor of Philosophy (PhD)	25 (33.3)
None	2 (2.6)
Other	5 (6.6)
Formal Training in health research	
methodology/epidemiology/biostatistics	
Never completed	12 (16.0)
Completed some form of formal training but do not have a graduate	30 (40.0)
degree	
Earned a MSc degree	16 (21.3)
Earned a PhD degree	16 (21.3)
Not available	1 (1.4)
Organization ^a	
Cochrane collaboration	13 (17.3)
GRADE Working Group	16 (21.3)

World Health Organization	1 (1.4)
Guidelines International Network (G-I-N)	-
Health Technology Assessment (HTA) organization	10 (13.3)
Academia	34 (45.3)
Professional society	14 (18.6)
Familiarity with the Evidence to Decision framework	
Not at all familiar	5 (6.6)
Not so familiar	9 (12.0)
Somewhat familiar	16 (21.3)
Very familiar	30 (40.0)
Extremely familiar	8 (10.6)
Not available	7 (9.5)
Previous participation in guideline development groups	
Yes	52 (69.3)
No	18 (24.0)
Not available	5 (6.6)
Primary role in the guideline development group ^a	
Clinical Chair	5 (6.6)
Chair for methods	15 (19.8)
Guideline methodologist	29 (38.6)
Panel member	15 (19.8)

Topic or content expert	7 (9.5)
Patient representative	2 (2.6)
Systematic review author	26 (34.6)
Expert in Health Technology Assessment	3 (4.0)

Values represent the number and in parentheses the percentage.

Table 1: Characteristics of survey respondents

Characteristics of ratings collected through the survey	n (%)
Total number of ratings collected	295
Missing data (expected ratings - collected ratings/expected ratings)	17/312 (0.054) ^a
randomized to a scenario showing desirable effects	144/295 (49)
randomized to a scenario showing undesirable effects	151/295 (51)
randomized to the outcome of death	73/295 (25)
randomized to the outcome of major stroke	66/295 (22)
randomized to the outcome of pulmonary embolism	55/295 (19)
randomized to the outcome of moderate diarrhea	63/295 (21)
based on the outcome of mild nausea/vomiting	38/295 (13)

a. 73 participants were randomized to 4 case-scenarios, 2 were mistakenly randomized to 10.

Table 2: Descriptive statistics of survey ratings

^a Percentages do not add up to 100 because respondents could choose more than one option.

Table 3 describes the estimates of DTs that were derived from survey ratings through the joint measure of absolute effects and outcome values. For example, an outcome valued as 0.8, these thresholds would indicate that the effect of an intervention preventing 30 events of that outcome per 1000 should be categorized as trivial (since 0.03*(1-0.8)) =0.006 is smaller than T1). More details about the calculation of the DTs are available in Appendix 1 (Table 1).

Decision Threshold			95% Confidence Interval	
	Estimate	Std. Deviation	Lower Bound	Upper Bound
T1: Trivial/Small	0.0165	0.0467	0.0059	0.0271
T2: Small/Moderate	0.0312	0.0601	0.0176	0.0448
T3: Moderate/Large	0.0577	0.0781	0.0400	0.0754

Table 3: Estimates of DTs

Primary analysis

Our analysis showed a difference in the estimates between T1 and T2 (mean difference [MD] - 0.0147; 95% CI -0.0201 to -0.0093; p<0.001) and T2 and T3 (mean difference [MD] -0.0264; 95% CI -0.0544 to -0.0062; p<0.001).

Within-participant analyses

The analyses showed that at a respondent level there was no difference between DTs derived from judgments on benefits and from those on harms: $T1_{benefit}=T1_{harms}$ (mean difference [MD] - 0.0040; 95% CI -0.0195 to 0.0116; p=0.615); $T2_{benefits}=T2_{harms}$ (mean difference [MD] -0.0124; 95% CI -0.0313 to 0.0064; p=0.196); $T3_{benefit}=T3_{harms}$ (mean difference [MD] -0.0209; 95% CI - 0.0451 to 0.0033; p=0.090).

Subgroup analyses

Our subgroup analyses showed a difference in the estimates between T1 and T2, and T2 and T3 also in DTs derived from subgroup of ratings identified by outcome, direction of interventions' effects, and prior participation to guideline development groups. No difference was observed in the estimates between T1 and T2 in those with no experience with the EtD (mean difference [MD] -0.0046; 95% CI -0.0100 to 0.0006; p=0.810) and between T2 and T3 in those who had no training in epidemiology (mean difference [MD] -0.0056; 95% CI -0.0218 to 0.0106; p=0.483).

Sensitivity analyses

The findings of the sensitivity analyses conducted by excluding raters who provided incoherent thresholds (n=3; T1/T2 mean difference [MD] -0.0143; 95% CI -0.0192 to -0.0094; p<0.001; T2/T3 mean difference [MD] -0.0291; 95% CI -0.0417 to -0.0165; p<0.001) or who were presumed outliers (n=10; T1/T2 mean difference [MD] -0.0096; 95% CI -0.0113 to -0.0078; p<0.001; T2/T3 mean difference [MD] -0.0194; 95% CI -0.0240 to -0.0148; p<0.001) were similar to that of the primary analysis.

Assessment of order effects

The analyses suggest no difference between DTs derived from participants who evaluated a high-value outcome (i.e. moderate diarrhea) in the first iteration compared to those who evaluated a low-value outcome (i.e. death) first. Similarly, there was no difference in the DTs depending on whether the first judgment made was 'Small' or 'Large'.