

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Contemporary sex differences in mortality among patients with ST-segment elevation myocardial infarction: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053379
Article Type:	Original research
Date Submitted by the Author:	12-May-2021
Complete List of Authors:	Xi, Ziwei; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Qiu, Hong; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Guo, Tingting; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Wang, Yong; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Li, Jianan; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Li, Yang; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Gao, R; Fuwai Hospital State Key Laboratory of Cardiovascular Disease
Keywords:	EPIDEMIOLOGY, Coronary heart disease < CARDIOLOGY, Myocardial infarction < CARDIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Contemporary sex differences in mortality among patients with ST-segment elevation

myocardial infarction: a systematic review and meta-analysis

Short title : Sex differences in STEMI

First author:

 Ziwei Xi, M.D.

xixixiziwei@qq.com

Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College

Co-authors:

Hong Qiu, M.D.

qiuhong6780@sina.com

Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of

Medical Sciences and Peking Union Medical College

Tingting Guo, M.D.

18610094559@163.com

Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of

Medical Sciences and Peking Union Medical College

Yong Wang, M.D.

tom4215403@163.com

Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of

Medical Sciences and Peking Union Medical College

1	
2	
3	
4	Jianan Li, M.D.
5	
6	m19612017292@162.com
7	m18612017283@163.com
8	
9	Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
10	
11	
12	Medical Sciences and Peking Union Medical College
13	
14	Vong Li M D
15	Yang Li, M.D.
16	
17	klose-bayern@hotmail.com
18	
19	
20	Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
21	
22	Medical Sciences and Peking Union Medical College
23	medical Sciences and Teking Onion medical College
24	
25	Jianfeng Zheng, M.D.
26	
27	
28	zjfcvicvi123@163.com
29	
30	Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
31	Tuwar Hospital, Wational Ocifici for Oardiovascular Discases, Oninese Adademy of
32	
33	Medical Sciences and Peking Union Medical College
34	
35	
36	Runlin Gao, M.D.
37	
38	gaorunlin@citmd.com
39	
40	
41	Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
42	
43	Medical Sciences and Peking Union Medical College
44	
45	
46	
47	
48	Corresponding outbor
49	Corresponding author:
50	
51	Hong Qiu, M.D.
52	
53	
54	qiuhong6780@sina.com
55	
56	Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
57	i una noopiai, national contol loi cardiovasculai Diseases, oninese Academy of
58	
59	Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng
60	

District, Beijing, China

to perteries only

 Contemporary sex differences in mortality among patients with ST-segment elevation

myocardial infarction: a systematic review and meta-analysis

Objectives

To assess the effect of sex differences on short- and long-term mortality among patients with ST-segment elevation myocardial infarction (STEMI) by performing a meta-analysis of contemporary available evidence in this topic.

Methods

PubMed, Embase and Cochrane Library were searched for relevant studies reporting sex specific outcomes among patients with STEMI. Only study conducted in last ten years were included. The primary outcome was all-cause death at short- and long-term follow-up. Risk ratio (RR) 95% CIs were measured using the Mantel-Haenszel method. The random-effect model was used for analysis. All statistical analyses were performed using STATA version 15.0.

Results

A total of fifteen studies involving 128,585 patients (31,706 women and 96879 patients) were included. In the unadjusted analyses, women were at a higher risk of short-term mortality (RR, 1.73; 95%CI, 1.53-1.96, P<.001, I²=77%) but not long-term mortality (RR, 1.23; 95%CI, 0.89-1.69, P<.001, I²=77.5%). When adjusted effect estimates from individual studies were used in meta-analysis, the association between women and higher risk of

short-term mortality remained significant (RR, 1.24; 95%Cl, 1.11-1.38, P=0.103, I²=39.6%). And adjusted long-term mortality was also similar between women and men (RR, 0.11; 95%Cl, 0.42-1.80, P=0.008, I²=74.5%).

Conclusions

An increased short- but not long-term mortality was found in women with STEMI. After adjustment for baseline cardiovascular risk factors and clinical profiles, short-term mortality remains higher in women with STEMI compared to men.

Strengths and limitations of this study

- We assessed the contemporary effect of sex differences on mortality among patients with STEMI by meta-analysis of studies from the last decade.
- We screened a greater number of potentially eligible articles and performed a comprehensive review.
- Each included study was assessed using the Newcastle-Ottawa Scale, and heterogeneity test, bias assessment, and sensitivity analysis were conducted.
- Theres is substantial and nonnegligible heterogeneity in our meta-analysis

Contemporary sex differences in short- and long-term mortality among patients with STsegment elevation myocardial infarction: a systematic review and meta-analysis

Introduction

Acute myocardial infarction remains one of leading causes of mortality in both men and women worldwide despite improvement of acute cardiac care.[1] Numerous studies have reported that women have a higher risk of in-hospital and long-term adverse outcomes following ST-segment elevation myocardial infarction (STEMI) compared with men.[2] Confounders including advanced age and more frequent comorbidities, such as hypertension and diabetes mellitus[3, 4], might contribute to excess mortality in women. Moreover, previous studies show lower rates of guideline directed medical therapy and revascularization are also associated with poorer prognosis for women with STEMI.[5]

Sex discrepancies in management and outcomes after STEMI have been increasingly reported in the literature and raised public awareness.[6] Major progress in therapy for myocardial infarction and primary and secondary preventive interventions has been made to reduce cardiovascular mortality for women.[1, 7] And there have been marked reductions in cardiovascular disease mortality in women with acute myocardial infarction in the past two decades.[1] Conflicting results are noted in recent studies on sex differences following STEMI. It is unclear whether the sex differences still exist, in view of substantial improvements in prognosis of cardiovascular disease over the past decade.

In order to assess the contemporary effect of sex differences on short- and long-term

mortality among patients with STEMI, we performed a systematic review and metaanalysis of all available evidence from last decade reporting sex-specific outcomes after STEMI.

Methods

The present systematic review and meta-analysis was performed following the principle of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.[8]

Literature search

We conducted a comprehensive search of the PubMed, EMBASE, and Cochrane Library from January 1, 2010 to August 1, 2020 to identify studies from the last decade that described sex differences in in short- or long-term mortality among patients with STEMI. We queried MeSH and the abstract text for the following three search terms: gender part (including "gender", "female", "male", "gender differences", "sex differences" or "sex characteristics"); outcome part (including "death", "mortality", "hospital mortality", "cardiac death", "sudden cardiac death", "all-cause mortality", "long term mortality", "one year mortality", "cardiovascular mortality" or "short term mortality"); myocardial infarction part (including "myocardial infarction", "acute myocardial infarction", "myocardial necrosis", "ST segment elevation myocardial infarction", "primary PCI", "primary percutaneous coronary intervention" or "primary angioplasty") to identify relevant studies. There was no language

restriction.

Study selection

According to the aim of our analyses, studies were included in this systematic review if data about short- (in-hospital or 30 days) or long-term (at least 12 months) mortality stratified by sex in patients with STEMI were reported. Two reviewers identified studies eligible for further review by performing an initial screen of titles or abstracts of the search results. Subsequently, a second screen of full texts eligibility was performed by another two reviewers. Studies had to fulfil the following criteria to be included in the present analyses: i) studies reporting data on all-cause mortality specific to STEMI population; and ii) studies providing enough details to obtain numbers of events or incidence rates according to sex; and iii) enrollment starting earlier than a decade ago. Editorials, letters included only if sufficient information was available in abstracts or associated tables or figures. Any disagreement was reviewed by a third reviewer and resolved by consensus.

Data extraction

Detailed data from selected studies were extracted independently by two reviewers using a standardized form independently. Data about study and participants characteristics, including year of study, sample size, time of enrollment, geographical location, endpoints of study, and follow-up duration, were collected. Any discrepancies were reviewed by a third reviewer and resolved by consensus. The quality of included studies was evaluated by Newcastle-Ottawa scale using prespecified items comprised of patients' selection

(representativeness and selection of patients, ascertainment of exposure), comparability of cohorts based on design or analysis, and outcome (assessment of outcomes, adequacy of follow-up).[9] A quality score (0–9) was generated according to a maximum of 1 score for each item.

Patient and public involvement

Due to the nature of the systematic review and meta-analysis, this study did not involve patients and the public in the design, or conduct, or reporting or dissemination plans.

Statistical analysis

The risk ratios (RRs) and 95% confidence interval (CI) were primarily used to represent the effect of sex differences on mortality after STEMI. And data were combined using random-effects model of DerSimonian and Laird with inverse variance weighting. Randomeffect model was used due to substantial clinical and statistical heterogeneity. Following analyses were performed: i) unadjusted RRs for short- and long-term all-cause mortality using raw number of death and total participants at risk for death specific to each sex, ii) adjusted RRs for short- and long-term all-cause mortality using adjusted RRs described in included studies.

We assess heterogeneity across studies with Cochran's Q test and I2 test, with P<0.1 or I2 >50% considered significant. To assess the potential effect of publication bias, we inspected funnel plots for asymmetry and used the Egger's regression asymmetry test in which P<0.10 was considered to indicate significant publication bias. Sensitivity analyses

BMJ Open

was conducted by excluding one study at a time and comparing the results with the complete one. In addition, we also performed sensitivity analyses by restricting to highquality studies with a Newcastle-Ottawa scale of 5 points or more and restricting to studies with sample size bigger than 1000 participants. All statistical analyses were performed using STATA version 15.0 (Stata Corp, College Station, TX).

Results

Literature search

Study selection details were outlined in Figure 1. The literature search identified 2,611 potentially relevant articles. After screening based on title and abstract review, 116 full-text were assessed for eligibility, with 96 papers excluded due to not meeting inclusion criteria. Another 5 papers reviewed in detail were excluded after due to data from the same cohorts. A total of 15 studies were finally included in the present systematic review and meta-analysis.[10-24]

Study characteristics

Of the 15 included studies, 8 were multicenter studies and 4 studies enrolled more than 10,000 patients with STEMI. See Table 1 for further information of included studies. Except for 1 study, which was a prespecified gender analysis of randomized controlled trial, the remaining 14 were observational studies. Among the 10 included studies which reported adjusted analyses, most studied adjusted for age, diabetes mellitus, hypertension, and

 BMJ Open

prior myocardial infarction/PCI, while some adjusted for renal insufficiency, cardiogenic shock, cardiac arrest at admission and occurrence time of symptom onset.

Patient characteristics

A total of 128,585 patients with STEMI (31,706 women and 95,610 man) were involved in the 15 included studies. Women tended to be older and had higher prevalence of diabetes mellitus in all included studies. And in most studies, other important comorbidities, including hypertension and hyperlipidemia, were more frequent in women. Greater proportions of men were smokers and had prior PCI or myocardial infarction. In addition, some studies reported that door-to-balloon time and symptom onset to balloon time were longer in women than men. Part of patient baseline characteristics were summarized in her Table 2.

Short-term all-cause mortality

Thirteen studies reported sex-specific unadjusted short-term mortality of patients with STEMI. There were 2,873 of 31,409 (9.1%) cases of all-cause mortality in women compared with 4,380 of 95,610 (4.6%) in men. Women were at a significantly higher risk of short-term mortality (RR, 1.73; 95%CI, 1.53-1.96, P<.001, I²=77%) compared with men (Figure 2 A). Nine studies involving 119,379 patients reported adjusted short-term mortality specific to sex. In adjusted analysis, the association between women and higher risk of short-term mortality remained significant (RR, 1.24; 95%CI, 1.11-1.38, P=0.103, I²=39.6%) (Figure 2 B). However, the strength of association calculated with adjusted RRs from these

9 studies was attenuated. Results of assessment of study quality using Newcastle-Ottawa scale were shown in eTable 1 in the Supplementary Material.

Long-term all-cause mortality

Six studies involved 18,018 patients with STEMI (4,191 women and 13,827 men) and followed up for more than 1 year, and reported all-cause mortality for women and men. The incidence of long-term all-cause mortality was 13.9% (n=584) in women and 8.7% (n=1202) in men. In unadjusted analysis, no significant sex difference was found in longterm mortality (RR, 1.23; 95%Cl, 0.89-1.69, P<.001, I²=77.5%) (Figure 3 A). And the adjusted analysis of the pooled results from four studies, also showed a similar risk of mortality at long-term follow-up in women compared with men (RR, 1.11; 95%CI, 0.42-1.80, iey P=0.008, I²=74.5%) (Figure 3 B).

Sensitivity analyses and publication bias

Sensitivity analysis by excluding one study at a time (See eFigure 1 in the Supplementary Material) or restricted to data from studies with sample size bigger than 1000 (RR, 1.75; 95%CI, 1.54-1.99, P<.001, I²=82.9%) both indicated that none of the studies affected the results of short-term mortality in this meta-analysis significantly. In analysis for long-term mortality, sensitivity analysis showed a possibly higher influence on the result attribute to the study of Tai et al (See eFigure 2 in the Supplementary Material). After removing this study from meta-analysis, the association of women with increased long-term mortality became significant (RR, 1.50; 95%CI, 1.23-1.83, P=0.148, I²=40.9%). We found no

 evidence of publication bias across studies based on visual inspection of funnel plots (See eFigure 3 in the Supplementary Material) and the results from Egger's tests for short-term mortality (P=0.462) and for long-term mortality (P=0.053).

Discussion:

Our systematic review and meta-analysis of contemporary literature on sex differences among patients with STEMI demonstrate that women have a higher risk of short- but not long-term mortality compared with men with STEMI. Furthermore, after adjustment for baseline cardiovascular risk factors and clinical profiles, the sex differences in short-term mortality are attenuated but remain significant, while women have the similar long-term mortality with men.

It is widely accepted that there are significant differences in outcomes of women and men with acute myocardial infarction. In our study, after adjusted for participants' baseline cardiovascular risk factors and clinical profiles, the strength of association between gender and short-term mortality was substantially attenuated, which suggested that poorer baseline cardiovascular risk profile partially explained the impact of sex differences on mortality. Multiple studies have shown that women with STEMI present at older age and have a higher burden of comorbidities, contributing to the sex differences in mortality after STEMI.[25] All studies included in our meta-analysis demonstrate that female patients are older and with more diabetes mellitus as well as hypertension. In addition, some sex-

BMJ Open

 specific studies found that certain risk factors and comorbidities were more potent in women.[26] Diabetes mellitus , hypertension and smoking status are more strongly associated with increased risk of cardiac events in women compared with men.[25, 27]

Notably, that these differences mentioned above still could not completely explain the gap in mortality between sexes. It has been proved that women with acute myocardial infarction were less likely to be treated with guideline directed medical therapy and less likely to receive primary reperfusion therapy including primary percutaneous coronary intervention or fibrinolysis.[28] Regarding medical therapy, numerous studies conducted around the world consistently demonstrate female survivors are receiving less optimal medical therapy after acute myocardial infarction during hospitalization or at discharge.[29, 30] Though there might be no differences in treatment adherence between men and women, some studies report significant sex disparities in initiation of appropriate pharmacotherapy after myocardial infarction.[31] Results from these observational studies show women are receiving less optimal medical therapy including aspirin, statins, and angiotensinconverting enzyme inhibitors in all age groups, especially young women, and suggest that clinicians and patients may benefit from better education and awareness of undertreatment of younger women.[31, 32]

Lower rates of revascularization are observed among women with STEMI compared with men in several studies despite proven benefit of this therapy.[33] Moreover, the sex differences might be driven by delays in presentation to hospital and women with STEMI

BMJ Open

were more likely to experience longer delays than men. Although a great improvement in emergency medical services and timely revascularization over the past decades, recent studies show that women with STEMI still present later and have a longer ischemic time than men. Previous studies have shown consistently that women have longer door-to balloon times and longer door-to needle times.[34, 35] In addition, women are also more likely to exhibit longer pre-hospital delays in seeking medical care after the development of symptoms suggestive of myocardial infarction. Although there have been significant reductions in patient and system delay in the last decade, women continue to have longer presentation and treatment times.[36] Sex differences also exist in clinical presentation of STEMI. Although chest pain was the most common ACS symptom in both sexes, women were more likely to present without chest pain than men.[37, 38] Lower rates of typical chest pain reported among women with STEMI may also influence provider decisionmaking to pursue less aggressive care including invasive revascularization.

Complications including bleeding, heart failure and mechanical complications are more likely to develop in women with acute myocardial infarction and increase the risk of mortality.[14, 39, 40] Bleeding secondary to antithrombotic therapies and invasive procedures is more frequent in women.[41] Three included studies reported incidence of bleeding following STEMI and they all found that women were at higher risk of bleeding.[10, 13, 18] One study included in our analysis examined the relationships among sex, acute heart failure, and related outcomes after STEMI.[14] Its results demonstrate that women are at higher risk to develop de novo heart failure after STEMI and women with de novo

BMJ Open

heart failure have worse survival compared with man. However, we could not compare the incidence of these complications due to the lack of sufficient data. Mechanical complications requiring surgical intervention are also much more common in women after acute myocardial infarction and associated with high mortality rates.[42]

Several limitations of this meta-analysis should be considered. First, the included studies are all observational studies except one post hoc analysis of randomized controlled trial. Hence, there may be residual confounding bias inherent in the observational study design in our meta-analysis. Second, in adjusted analysis, not all included studies adjusted for the same confounders and not all studies reported adjusted RRs. Third, there was substantial heterogeneity in our meta-analysis, which could partly be attributed to the wide variability in the sample sizes, locations, and treatment regimens across included studies. Fourth, the analysis of long-term mortality, especially the adjusted analysis, included far fewer studies compared with analysis of short-term mortality. Hence, there might be significant bias in the results about long-term mortality.

In conclusion, our meta-analysis, pooling data from contemporary literature, shows that women with STENI have a higher risk of short-term mortality but not long-term mortality. The effect of sex differences on mortality in patients with STEMI remain significant after adjustment for baseline cardiovascular risk factors and clinical profiles, suggesting that public awareness of increased risk and further improvements in management in women with STEMI are necessary.

Contribution statement

Ziwei Xi: Study concepts, Study design, Literature research, Statistical analysis, Manuscript preparation, Manuscript editing. Tingting Guo and Yong Wang: Data acquisition, Data analysis/interpretation. Jinan Li, Yang Li, Jianfeng Zheng and Runlin Gao: Manuscript revision/review. Hong Qiu: Manuscript final version approval.

Conflict of interest

The authors declare that there is no conflict of interest.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Ethics approval

The institutional central committee at Fuwai Hospital approved that the study protocol and

inform consent was not required for a systematic review and meta-analysis.

Data sharing statement

As this is a systematic review and meta-analysis, the data used in the study have already

been published by the authors of the included studies. Further information can be obtained

from the corresponding author

to perteries only

 BMJ Open

			tudies.				_						
First	Year	Region	Multicen	Time	of	Number	of	Female	Endpo	int			Follo
Author			ter	enrollment		STEMI				durati			
						patients							
						enrolled							
Venetsa	2017	13	Yes	Sep, 201	1-Oct,	1,862		369	Major	adverse	cardiovasc	cular	30 d
nos		countries		2013				(20.0)	events	and	definite s	stent	
									thrombo	sis			
Ali	2018	Germany	No	2013-2017		312		101	All-cause	e in-hosp	oital mortality	,	NA
								(32.4)					
Langab	2018	US	Yes	Jan, 2010)-Dec,	9,674		2,569	In-hospit	tal morta	lity		NA
eer				2015				(26.6)					
Tang	2018	China	No	Jan, 2013	B-Dec,	1,238		210 (1.9)	Major	adverse	cardiac	and	730 ±

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I				2013			cerebrovascular events					
Cenko	2019	12	Yes	Jan,	2010-Jul,	10,443	3,112	30-day all-cause	30 d			
		Europea		2018			(29.8)	mortality				
		n										
		countries										
Hao	2019	China	Yes	Nov,	2014-Jun,	50,203	11,016	In-hospital mortality	NA			
				2018			(21,9)					
Hannan	2019	US	Yes	Jan,	2013-Dec,	23,809	7,791	In hospital/30-day mortality	30 d			
				2015			(32.7)					
Maznyc	2019	UK	No	July,	2011-Nov,	324	87 (26.9)	All-cause death/ first heart failure	5 years			
zka				2012				hospitalisation				
Stehli	2019	Australia	Yes	2013-2	2016	6431	1,317	In hospital/30-day major adverse	30 d			
							(20.5)	events, and major bleeding				
			For peer	review o	nly - http://b	mjopen.bmj.com/site/	/about/guidel	ines.xhtml				

Burgess	2020	Australia	No	Dec, 2	010-Apr,	589	123 (21)	Cardiac death and myocardial	2 years
				2014				infarction	
Dharma	2020	Indonesi	No	Feb, 20	011-Aug,	6557	929	All-cause mortality	30 d and
		а		2019			(14.2)		year
Kerkma	2020	Netherla	Yes	2015-20	016	787	229 (29)	All-cause mortality	1 year
nx		nds							
Siabani	2020	Iran	No	Jun, 20)16-May,	1484	311(21)	In-hospital mortality	NA
				2018					
Tai	2020	China	No	Jan, 20	013-Dec,	182	56 (30.8)	In hospital/1-year mortality	1 year
				2017					
Tizón	2020	Spain	Yes	2010-20)16	14,690	3486	30-day/1-year all-cause mortality	1 year
							(23.7)		

BMJ Open

First	Yea	Age,	mean	Diabe		Hyperte		Hyperlipid		Smoki		Prio		Prio	
Author	r	(SD), years		tes, %		nsion, %		emia, %		ng, %		r		r	
												MI,		PCI	
												%		, %	
		Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Fem	Male	Fem	Male
												ale		ale	
Venet	2017	69	59	13.0	13.7	51.5	40.5	31.7	35.9	NA	NA	6.5	9.0	4.3	8.3
sanos		(13.0)	(11.0)												
Ali	2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Langa	2018	62.5	60.2	29.6	27.8	NA	NA	49.3	52.0	37.0	38.9	16.9	18.4	NA	NA
beer		(13.6)	(12.5)												
Tang	2018	64.5	54.4	31.4	25.1	67.1	53.3	59.5	60.3	15.7	77.3	4.8	6.8	28.6	22.8

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Cenko	2019	(9.3)	(407)												
Cenko	2019		(10.7)												
		66.1	59.7	29.7	20.9	74.6	61.4	43.3	42.3	32.5	50.7	9.7	11.5	9.8	1
		(11.7)	(11.7)												
Hao	2019	69.0	61.1	48.1	39.4	74.1	62.9	85.4	83.3	8.2	53.0	NA	NA	NA	Ν
		(10.6)	(12.4)												
Hanna	2019	70.72	62.11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11.1	1
n		(14.73)	(12.82)												
Mazny	2019	61.2	58.6(11.	9.2	11.0	36.8	30.8	32.2	27.8	65.5	58.6	5.7	8.4	2.3	6
czka		(12.2)	2)												
Stehli	2019	66.5	60.8	18.6	15.1	NA	NA	NA	NA	NA	NA	NA	NA	7.9	1
		(13.2)	(12.2)												
Burge	2020	62.7	58.2	31.7	18.9	68.3	52.1	67.5	52.3	52.0	54.1	7.3	8.8	NA	٩
SS		(52.7-	(50.6-												
				-				com/site/about/		L. 1					

Page 2	26 of 43
--------	----------

		73.2)	65.7)												
Dhar	2020	60 (10)	55 (10)	43.4	27.5	69.6	51.3	32.2	31.6	11.7	71.9	NA	NA	NA	NA
ma															
Kerkm	2020	68 (14)	61 (12)	17.6	12.5	45.7	33.6	25.9	21.0	41.1	49.3	13.6	13.7	14.4	14.
anx															
Siaba	2020	65.8	59.0	37.7	16.2	63.7	35.4	36.7	18.5	13.2	55.9	NA	NA	NA	NA
ni		(11.3)	(12.4)												
Tai	2020	78 (76–	78 (76–	35.2	26.5	79.5	72.8	NA	NA	5.4	56.5	NA	NA	13.5	18.
		81)	80)												
Tizón	2020	69.9	60.9	24.2	17.2	34.2	24.3	25.2	21.2	13.6	24.2	NA	NA	NA	NA
		(13.7)	(12.6)												
				For peer re	eview on	ly - http://bmjo	pen.bmj	.com/site/about/	guidelin	es.xhtml					
							. ,		-						

Reference:

 [1] Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association.
 Circulation. 2020;141:e139-e596.

[2] Pancholy SB, Shantha GP, Patel T, Cheskin LJ. Sex differences in short-term and long-term all-cause mortality among patients with ST-segment elevation myocardial infarction treated by primary percutaneous intervention: a meta-analysis. JAMA internal medicine. 2014;174:1822-30.

[3] Wenger NK, Arnold A, Bairey Merz CN, Cooper-DeHoff RM, Ferdinand KC, Fleg JL, et al.
Hypertension Across a Woman's Life Cycle. Journal of the American College of Cardiology.
2018;71:1797-813.

[4] Peters SAE, Woodward M. Sex Differences in the Burden and Complications of Diabetes.Current diabetes reports. 2018;18:33.

[5] Huded CP, Johnson M, Kravitz K, Menon V, Abdallah M, Gullett TC, et al. 4-Step Protocol for Disparities in STEMI Care and Outcomes in Women. Journal of the American College of Cardiology. 2018;71:2122-32.

[6] Mehta LS, Beckie TM, DeVon HA, Grines CL, Krumholz HM, Johnson MN, et al. Acute Myocardial Infarction in Women: A Scientific Statement From the American Heart Association. Circulation. 2016;133:916-47.

[7] Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet (London, England).2017;389:197-210.

[8] Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews

BMJ Open

and meta-analyses: the PRISMA statement. BMJ (Clinical research ed). 2009;339:b2535.

[9] Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European journal of epidemiology. 2010;25:603-

5.

[10] Venetsanos D, Sederholm Lawesson S, Alfredsson J, Janzon M, Cequier A, Chettibi M, et al. Association between gender and short-term outcome in patients with ST elevation myocardial infraction participating in the international, prospective, randomised Administration of Ticagrelor in the catheterisation Laboratory or in the Ambulance for New ST elevation myocardial Infarction to open the Coronary artery (ATLANTIC) trial: a prespecified analysis. BMJ open. 2017;7:e015241.

[11] Ali M, Lange SA, Wittlinger T, Lehnert G, Rigopoulos AG, Noutsias M. In-hospital mortality after acute STEMI in patients undergoing primary PCI. Herz. 2018;43:741-5.

[12] Langabeer JR, 2nd, Henry TD, Fowler R, Champagne-Langabeer T, Kim J, Jacobs AK.
Sex-Based Differences in Discharge Disposition and Outcomes for ST-Segment Elevation
Myocardial Infarction Patients Within a Regional Network. Journal of women's health (2002).
2018;27:1001-6.

[13] Tang XF, Song Y, Xu JJ, Ma YL, Zhang JH, Yao Y, et al. Effect of sex difference in clinical presentation (stable coronary artery disease vs unstable angina pectoris or non-ST-elevation myocardial infarction vs ST-elevation myocardial infarction) on 2-year outcomes in patients undergoing percutaneous coronary intervention. Journal of interventional cardiology. 2018;31:5-14.

[14] Cenko E, van der Schaar M, Yoon J, Manfrini O, Vasiljevic Z, Vavlukis M, et al. Sex-Related

 Differences in Heart Failure After ST-Segment Elevation Myocardial Infarction. Journal of the American College of Cardiology. 2019;74:2379-89.

[15] Hao Y, Liu J, Liu J, Yang N, Smith SC, Jr., Huo Y, et al. Sex Differences in In-Hospital Management and Outcomes of Patients With Acute Coronary Syndrome. Circulation. 2019;139:1776-85.

[16] Hannan EL, Wu Y, Tamis-Holland J, Jacobs AK, Berger PB, Ling FSK, et al. Sex differences in the treatment and outcomes of patients hospitalized with ST-elevation myocardial infarction. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions. 2020;95:196-204.

[17] Maznyczka AM, Carrick D, Carberry J, Mangion K, McEntegart M, Petrie MC, et al. Sexbased associations with microvascular injury and outcomes after ST-segment elevation myocardial infarction. Open heart. 2019;6:e000979.

[18] Stehli J, Martin C, Brennan A, Dinh DT, Lefkovits J, Zaman S. Sex Differences Persist in Time to Presentation, Revascularization, and Mortality in Myocardial Infarction Treated With Percutaneous Coronary Intervention. Journal of the American Heart Association. 2019;8:e012161.

[19] Burgess SN, Juergens CP, Nguyen TL, Leung M, Robledo KP, Thomas L, et al. Comparison of Late Cardiac Death and Myocardial Infarction Rates in Women Vs Men With ST-Elevation Myocardial Infarction. The American journal of cardiology. 2020;128:120-6.

[20] Dharma S, Dakota I, Andriantoro H, Firdaus I, Rahma S, Budi Siswanto B. Association of gender with clinical outcomes of patients with acute ST-segment elevation myocardial infarction presenting with acute heart failure. Coronary artery disease. 2020.

BMJ Open

[21] Kerkman T, Ten Brinke LBG, Huybrechts B, Adams R, Amoroso G, de Winter RJ, et al. Evaluation of sex differences in patients with ST-elevated myocardial infarction: an observational cohort study in Amsterdam and surrounding region. Netherlands heart journal : monthly journal of the Netherlands Society of Cardiology and the Netherlands Heart Foundation. 2020;28:595-603.

[22] Siabani S, Davidson PM, Babakhani M, Salehi N, Rahmani Y, Najafi F, et al. Gender-based difference in early mortality among patients with ST-segment elevation myocardial infarction: insights from Kermanshah STEMI Registry. Journal of cardiovascular and thoracic research. 2020;12:63-8.

[23] Tai S, Li X, Yang H, Zhu Z, Tang L, Fu L, et al. Sex Differences in the Outcomes of Elderly Patients with Acute Coronary Syndrome. Cardiology research and practice. 2020;2020:5091490.

[24] Tizón-Marcos H, Vaquerizo B, Marrugat J, Ariza A, Carrillo X, Muñoz JF, et al. Differences in 30-day complications and 1-year mortality by sex in patients with a first STEMI managed by the Codi IAM network between 2010 and 2016. Revista espanola de cardiologia (English ed). 2020.

[25] Millett ERC, Peters SAE, Woodward M. Sex differences in risk factors for myocardial infarction: cohort study of UK Biobank participants. BMJ (Clinical research ed). 2018;363:k4247.
[26] Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet (London, England). 2004;364:937-52.

[27] Harreiter J, Fadl H, Kautzky-Willer A, Simmons D. Do Women with Diabetes Need More

Intensive Action for Cardiovascular Reduction than Men with Diabetes? Current diabetes reports. 2020;20:61.

[28] Arora S, Stouffer GA, Kucharska-Newton AM, Qamar A, Vaduganathan M, Pandey A, et al. Twenty Year Trends and Sex Differences in Young Adults Hospitalized With Acute Myocardial Infarction. Circulation. 2019;139:1047-56.

[29] Zhao M, Woodward M, Vaartjes I, Millett ERC, Klipstein-Grobusch K, Hyun K, et al. Sex Differences in Cardiovascular Medication Prescription in Primary Care: A Systematic Review and Meta-Analysis. Journal of the American Heart Association. 2020;9:e014742.

[30] Eindhoven DC, Hilt AD, Zwaan TC, Schalij MJ, Borleffs CJW. Age and gender differences in medical adherence after myocardial infarction: Women do not receive optimal treatment - The Netherlands claims database. European journal of preventive cardiology. 2018;25:181-9.
[31] Smolina K, Ball L, Humphries KH, Khan N, Morgan SG. Sex Disparities in Post-Acute Myocardial Infarction Pharmacologic Treatment Initiation and Adherence: Problem for Young

Women. Circulation Cardiovascular quality and outcomes. 2015;8:586-92.

[32] Nguyen HL, Goldberg RJ, Gore JM, Fox KA, Eagle KA, Gurfinkel EP, et al. Age and sex differences, and changing trends, in the use of evidence-based therapies in acute coronary syndromes: perspectives from a multinational registry. Coronary artery disease. 2010;21:336-44.

[33] Pelletier R, Humphries KH, Shimony A, Bacon SL, Lavoie KL, Rabi D, et al. Sex-related differences in access to care among patients with premature acute coronary syndrome. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne. 2014;186:497-504.

BMJ Open

[34] Murphy AC, Yudi MB, Farouque O, Dinh D, Duffy SJ, Brennan A, et al. Impact of Gender and Door-to-Balloon Times on Long-Term Mortality in Patients Presenting With ST-Elevation Myocardial Infarction. The American journal of cardiology. 2019;124:833-41.

[35] D'Onofrio G, Safdar B, Lichtman JH, Strait KM, Dreyer RP, Geda M, et al. Sex differences in reperfusion in young patients with ST-segment-elevation myocardial infarction: results from the VIRGO study. Circulation. 2015;131:1324-32.

[36] Bugiardini R, Ricci B, Cenko E, Vasiljevic Z, Kedev S, Davidovic G, et al. Delayed Care and Mortality Among Women and Men With Myocardial Infarction. Journal of the American Heart Association. 2017;6.

[37] Khan NA, Daskalopoulou SS, Karp I, Eisenberg MJ, Pelletier R, Tsadok MA, et al. Sex differences in acute coronary syndrome symptom presentation in young patients. JAMA internal medicine. 2013;173:1863-71.

[38] Canto JG, Rogers WJ, Goldberg RJ, Peterson ED, Wenger NK, Vaccarino V, et al. Association of age and sex with myocardial infarction symptom presentation and in-hospital mortality. Jama. 2012;307:813-22.

[39] Moscucci M, Fox KA, Cannon CP, Klein W, López-Sendón J, Montalescot G, et al. Predictors of major bleeding in acute coronary syndromes: the Global Registry of Acute Coronary Events (GRACE). European heart journal. 2003;24:1815-23.

[40] Kolte D, Khera S, Aronow WS, Mujib M, Palaniswamy C, Sule S, et al. Trends in incidence, management, and outcomes of cardiogenic shock complicating ST-elevation myocardial infarction in the United States. Journal of the American Heart Association. 2014;3:e000590.

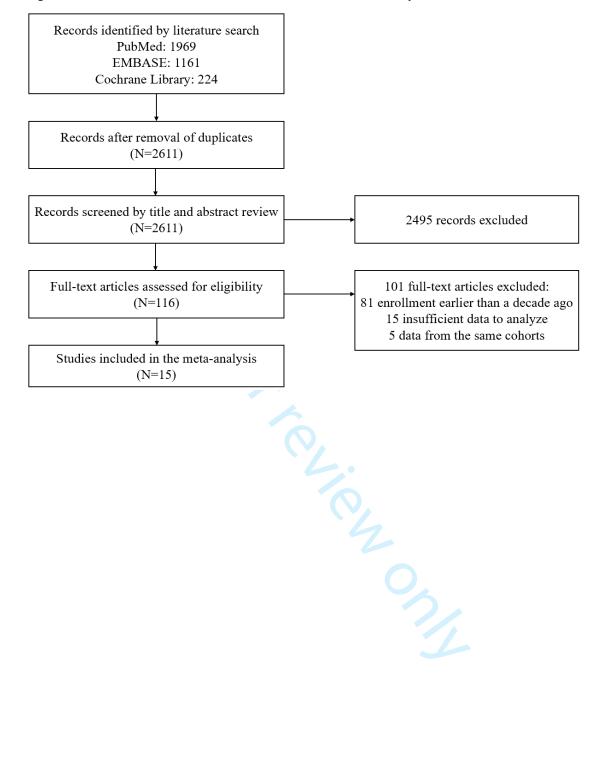
[41] Nanna MG, Hajduk AM, Krumholz HM, Murphy TE, Dreyer RP, Alexander KP, et al. Sex-

Based Differences in Presentation, Treatment, and Complications Among Older Adults Hospitalized for Acute Myocardial Infarction: The SILVER-AMI Study. Circulation Cardiovascular guality and outcomes. 2019;12:e005691.

[42] Elbadawi A, Elgendy IY, Mahmoud K, Barakat AF, Mentias A, Mohamed AH, et al. Temporal Trends and Outcomes of Mechanical Complications in Patients With Acute Myocardial Infarction. JACC Cardiovascular interventions. 2019;12:1825-36.

to beet terien only

 Figure 1 Flowchart of selection of studies included in meta-analysis.


Figure 2 Forest plots of relative risks of short-term all-cause mortality among women and men with ST-segment elevation myocardial infarction.

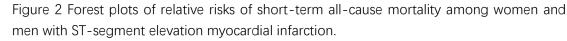

Forest plots showing unadjusted (A) and adjusted (B) short-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

Figure 3 Forest plots of relative risks of long-term all-cause mortality among women and men with ST-segment elevation myocardial infarction.

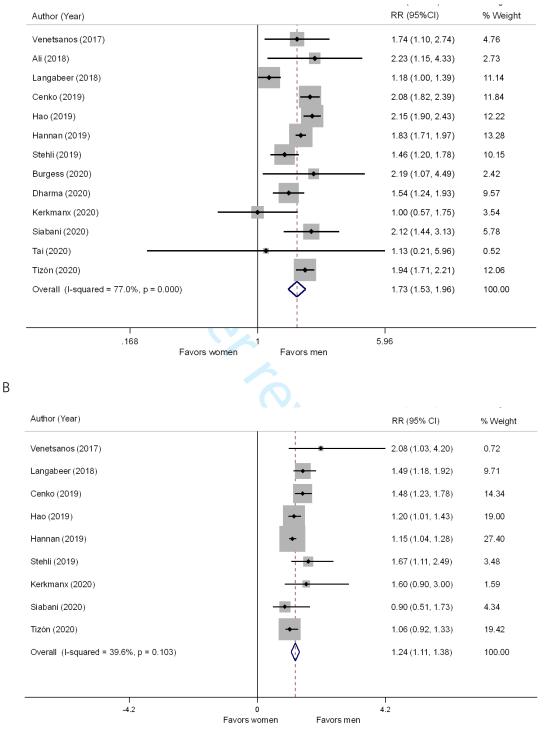
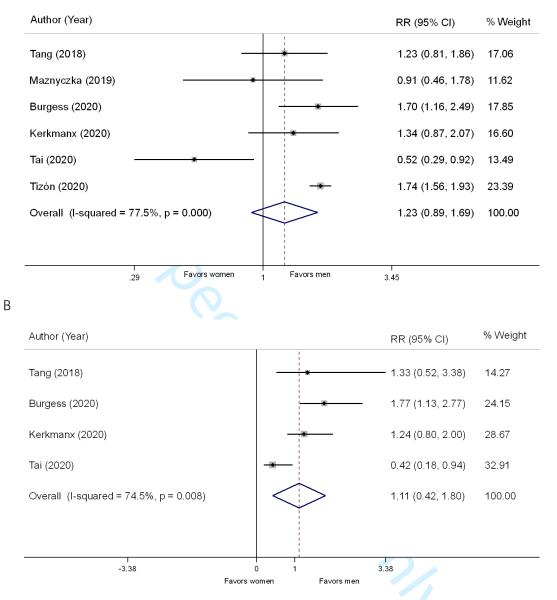

Forest plots showing unadjusted (A) and adjusted (B) long-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

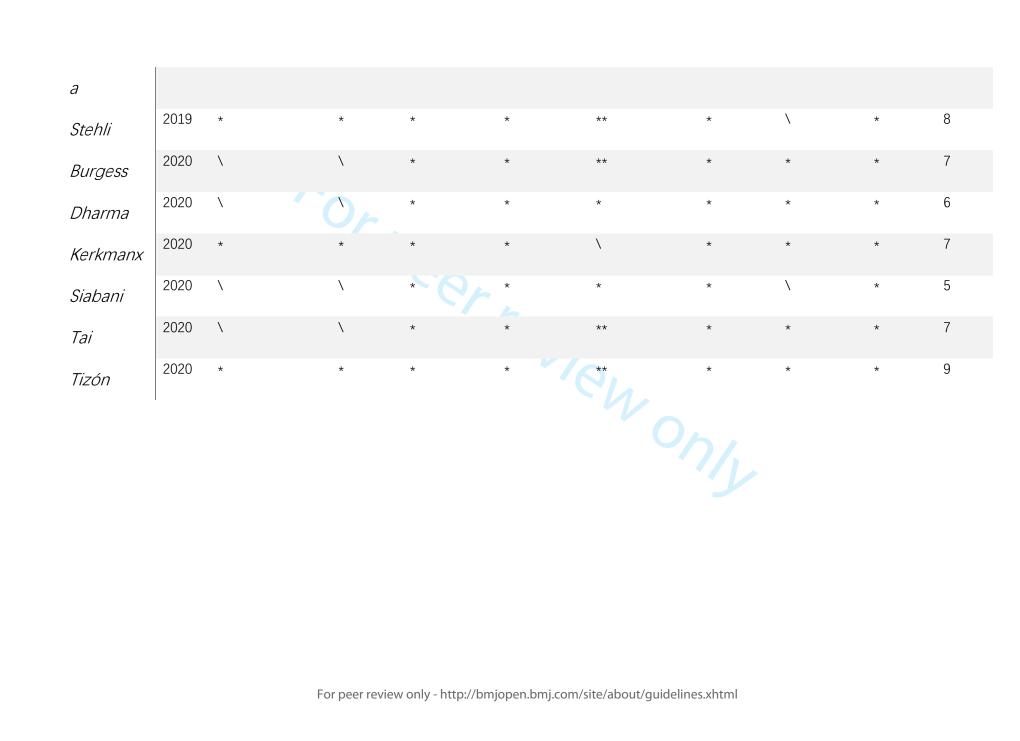
Figure 1 Flowchart of selection of studies included in meta-analysis.

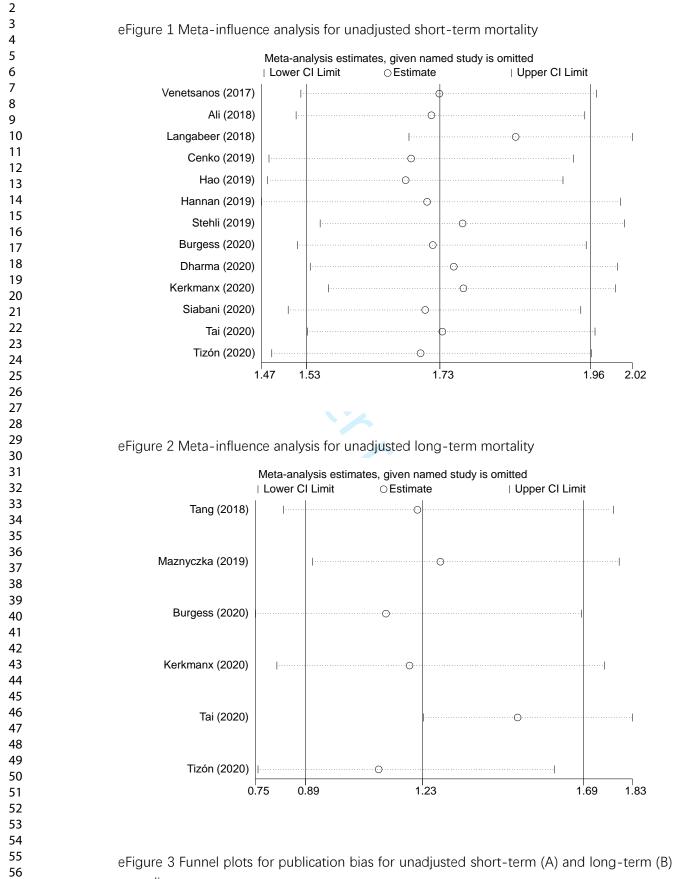

А

Forest plots showing unadjusted (A) and adjusted (B) short-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

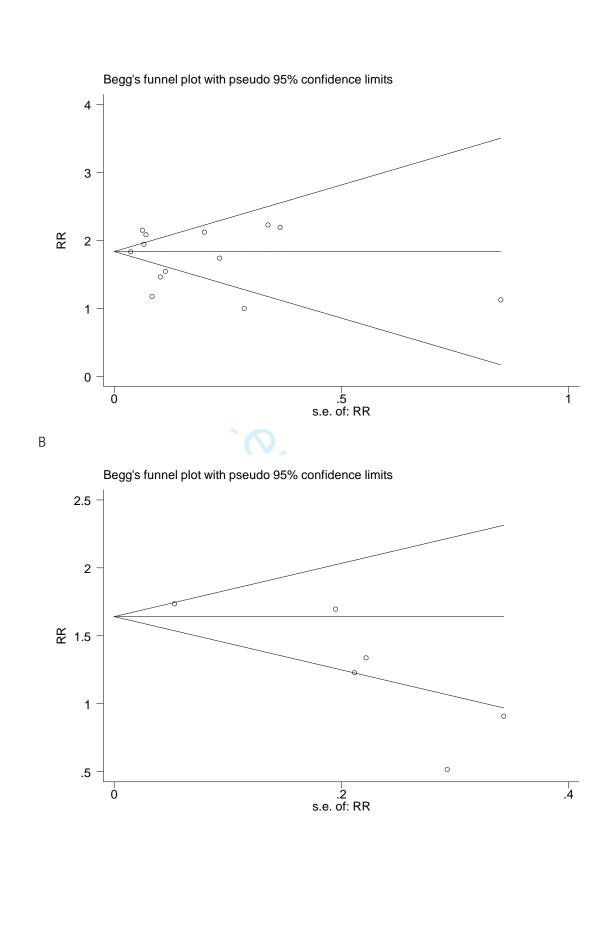
Figure 3 Forest plots of relative risks of long-term all-cause mortality among women and men with ST-segment elevation myocardial infarction.

А




Forest plots showing unadjusted (A) and adjusted (B) long-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

 BMJ Open


First	Year	Selection				Comparabilit	Outcome			Tota
Author		Representativene ss of the exposed cohor	Selection of the no exposed cohort	Ascertainme nt of exposure to implants	Outcome of interest not present at start of study	у	Assessme nt of outcome	Follow-up long enough for outcomes to occur	Adequac y of follow- up	poin s
Venetsano s	2017	*	*	* 00-	*	**	*	\	*	8
Ali	2018	١	١	*	*	\	*	١	*	4
Langabeer	2018	*	*	*	*	*	*	١	*	7
Tang	2018	١	١	*	*	**	*	*	*	7
Cenko	2019	*	*	*	*	**	*	\	*	8
Hao	2019	*	*	*	*	**	*	\	*	8
Hannan	2019	*	*	*	*	**	*	\	*	8
Maznyczk	2019	\	١	*	*	/	*	*	*	5

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

PRISMA 2020 Checklist

3 4 5	Section and Topic	ltem #	Checklist item	Location where item is reported
6	TITLE			
7	Title	1	Identify the report as a systematic review.	Title
8	ABSTRACT			
9	Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Abstract
11	INTRODUCTION			
12	Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Page 4
13	Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Page 4
14	METHODS			
15	; Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Page 5
16 17	Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Page 4
18	³ Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Page 4
19 20	Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Page 5
21 22 23	Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Page 5
24 25	Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Page 5
27) 7 2	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Page 5
29	Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Page 5
31	Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Page 5
32 33	Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Page 5
34 35	5	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Page 5
36		13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Page 5
37	3	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Page 5
39 40		13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	Page 5
41		13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	Page5
42 43	Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	Page 5
44 45	Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Page 5
46				

BMJ Open

PRISMA 2020 Checklist

Section and Topic	ltem #	Checklist item	Location where item is reported
RESULTS	1		
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Figure 1
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Page 6
Study characteristics	17	Cite each included study and present its characteristics.	Table 1
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Page 7
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Table 2
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Page 6
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Page 6
)	20c	Present results of all investigations of possible causes of heterogeneity among study results.	Page 6
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	Page 7
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	Page 7
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Page 6
DISCUSSION	1		
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Page 7
5	23b	Discuss any limitations of the evidence included in the review.	Page 8-9
)	23c	Discuss any limitations of the review processes used.	Page 8-9
	23d	Discuss implications of the results for practice, policy, and future research.	Page 7-8
OTHER INFORMA	TION		
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	
protocol	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	
, Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	
Competing interests	26	Declare any competing interests of review authors.	
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	

44 From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 45 10.1136/bmj.n71 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml For more information, visit: <u>http://www.prisma-statement.org/</u>

46

BMJ Open

Contemporary sex differences in mortality among patients with ST-segment elevation myocardial infarction: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053379.R1
Article Type:	Original research
Date Submitted by the Author:	06-Nov-2021
Complete List of Authors:	Xi, Ziwei; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Qiu, Hong; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Guo, Tingting; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Wang, Yong; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Li, Jianan; Beijing Tiantan Hospital Li, Yang; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Zheng, Jianfeng; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Gao, R; Fuwai Hospital State Key Laboratory of Cardiovascular Disease
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Emergency medicine
Keywords:	EPIDEMIOLOGY, Coronary heart disease < CARDIOLOGY, Myocardial infarction < CARDIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Contemporary sex differences in mortality among patients with ST-segment elevation

myocardial infarction: a systematic review and meta-analysis

Short title : Sex differences in STEMI

Authors:

Ziwei Xi¹, Hong Qiu¹, Tingting Guo², Yong Wang¹, Jianan Li^{3,1}, Yang Li¹, Jianfeng Zheng¹,

Runlin Gao¹

 Department of Cardiology, Coronary artery disease center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
 Thrombosis Center, National Center for Cardiovascular Diseases, State Key

Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

3. Department of Cardiology and Macrovascular Disease, Beijing Tiantan Hospital,

Capital Medical University, Beijing, China

Corresponding author:

Prof. Hong Qiu, M.D.

E-mail address: qiuhong6780@sina.com

Department and affiliation: Department of Cardiology, Coronary artery disease center,

Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of

Medical Sciences and Peking Union Medical College, Beijing, China

Telephone: 0016-13261179000

 Address: No.167 North Lishi Road, Xicheng District, Beijing, China for perteries only

Contemporary sex differences in mortality among patients with ST-segment elevation

myocardial infarction: a systematic review and meta-analysis

Objectives: To assess the effect of sex differences on short- and long-term mortality among patients with ST-segment elevation myocardial infarction (STEMI).

Design: Systematic review and meta-analysis of contemporary available evidence.

Setting: PubMed, Embase and Cochrane Library were searched for relevant studies reporting sex specific outcomes among patients with STEMI published between January 1, 2010 to August 1, 2020. Risk ratio (RR) 95% 95% confidence intervals (CIs) were measured using DerSimonian and Laird random-effects model. Sensitivity analyses were performed and publication bias was also checked. All statistical analyses were performed using STATA version 15.0.

Participants: Studies providing data about short- or long-term mortality stratified by sex in patients with STEMI were included. Only study conducted in last ten years were included.

Primary and secondary outcome measures: The primary outcome was all-cause death at short-(in-hospital or 30 days) and long-term (at least 12 months) follow-up.

Results

A total of fifteen studies involving 128,585 patients (31,706 [24.7%] female and 96,879 [75.3%] male) were included. In the unadjusted analyses, female were at a higher risk of short-term mortality (RR, 1.73; 95%Cl, 1.53-1.96, P<0.001, I²=77%) but not long-term mortality (RR, 1.23; 95%Cl, 0.89-1.69, P=0.206, I²=77.5%). When adjusted effect estimates from individual studies were used in meta-analysis, the association between female and higher risk of short-term mortality remained significant (RR, 1.24; 95%Cl, 1.11-1.38, P<0.001, I²=39.6%). And adjusted long-term mortality was also similar between female and male (RR, 1.11; 95%Cl, 0.42-1.80, P=0.670, I²=74.5%).

Conclusions

An increased short- but not long-term mortality was found in female with STEMI. After adjustment for baseline cardiovascular risk factors and clinical profiles, short-term mortality remains higher in female with STEMI compared to male, indicating the need for further improvements in management in female patients.

Strengths and limitations of this study

- We assessed the contemporary effect of sex differences on mortality among patients with STEMI by meta-analysis of studies from the last decade.
- A greater number of potentially eligible articles were screened and the large sample size ensures adequate statistical power to detect even a small effect of interest.
- Sensitivity analyses by excluding one study at a time and restricting to studies with high quality or with large sample size got consistent results.
- Substantial and nonnegligible heterogeneity still exist in our meta-analysis and might result in potential bias.
- Residual confounding bias could not be totally excluded due to the observational study design of most included studies.

 BMJ Open

Contemporary sex differences in short- and long-term mortality among patients with STsegment elevation myocardial infarction: a systematic review and meta-analysis

Introduction

Acute myocardial infarction remains one of leading causes of mortality in both men and women worldwide despite improvement of acute cardiac care.¹ Numerous studies have reported that women have a higher risk of in-hospital and long-term adverse outcomes following ST-segment elevation myocardial infarction (STEMI) compared with men.² Confounders including advanced age and more frequent comorbidities, such as hypertension and diabetes mellitus^{3 4}, might contribute to excess mortality in women. Moreover, previous studies show lower rates of guideline directed medical therapy and revascularization are also associated with poorer prognosis for women with STEMI.⁵

Sex discrepancies in management and outcomes after STEMI have been increasingly reported in the literature and raised public awareness.⁶ Major progress in therapy for myocardial infarction and primary and secondary preventive interventions has been made to reduce cardiovascular mortality for women.¹⁷ And there have been marked reductions in cardiovascular disease mortality in women with acute myocardial infarction in the past two decades.¹ Conflicting results are noted in recent studies on sex differences following STEMI. It is unclear whether the sex differences still exist, in view of substantial improvements in prognosis of cardiovascular disease over the past decade.

In order to assess the contemporary effect of sex differences on short- and long-term

mortality among patients with STEMI, we performed a systematic review and metaanalysis of all available evidence from last decade reporting sex-specific outcomes after STEMI.

Methods

 The present systematic review and meta-analysis was performed following the principle of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.⁸

Literature search

We conducted a comprehensive search of the PubMed, EMBASE, and Cochrane Library from January 1, 2010 to August 1, 2020 to identify studies from the last decade that described sex differences in in short- or long-term mortality among patients with STEMI. Both observational studies and randomized clinical trials were eligible. We queried MeSH and the abstract text for the following three search terms: gender part (including "gender", "female", "male", "gender differences", "sex differences" or "sex characteristics"); outcome part (including "death", "mortality", "hospital mortality", "cardiac death", "sudden cardiac death", "all-cause mortality", "long term mortality", "one year mortality", "cardiovascular mortality" or "short term mortality"); myocardial infarction part (including "myocardial infarction", "acute myocardial infarction", "myocardial necrosis", "ST segment elevation myocardial infarction", "primary PCI", "primary percutaneous coronary intervention" or

 BMJ Open

"primary angioplasty") to identify relevant studies. There was no language restriction or age limit.

Study selection

According to the aim of our analyses, studies were included in this systematic review if data about short- (in-hospital or 30 days) or long-term (at least 12 months) mortality stratified by sex in patients with STEMI were reported. Two reviewers identified studies eligible for further review by performing an initial screen of titles or abstracts of the search results. Subsequently, a second screen of full texts eligibility was performed by another two reviewers. Studies had to fulfil the following criteria to be included in the present analyses: i) studies reporting data on all-cause mortality specific to STEMI population; and ii) studies providing enough details to obtain numbers of events or incidence rates according to sex; and iii) enrollment starting earlier than a decade ago. Editorials, letters, conference proceedings and abstracts were considered to be eligible only if sufficient information was available in abstracts or associated tables or figures. We excluded studies if they were review articles or case reports, or if they involved pregnant participants, critically ill patients, or provided insufficient data to allow for risk estimates to be calculated. Any disagreement was reviewed by a third reviewer and resolved by consensus.

Data extraction

Detailed data from selected studies were extracted independently by two reviewers using a standardized form independently. Data about study and participants characteristics,

including year of study, sample size, time of enrollment, geographical location, endpoints of study, and follow-up duration, were collected. Any discrepancies were reviewed by a third reviewer and resolved by consensus. The quality of included studies was evaluated by Newcastle-Ottawa scale using prespecified items comprised of patients' selection (representativeness and selection of patients, ascertainment of exposure), comparability of cohorts based on design or analysis, and outcome (assessment of outcomes, adequacy of follow-up).⁹ A quality score (0–9 points) was generated according to a maximum of 1 point for each item.

Patient and public involvement

Due to the nature of the systematic review and meta-analysis, this study did not involve patients and the public in the design, or conduct, or reporting or dissemination plans.

Statistical analysis

The risk ratios (RRs) and 95% confidence interval (CI) were primarily used to represent the effect of sex differences on mortality after STEMI. And data were combined using random-effects model of DerSimonian and Laird with inverse variance weighting. Randomeffect model was used due to substantial clinical and statistical heterogeneity. Following analyses were performed: i) unadjusted RRs for short- and long-term all-cause mortality using raw number of death and total participants at risk for death specific to each sex, ii) adjusted RRs for short- and long-term all-cause mortality using adjusted RRs if they were described in those included studies.

We assess heterogeneity across studies with Cochran's Q test and I2 test, with P<0.1 or I2 >50% considered significant. We also performed meta-regression to identify the potential sources of heterogeneity in the included studies. Furthermore, stratified analysis was conducted as well by dividing the included studies into different subgroups based on the Newcastle-Ottawa scale scores (>7 points or \leq 7 points) to assess the potential sources of heterogeneity. To assess the potential effect of publication bias, we inspected funnel plots for asymmetry and used the Egger's regression asymmetry test in which P<0.05 was considered to indicate significant publication bias.

Sensitivity analyses was conducted by excluding one study at a time and comparing the results with the complete one. In addition, we also performed sensitivity analyses by restricting to high-quality studies with a Newcastle-Ottawa scale of 5 points or more and restricting to studies with sample size bigger than 1000 participants. All statistical analyses were performed using STATA version 15.0 (Stata Corp, College Station, TX). Differences were considered statistically significant at P < .05 (2-sided).

Results

Literature search

Study selection details were outlined in Figure 1. The literature search identified 2,611 potentially relevant articles. After screening based on title and abstract review, 2495 records were excluded. A total of 116 full-text were finally assessed for eligibility, with 96 papers excluded due to enrollment starting earlier than a decade ago or no sufficient

gender specific data to analyze. Another 5 papers reviewed in detail were excluded after due to data from the same cohorts. A total of 15 studies were finally included in the present systematic review and meta-analysis.¹⁰⁻²⁴

Study characteristics

Of the 15 included studies, 8 were multicenter studies and 4 studies enrolled more than 10,000 patients with STEMI. See Table 1 for further information of included studies. Baseline characteristics of participants were missing in some included studies, but all included studies provided sufficient data for analysis of sex differences in clinical outcomes. Except for 1 study, which was a prespecified gender analysis of randomized controlled trial, the remaining 14 were observational studies. Among the 10 included studies which reported adjusted analyses, most studied adjusted for age, diabetes mellitus, hypertension, and prior myocardial infarction/PCI, while some adjusted for renal insufficiency, cardiogenic shock, cardiac arrest at admission and occurrence time of symptom onset. Variables that were adjusted in the adjusted analyses from the included studies were presented in eTable 1 of the Supplementary Material. Results of assessment of study quality using Newcastle-Ottawa scale were shown in eTable 2 in the Supplementary Material.

Patient characteristics

A total of 128,585 patients with STEMI (31,706 [24.7%] female and 96,879 [75.3%] male) were involved in the 15 included studies. Female tended to be older and had higher

BMJ Open

prevalence of diabetes mellitus in all included studies. And in most studies, other important comorbidities, including hypertension and hyperlipidemia, were more frequent in female. Greater proportions of male were smokers and had prior PCI or myocardial infarction. Besides, some studies reported that door-to-balloon time and symptom onset to balloon time were longer in female than male. Part of patient baseline characteristics were summarized in Table 2.

Short-term all-cause mortality

Thirteen studies reported sex-specific unadjusted short-term mortality of patients with STEMI. There were 2,873 of 31,409 (9.1%) cases of all-cause mortality in female compared with 4,380 of 95,610 (4.6%) in male. Female were at a significantly higher risk of short-term mortality (RR, 1.73; 95%Cl, 1.53-1.96, P<0.001, I²=77%) compared with male (Figure 2 A). Nine studies involving 119,379 patients reported adjusted short-term mortality specific to sex. In adjusted analysis, the association between female and higher risk of short-term mortality remained significant (RR, 1.24; 95%Cl, 1.11-1.38, P<0.001, I²=39.6%) (Figure 2 B). However, the strength of association calculated with adjusted RRs from these 9 studies was attenuated. Subgroup analysis demonstrated that the results of studies with Newcastle-Ottawa scale >7 points (RR, 1.90; 95%Cl, 1.73-2.09, P=0.018, I2=63.4%) and studies with \leq 7 points (RR, 1.52; 95%Cl, 1.20-1.93, P=0.026, I2=58.1%) were consistent in unadjusted short-term mortality (See eFigure 1 in the Supplementary Material).

Long-term all-cause mortality

Six studies involved 18,018 patients with STEMI (4,191 female and 13,827 male) and followed up for more than 1 year, and reported all-cause mortality for female and male. The incidence of long-term all-cause mortality was 13.9% (n=584) in female and 8.7% (n=1202) in male. In unadjusted analysis, no significant sex difference was found in long-term mortality (RR, 1.23; 95%Cl, 0.89-1.69, P=0.206, I²=77.5%) (Figure 3 A). And the adjusted analysis of the pooled results from four studies, also showed a similar risk of mortality at long-term follow-up in female compared with male (RR, 1.11; 95%Cl, 0.42-1.80, P=0.670, I²=74.5%) (Figure 3 B).

Meta-Regression Analysis, sensitivity analyses and publication bias

According to meta-regression analysis, differences in prevalence of diabetes (β coefficient, 0.248; P=0.337), hypertension (β coefficient, -0.255; P=0.538), hyperlipidemia(β coefficient, 0.260; P=0.415), smoking (β coefficient, -0.040; P=0.255), prior MI (β coefficient, -2.725; P=0.126), and prior PCI (β coefficient, 0.109; P=0.896) between sexes were not identified as significant sources of heterogeneity for short-term all-cause mortality. Given that not all included study provided information on confounders stratified by sex, the results of meta-regression analyses should be interpreted with caution.

Sensitivity analysis by excluding one study at a time (See eFigure 2 in the Supplementary Material) or restricted to data from studies with sample size bigger than 1000 (RR, 1.75; 95%CI, 1.54-1.99, P<.001, I²=82.9%) both indicated that none of the studies affected the results of short-term mortality in this meta-analysis significantly. In analysis for long-term mortality, sensitivity analysis showed a possibly higher influence on the result attribute to

the study of Tai et al (See eFigure 3 in the Supplementary Material). After removing this study from meta-analysis, the association of female with increased long-term mortality became significant (RR, 1.50; 95%Cl, 1.23-1.83, P=0.148, I²=40.9%). We found no evidence of publication bias across studies based on visual inspection of funnel plots (See eFigure 4 in the Supplementary Material) and the results from Egger's tests for short-term mortality (P=0.462) and for long-term mortality (P=0.053).

Discussion:

Our systematic review and meta-analysis of contemporary literature on sex differences among patients with STEMI demonstrate that female have a higher risk of short- but not long-term mortality compared with male with STEMI. Furthermore, after adjustment for baseline cardiovascular risk factors and clinical profiles, the sex differences in short-term mortality are attenuated but remain significant, while female have the similar long-term mortality with male.

Our results are somewhat in accordance with several previously published meta-analysis.² ²⁵ A considerable number of studies have consistently suggested that women were at a higher risk of short-term mortality after ACS. However, whether risk of long-term mortality is also higher in women with ACS remains under debate. Some studies indicated that women with STEMI had a higher 1-year rate of death compared to men²⁶, while the 1-year mortality rate was conversely lower in women than men in some other studies^{23 24}. In our

 study, with respect to short-term mortality, the analyses of studies with high or low quality, and big or small sample size yielded similar results. However, in terms of long-term mortality, caution is needed when interpreting our finding of non-significant increased longterm mortality in adjusted analyses, due to the results of sensitivity analysis which showed a significant association between female and increased long-term mortality after removing one study from adjusted analyses.

It is widely accepted that there are significant differences in outcomes of women and men with acute myocardial infarction. In our study, after adjusted for participants' baseline cardiovascular risk factors and clinical profiles, the strength of association between gender and short-term mortality was substantially attenuated, which suggested that poorer baseline cardiovascular risk profile partially explained the impact of sex differences on mortality. Multiple studies have shown that women with STEMI present at older age and have a higher burden of comorbidities, contributing to the sex differences in mortality after STEMI.²⁷ All studies included in our meta-analysis demonstrate that female patients are older and with more diabetes mellitus as well as hypertension. In addition, some sexspecific studies found that certain risk factors and comorbidities were more potent in women.²⁸ Diabetes mellitus , hypertension and smoking status are more strongly associated with increased risk of cardiac events in women compared with men.^{27 29}

Notably, that these differences mentioned above still could not completely explain the gap in mortality between sexes. It has been proved that women with acute myocardial infarction

BMJ Open

were less likely to be treated with guideline directed medical therapy and less likely to receive primary reperfusion therapy including primary percutaneous coronary intervention or fibrinolysis.³⁰ Regarding medical therapy, numerous studies conducted around the world consistently demonstrate female survivors are receiving less optimal medical therapy after acute myocardial infarction during hospitalization or at discharge.^{31 32} Though there might be no differences in treatment adherence between men and women, some studies report significant sex disparities in initiation of appropriate pharmacotherapy after myocardial infarction.³³ Results from these observational studies have shown women are receiving less optimal medical therapy including aspirin, statins, and angiotensin-converting enzyme inhibitors in all age groups, especially young women, and suggested that clinicians and patients may benefit from better education and awareness of undertreatment of younger women.^{33 34}

Lower rates of revascularization are observed among women with STEMI compared with men in several studies despite proven benefit of this therapy.³⁵ Moreover, the sex differences might be driven by delays in presentation to hospital and women with STEMI were more likely to experience longer delays than men. Although a great improvement in emergency medical services and timely revascularization over the past decades, recent studies show that women with STEMI still present later and have a longer ischemic time than men. Previous studies have shown consistently that women have longer door-to balloon times and longer door-to needle times.^{36 37} In addition, women are also more likely to exhibit longer pre-hospital delays in seeking medical care after the development of

symptoms suggestive of myocardial infarction. Although there have been significant reductions in patient and system delay in the last decade, women continue to have longer presentation and treatment times.³⁸ Sex differences also exist in clinical presentation of STEMI. Although chest pain was the most common ACS symptom in both sexes, women were more likely to present without chest pain than men.^{39 40} Lower rates of typical chest pain reported among women with STEMI may also influence provider decision-making to pursue less aggressive care including invasive revascularization.

Some included studies of our meta-analysis enrolled STEMI patients in general¹⁴⁻¹⁶, while some others enrolled patients undergoing PCI for STEMI^{11 13 18}. The different prognosis of patients receiving reperfusion therapy or no-reperfusion therapy might be a potential source of heterogeneity of our study. Nevertheless, our results are completely consistent with a previous meta-analysis from Pancholy et al., which investigated sex differences in mortality among patients with STEMI treated with primary PCI.² Its results demonstrated that, when adjusted RRs were used, the increased risk for 1-year mortality in women was no longer significant and the risk of in-hospital mortality still significantly elevated. It should be noted that more than 50% of patients were treated with PCI in the most study conducted among the general STEMI patients and included by our analysis, even more than 90% in some included studies.^{12 24} The increasing rate of primary PCI in recent years might be a reason for the consistency of our fundings and previous studies conducted specifically among STEMI patients undergoing PCI

BMJ Open

Complications including bleeding, heart failure and mechanical complications are more likely to develop in women with acute myocardial infarction and increase the risk of mortality.^{14 41 42} Bleeding secondary to antithrombotic therapies and invasive procedures is more frequent in women.⁴³ Three included studies reported incidence of bleeding following STEMI and they all found that women were at higher risk of bleeding.^{10 13 18} One study included in our analysis examined the relationships among sex, acute heart failure, and related outcomes after STEMI.¹⁴ Its results demonstrate that women are at higher risk to develop de novo heart failure after STEMI and women with de novo heart failure have worse survival compared with man. However, we could not compare the incidence of these complications due to the lack of sufficient data. Mechanical complications requiring surgical intervention are also much more common in women after acute myocardial infarction and associated with high mortality rates.⁴⁴

Several limitations of this meta-analysis should be considered. First, the included studies are all observational studies except one post hoc analysis of randomized controlled trial. Hence, there may be residual confounding bias inherent in the observational study design in our meta-analysis. Second, in adjusted analysis, not all included studies adjusted for the same confounders and not all studies reported adjusted RRs. The confounders which were adjusted in the included studies might differ greatly across studies. Third, there was substantial heterogeneity in our meta-analysis, which could partly be attributed to the wide variability in the sample sizes, locations, and treatment regimens across included studies. Additionally, although we calculated adjusted RRs for all-cause mortality, it needed to be

noted that relevant confounders might have differed across studies. Fourth, the analysis of long-term mortality, especially the adjusted analysis, included far fewer studies compared with analysis of short-term mortality. Hence, there might be significant bias in the results about long-term mortality.

In conclusion, our meta-analysis, pooling data from contemporary literature, shows that women with STENI have a higher risk of short-term mortality but not long-term mortality. The effect of sex differences on mortality in patients with STEMI remain significant after adjustment for baseline cardiovascular risk factors and clinical profiles, suggesting that public awareness of increased risk and further improvements in management in women í el en with STEMI are necessary.

Other Information:

Contribution statement

Ziwei Xi: Study concepts, Study design, Literature research, Statistical analysis, Manuscript preparation, Manuscript editing. Tingting Guo and Yong Wang: Data acquisition, Data analysis/interpretation. Jianan Li, Yang Li, Jianfeng Zheng and Runlin Gao: Manuscript revision/review. Hong Qiu: Manuscript final version approval.

Conflict of interest

The authors declare that there is no conflict of interest.

Funding

This research received no specific grant from any funding agency in the public, commercial,

or not-for-profit sectors.

Ethics approval

The institutional central committee at Fuwai Hospital approved that the study protocol and inform consent was not required for a systematic review and meta-analysis.

Data sharing statement

As this is a systematic review and meta-analysis, the data used in the study have already been published by the authors of the included studies. All data relevant to the study are included in the article or uploaded as supplementary information.

Table 1 Characteristics of included studies.

First	Year	Region	Study design	Data source	Multicenter	Time of	Number of	Female	Endpoint	Follow-up
Author						enrollment	STEMI			
							patients			
Venetsano	2017	13	Prospective	Clinical	Yes	Sep, 2011-	1,862	369	Major adverse	30 d
S		countries		registry		Oct, 2013		(20.0)	cardiovascular events	
									and definite stent	
									thrombosis	
Ali	2018	Germany	Prospective	Administrativ	No	2013-2017	312	101	All-cause in-hospital	NA
				e database				(32.4)	mortality	
Langabeer	2018	US	Prospective	Clinical	Yes	Jan, 2010-	9,674	2,569	In-hospital mortality	NA
				registry		Dec, 2015		(26.6)		
Tang	2018	China	Prospective	Administrativ	No	Jan, 2013-	1,238	210 (1.9)	Major adverse cardiac	730 ± 30 d
				e database		Dec, 2013			and cerebrovascular	
									events	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 85

 BMJ Open

Cenko	2019	12	Prospective	Clinical	Yes	Jan, 2010-	10,443	3,112	30-day all-cause	30 d
		Europea		registry		Jul, 2018		(29.8)	mortality	
		n								
		countries								
Нао	2019	China	Prospective	Clinical	Yes	Nov, 2014-	50,203	11,016	In-hospital mortality	NA
				registry		Jun, 2018		(21,9)		
Hannan	2019	US	Retrospective	Administrativ	Yes	Jan, 2013-	23,809	7,791	In hospital/30-day	30 d
				e database		Dec, 2015		(32.7)	mortality	
Maznyczka	2019	UK	Retrospective	Clinical	No	July, 2011-	324	87 (26.9)	All-cause death/ first	5 years
				registry		Nov, 2012			heart failure	
								57	hospitalization	
Stehli	2019	Australia	Prospective	Clinical	Yes	2013-2016	6,431	1,317	In hospital/30-day major	30 d
				registry				(20.5)	adverse events, and	
									major bleeding	
Burgess	2020	Australia	Prospective	Administrativ	No	Dec, 2010-	589	123 (21)	Cardiac death and	2 years

First	Year	Age, mea	an (SD), Dia	bete	Hypertensio	Hvpe	rlipidemi	Smokin	Prior	Prior
able 2 Base	line cha	racteristics o	of participants in	included studie	S.					
				registry				(23.7)	mortality	
Tizón	2020	Spain	Prospective	Clinical	Yes	2010-2016	14,690	3,486	30-day/1-year all-cause	1 year
				e database		Dec, 2017			mortality	
Таі	2020	China	Retrospective	Administrativ	No	Jan, 2013-	182	56 (30.8)	In hospital/1-year	1 year
				registry		May, 2018				
Siabani	2020	Iran	Prospective	Clinical	No	Jun, 2016-	1,484	311(21)	In-hospital mortality	NA
		nds		e database						
Kerkmanx	2020	Netherla	Retrospective	Administrativ	Yes	2015-2016	787	229 (29)	All-cause mortality	1 year
		а		e database		Aug, 2019		(14.2)		year
Dharma	2020	Indonesi	Retrospective	Administrativ	No	Feb, 2011-	6,557	929	All-cause mortality	30 d and 1
				e database		Apr, 2014			myocardial infarction	

Page 25 of 85

 BMJ Open

Author		years		s, n (%)		n, n (%)		a, n (%)		g, n (%)		MI, n		PCI, n	
												(%)		(%)	
		Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Femal	Male	Fema	М
												е		le	
Venetsan	2017	69 (13.0)	59 (11.0)	48	205	190 (51.5)	605	117 (31.7)	536	NA	NA	24	135	16	1:
OS				(13.0)	(13.7		(40.5		(35.9			(6.5)	(9.0)	(4.3)	(8
)	00))						
Ali	2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
Langabee	2018	62.5	60.2	759	1,975	NA	NA	1,265 (49.3)	3,693	951	2,763	435	1,304	NA	N
r		(13.6)	(12.5)	(29.6)	(27.8				(52.0	(37.0)	(38.9	(16.9)	(18.4		
))))		
Tang	2018	64.5 (9.3)	54.4	66	311	141 (67.1)	659	125 (59.5)	749	33	957	10	83	60	2
			(10.7)	(31.4)	(25.1		(53.3		(60.3	(15.7)	(77.3	(4.8)	(6.7)	(28.6)	(2
)))))
Cenko	2019	66.1	59.7	925	1,531	2,322 (74.6)	4,502	1,353 (43.3)	3,100	1,010	3,714	301	842	306	7

		(11.7)	(11.7)	(29.7)	(20.9		(61.4		(42.3	(32.5)	(50.7	(9.7)	(11.5	(9.8)	(10.4
))))))
Hao	2019	69.0	61.1	10,141	24,08	15,607	38,42	17,996 (85.4)	50,94	1,719	32,37	NA	NA	NA	NA
		(10.6)	(12.4)	(48.1)	2	(74.1)	6		4	(8.2)	7				
					(39.4		(62.9		(83.3		(53.0				
))))				
Hannan	2019	70.72	62.11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	868	2206
		(14.73)	(12.82)			Cr.								(11.1)	(13.8)
Maznyczk	2019	61.2	58.6(11.2	8 (9.2)	26	32 (36.8)	73	28 (32.2)	66	57	139	5 (5.7)	20	2	16
а		(12.2))		(11.0		(30.8		(27.8	(65.5)	(58.6		(8.4)	(2.3)	(6.8)
))))				
Stehli	2019	66.5	60.8	245	770	NA	NA	NA	NA	NA	NA	NA	NA	104	577
		(13.2)	(12.2)	(18.6)	(15.1									(7.9)	(11.3
))

Page	27	of	85
------	----	----	----

 BMJ Open

Burgess	2020	62.7	58.2	39	88	84 (68.3)	243	83 (67.5)	253	64	252	9 (7.3)	41	NA	NA
		(52.7-	(50.6-	(31.7)	(18.9		(52.1		(52.3	(52.0)	(54.1		(8.8)		
		73.2)	65.7)))))				
Dharma	2020	60 (10)	55 (10)	403	1548	647 (69.6)	2,889	299 (32.2)	1,779	109	4,049	NA	NA	NA	NA
				(43.4)	(27.5		(51.3		(31.6	(11.7)	(71.9				
				O))))				
(erkmanx	2020	68 (14)	61 (12)	39	66	101 (45.7)	178	56 (25.9)	110	88	258	30	79	33	77
				(17.6)	(12.5		(33.6		(21.0	(41.1)	(49.3	(13.6)	(13.7	(14.4)	(14.
))))))
Siabani	2020	65.8	59.0	114	187	195 (63.7)	410	110 (36.7)	208	41	655	NA	NA	NA	NA
		(11.3)	(12.4)	(37.7)	(16.2		(35.4		(18.5	(13.2)	(55.9				
))))				
Гаі	2020	78 (76–	78 (76–	96	116	217 (79.5)	319	NA	NA	14 (5.4)	239	NA	NA	36	78
		81)	80)	(35.2)	(26.5		(72.8				(56.5			(13.5)	(18.
))))

Tizón	2020	69.9	60.9	844	1,927	1,192 (34.2)	2,722	878 (25.2)	2,375	474	2,711	NA	NA	NA	NA
		(13.7)	(12.6)	(24.2)	(17.2		(24.3		(21.2	(13.6)	(24.2				
))))				

Reference:

1

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
11 12 13 14 15 16 17 18 19 20	
20	
21	
22 23	
23	
- 24	
25	
25	
26	
27	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

 Virani SS, Alonso A, Benjamin EJ, et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. *Circulation* 2020;141(9):e139-e596. doi: 10.1161/cir.000000000000757 [published Online First: 2020/01/30]
 Pancholy SB, Shantha GP, Patel T, et al. Sex differences in short-term and long-term allcause mortality among patients with ST-segment elevation myocardial infarction treated by primary percutaneous intervention: a meta-analysis. *JAMA internal medicine* 2014;174(11):1822-30. doi: 10.1001/jamainternmed.2014.4762 [published Online First: 2014/09/30]

 Wenger NK, Arnold A, Bairey Merz CN, et al. Hypertension Across a Woman's Life Cycle. *Journal of the American College of Cardiology* 2018;71(16):1797-813. doi: 10.1016/j.jacc.2018.02.033 [published Online First: 2018/04/21]

- 4. Peters SAE, Woodward M. Sex Differences in the Burden and Complications of Diabetes. *Current diabetes reports* 2018;18(6):33. doi: 10.1007/s11892-018-1005-5 [published Online First: 2018/04/20]
- Huded CP, Johnson M, Kravitz K, et al. 4-Step Protocol for Disparities in STEMI Care and Outcomes in Women. *Journal of the American College of Cardiology* 2018;71(19):2122-32. doi: 10.1016/j.jacc.2018.02.039 [published Online First: 2018/03/15]
- Mehta LS, Beckie TM, DeVon HA, et al. Acute Myocardial Infarction in Women: A Scientific Statement From the American Heart Association. *Circulation* 2016;133(9):916-47. doi: 10.1161/cir.000000000000351 [published Online First: 2016/01/27]

- Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. *Lancet (London, England)* 2017;389(10065):197-210. doi: 10.1016/s0140-6736(16)30677-8 [published Online
 First: 2016/08/10]
- Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ (Clinical research ed)* 2009;339:b2535. doi: 10.1136/bmj.b2535 [published Online First: 2009/07/23]
- 9. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *European journal of epidemiology* 2010;25(9):603-5. doi: 10.1007/s10654-010-9491-z [published Online First: 2010/07/24]
- 10. Venetsanos D, Sederholm Lawesson S, Alfredsson J, et al. Association between gender and short-term outcome in patients with ST elevation myocardial infraction participating in the international, prospective, randomised Administration of Ticagrelor in the catheterisation Laboratory or in the Ambulance for New ST elevation myocardial Infarction to open the Coronary artery (ATLANTIC) trial: a prespecified analysis. *BMJ open* 2017;7(9):e015241. doi: 10.1136/bmjopen-2016-015241 [published Online First: 2017/09/25]
- 11. Ali M, Lange SA, Wittlinger T, et al. In-hospital mortality after acute STEMI in patients undergoing primary PCI. *Herz* 2018;43(8):741-45. doi: 10.1007/s00059-017-4621-y [published Online First: 2017/10/11]
- 12. Langabeer JR, 2nd, Henry TD, Fowler R, et al. Sex-Based Differences in Discharge Disposition and Outcomes for ST-Segment Elevation Myocardial Infarction Patients

BMJ Open

Within a Regional Network. Journal of women's health (2002) 2018;27(8):1001-06. doi:
10.1089/jwh.2017.6553 [published Online First: 2018/01/11]
13. Tang XF, Song Y, Xu JJ, et al. Effect of sex difference in clinical presentation (stable
coronary artery disease vs unstable angina pectoris or non-ST-elevation myocardial
infarction vs ST-elevation myocardial infarction) on 2-year outcomes in patients
undergoing percutaneous coronary intervention. Journal of interventional cardiology
2018;31(1):5-14. doi: 10.1111/joic.12451 [published Online First: 2017/10/13]
14. Cenko E, van der Schaar M, Yoon J, et al. Sex-Related Differences in Heart Failure After
ST-Segment Elevation Myocardial Infarction. Journal of the American College of
Cardiology 2019;74(19):2379-89. doi: 10.1016/j.jacc.2019.08.1047 [published Online
First: 2019/11/09]

- Hao Y, Liu J, Liu J, et al. Sex Differences in In-Hospital Management and Outcomes of Patients With Acute Coronary Syndrome. *Circulation* 2019;139(15):1776-85. doi: 10.1161/circulationaha.118.037655 [published Online First: 2019/01/23]
- 16. Hannan EL, Wu Y, Tamis-Holland J, et al. Sex differences in the treatment and outcomes of patients hospitalized with ST-elevation myocardial infarction. *Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions* 2020;95(2):196-204. doi: 10.1002/ccd.28286 [published Online First: 2019/04/24]
- Maznyczka AM, Carrick D, Carberry J, et al. Sex-based associations with microvascular injury and outcomes after ST-segment elevation myocardial infarction. *Open heart* 2019;6(1):e000979. doi: 10.1136/openhrt-2018-000979 [published Online First:

2019/06/07]

- Stehli J, Martin C, Brennan A, et al. Sex Differences Persist in Time to Presentation, Revascularization, and Mortality in Myocardial Infarction Treated With Percutaneous Coronary Intervention. *Journal of the American Heart Association* 2019;8(10):e012161. doi: 10.1161/jaha.119.012161 [published Online First: 2019/05/17]
- Burgess SN, Juergens CP, Nguyen TL, et al. Comparison of Late Cardiac Death and Myocardial Infarction Rates in Women Vs Men With ST-Elevation Myocardial Infarction. *The American journal of cardiology* 2020;128:120-26. doi: 10.1016/j.amjcard.2020.04.044 [published Online First: 2020/07/12]
- 20. Dharma S, Dakota I, Andriantoro H, et al. Association of gender with clinical outcomes of patients with acute ST-segment elevation myocardial infarction presenting with acute heart failure. *Coronary artery disease* 2020 doi: 10.1097/mca.00000000000892 [published Online First: 2020/04/26]
- 21. Kerkman T, Ten Brinke LBG, Huybrechts B, et al. Evaluation of sex differences in patients with ST-elevated myocardial infarction: an observational cohort study in Amsterdam and surrounding region. *Netherlands heart journal : monthly journal of the Netherlands Society of Cardiology and the Netherlands Heart Foundation* 2020;28(11):595-603. doi:

10.1007/s12471-020-01435-9 [published Online First: 2020/06/13]

22. Siabani S, Davidson PM, Babakhani M, et al. Gender-based difference in early mortality among patients with ST-segment elevation myocardial infarction: insights from Kermanshah STEMI Registry. *Journal of cardiovascular and thoracic research* 2020;12(1):63-68. doi: 10.34172/jcvtr.2020.10 [published Online First: 2020/03/27]

2	
3	
4	23. Tai S, Li X, Yang H, et al. Sex Differences in the Outcomes of Elderly Patients with Acute
5	
6	
7	Coronary Syndrome. Cardiology research and practice 2020;2020:5091490. doi:
8	
9	10.1155/2020/5091490 [published Online First: 2020/05/27]
10	
11	
12	24. Tizón-Marcos H, Vaquerizo B, Marrugat J, et al. Differences in 30-day complications and
13	
14	1-year mortality by sex in patients with a first STEMI managed by the Codi IAM network
15	
16	
17	between 2010 and 2016. Revista espanola de cardiologia (English ed) 2020 doi:
18	
19	10,1016/i roo 2020,06,002 [nubliched Online First: 2020/07/15]
20	10.1016/j.rec.2020.06.002 [published Online First: 2020/07/15]
21	
22	25. Bavishi C, Bangalore S, Patel D, et al. Short and long-term mortality in women and men
23	
24	
25	undergoing primary angioplasty: A comprehensive meta-analysis. International journal

of cardiology 2015;198:123-30. doi: 10.1016/j.ijcard.2015.07.001 [published Online First: 2015/07/15]

- 26. Kosmidou I, Redfors B, Selker HP, et al. Infarct size, left ventricular function, and prognosis in women compared to men after primary percutaneous coronary intervention in STsegment elevation myocardial infarction: results from an individual patient-level pooled analysis of 10 randomized trials. *European heart journal* 2017;38(21):1656-63. doi: 10.1093/eurheartj/ehx159 [published Online First: 2017/04/14]
- Millett ERC, Peters SAE, Woodward M. Sex differences in risk factors for myocardial infarction: cohort study of UK Biobank participants. *BMJ (Clinical research ed)* 2018;363:k4247. doi: 10.1136/bmj.k4247 [published Online First: 2018/11/09]
- Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. *Lancet (London, England)* 2004;364(9438):937-52. doi: 10.1016/s0140-

6736(04)17018-9 [published Online First: 2004/09/15]

 Harreiter J, Fadl H, Kautzky-Willer A, et al. Do Women with Diabetes Need More Intensive Action for Cardiovascular Reduction than Men with Diabetes? *Current diabetes reports* 2020;20(11):61. doi: 10.1007/s11892-020-01348-2 [published Online First: 2020/10/10]
 Arora S, Stouffer GA, Kucharska-Newton AM, et al. Twenty Year Trends and Sex Differences in Young Adults Hospitalized With Acute Myocardial Infarction. *Circulation* 2019;139(8):1047-56. doi: 10.1161/circulationaha.118.037137 [published Online First:

2018/12/28]

- 31. Zhao M, Woodward M, Vaartjes I, et al. Sex Differences in Cardiovascular Medication Prescription in Primary Care: A Systematic Review and Meta-Analysis. *Journal of the American Heart Association* 2020;9(11):e014742. doi: 10.1161/jaha.119.014742 [published Online First: 2020/05/21]
- 32. Eindhoven DC, Hilt AD, Zwaan TC, et al. Age and gender differences in medical adherence after myocardial infarction: Women do not receive optimal treatment - The Netherlands claims database. *European journal of preventive cardiology* 2018;25(2):181-89. doi: 10.1177/2047487317744363 [published Online First: 2017/11/23]
- 33. Smolina K, Ball L, Humphries KH, et al. Sex Disparities in Post-Acute Myocardial Infarction Pharmacologic Treatment Initiation and Adherence: Problem for Young Women. *Circulation Cardiovascular quality and outcomes* 2015;8(6):586-92. doi: 10.1161/circoutcomes.115.001987 [published Online First: 2015/10/16]
- 34. Nguyen HL, Goldberg RJ, Gore JM, et al. Age and sex differences, and changing trends, in the use of evidence-based therapies in acute coronary syndromes: perspectives

59 60

1	
2	
3	
4	from a multinational registry. Coronary artery disease 2010;21(6):336-44. doi:
5	
6	10 1007/MCA 0601202202200070 [nubliched Opling First 2010/07/20]
7	10.1097/MCA.0b013e32833ce07c [published Online First: 2010/07/28]
8	
9	35. Pelletier R, Humphries KH, Shimony A, et al. Sex-related differences in access to care
10	
11	
12	among patients with premature acute coronary syndrome. CMAJ: Canadian Medical
13	
14	
15	Association journal = journal de l'Association medicale canadienne 2014;186(7):497-
16	
17	504. doi: 10.1503/cmaj.131450 [published Online First: 2014/03/19]
18	
19	
20	36. Murphy AC, Yudi MB, Farouque O, et al. Impact of Gender and Door-to-Balloon Times on
20	
22	
23	Long-Term Mortality in Patients Presenting With ST-Elevation Myocardial Infarction.
23	
	The American journal of cardiology 2019;124(6):833-41. doi:
25	The American journal of caldiology 2019, 124(0).000-41.
26	
27	10.1016/j.amjcard.2019.06.008 [published Online First: 2019/07/23]
28	
29	
30	37. D'Onofrio G, Safdar B, Lichtman JH, et al. Sex differences in reperfusion in young patients
31	
32	with ST-segment-elevation myocardial infarction: results from the VIRGO study.
33	
34	
35	<i>Circulation</i> 2015;131(15):1324-32. doi: 10.1161/circulationaha.114.012293 [published]
36	
37	
38	Online First: 2015/03/21]
39	
40	38. Bugiardini R, Ricci B, Cenko E, et al. Delayed Care and Mortality Among Women and Men
41	bugiardini N, Nicci B, Ochilo E, et al. Delayed bare and wontainty Among Women and wen
42	
43	With Myocardial Infarction. <i>Journal of the American Heart Association</i> 2017;6(8) doi:
44	
45	
46	10.1161/jaha.117.005968 [published Online First: 2017/09/02]
47	
48	39. Khan NA, Daskalopoulou SS, Karp I, et al. Sex differences in acute coronary syndrome
49	
50	
51	symptom presentation in young patients. JAMA internal medicine 2013;173(20):1863-
52	
53	
54	71. doi: 10.1001/jamainternmed.2013.10149 [published Online First: 2013/09/18]
55	
56	40. Canto JG. Rogers WJ. Goldberg RJ. et al. Association of age and sex with myocardial

40. Canto JG, Rogers WJ, Goldberg RJ, et al. Association of age and sex with myocardial infarction symptom presentation and in-hospital mortality. Jama 2012;307(8):813-22.

34

doi: 10.1001/jama.2012.199 [published Online First: 2012/02/24]

- 41. Moscucci M, Fox KA, Cannon CP, et al. Predictors of major bleeding in acute coronary syndromes: the Global Registry of Acute Coronary Events (GRACE). *European heart journal* 2003;24(20):1815-23. doi: 10.1016/s0195-668x(03)00485-8 [published Online First: 2003/10/18]
- 42. Kolte D, Khera S, Aronow WS, et al. Trends in incidence, management, and outcomes of cardiogenic shock complicating ST-elevation myocardial infarction in the United States. *Journal of the American Heart Association* 2014;3(1):e000590. doi: 10.1161/jaha.113.000590 [published Online First: 2014/01/15]
- 43. Nanna MG, Hajduk AM, Krumholz HM, et al. Sex-Based Differences in Presentation, Treatment, and Complications Among Older Adults Hospitalized for Acute Myocardial Infarction: The SILVER-AMI Study. *Circulation Cardiovascular quality and outcomes* 2019;12(10):e005691. doi: 10.1161/circoutcomes.119.005691 [published Online First: 2019/10/15]
- 44. Elbadawi A, Elgendy IY, Mahmoud K, et al. Temporal Trends and Outcomes of Mechanical Complications in Patients With Acute Myocardial Infarction. *JACC Cardiovascular interventions* 2019;12(18):1825-36. doi: 10.1016/j.jcin.2019.04.039 [published Online First: 2019/09/21]

 Figure 1 Flowchart of selection of studies included in meta-analysis.

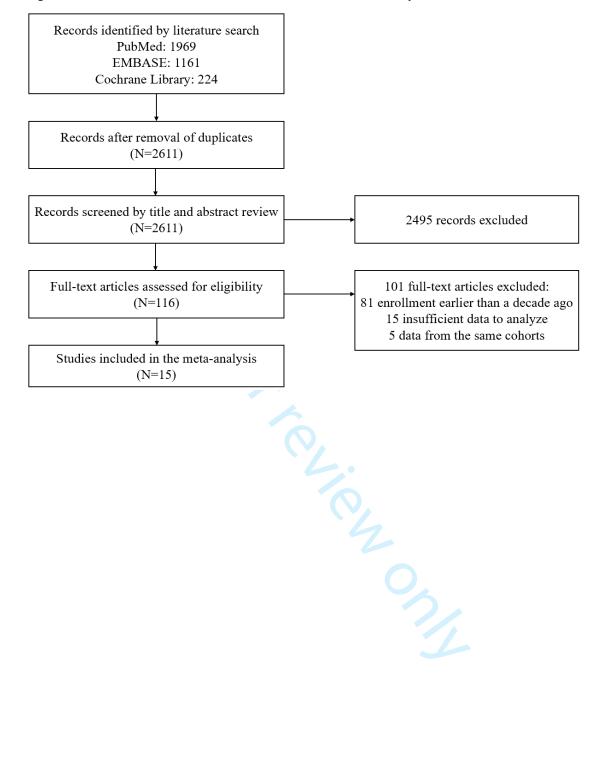
Figure 2 Forest plots of relative risks of short-term all-cause mortality among women and men with ST-segment elevation myocardial infarction.

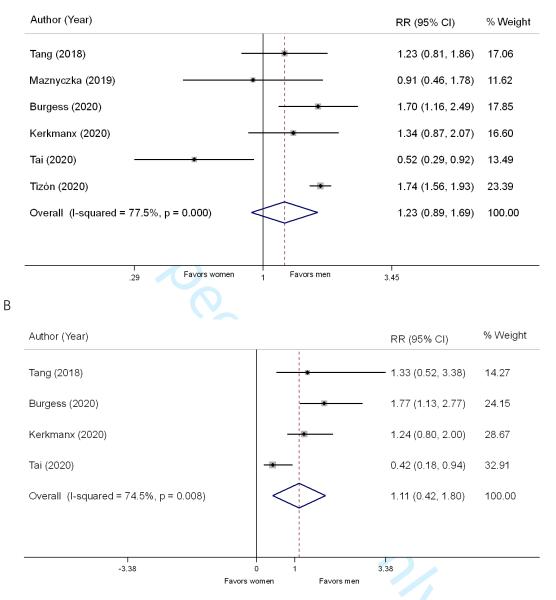
Forest plots showing unadjusted (A) and adjusted (B) short-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

Figure 3 Forest plots of relative risks of long-term all-cause mortality among women and men with ST-segment elevation myocardial infarction.

Forest plots showing unadjusted (A) and adjusted (B) long-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

Figure 1 Flowchart of selection of studies included in meta-analysis.




Figure 2 Forest plots of relative risks of short-term all-cause mortality among women and men with ST-segment elevation myocardial infarction.

Forest plots showing unadjusted (A) and adjusted (B) short-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

Figure 3 Forest plots of relative risks of long-term all-cause mortality among women and men with ST-segment elevation myocardial infarction.

Forest plots showing unadjusted (A) and adjusted (B) long-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

eTable 1 Variables adjusted in the adjusted analyses from the included studies.

First Author	Year	Adjusted Variables
Venetsanos	2017	age, weight, prior MI, prior PCI, patient's history of diabetes, hypertension, non-hemorrhagic stroke, gastrointestinal bleeding, time from symptom onset to pre-PCI ECG, admission Killip class, baseline hemoglobin, eGFR, access site, use of Glycoprotein IIIb/IIa inhibitor, bivalirudin and unfractionated heparin, location of MI and revascularization
Langabeer	2018	age, smoking, diabetes, prior CVD, prior stroke, heart failure, shock, length of stay, teaching, insurance, total ischemic time, door to balloon
Tang	2018	age, BMI, LVEF, serum creatinine, use of proton pump inhibitors, use of dual-antiplatelet therapy, previous PCI, diabetes mellitus, hypertension, previous stroke, current smoker, thrombocytopenia, use of femoral approach, use of intra-aortic balloon pump, and multivessel disease
Cenko	2019	age, family history of CAD, diabetes, hypertension, hypercholesterolemia, current smoking, former smoking, prior angina pectoris, prior myocardial infarction, prior PCI, prior CABG, peripheral artery disease, prior stroke, ST-segment elevation in anterior leads (at ECG), systolic blood pressure at baseline, heart rate at baseline, serum creatinine at baseline, Killip Class ≥2
Нао	2019	Age, medical insurance status, acute heart failure, cardiogenic shock, cardiac arrest at admission, heart rate and systolic blood pressure, diabetes mellitus, smoking, history of CHD, heart failure, renal failure, and cerebrovascular disease, prehospital statin use, renal insufficiency, and transfer status.
Hannan	2019	age, STEMI location, heart rate, mean arterial pressure, history

	1	
		of hospitalization in last year, history of PCI, history of CABG
		surgery, septicemia/sepsis/systemic inflammatory response
		/shock, metastatic cancer/acute leukemia, diabetes with acute
		complications, end stage liver disease, inflammatory bowel
		disease, coagulation defects and other specified
		hematological disorders, dementia, polyneuropathy, muscular
		dystrophy, seizure disorders and convulsions, coma/brain
		compression/anoxic damage, cardiorespiratory failure and
	Ó	shock, congestive heart failure, specified heart arrhythmias,
		ischemic or unspecified stroke, hemiplegia/hemiparesis,
		vascular disease with complications, vascular disease without
		complications, aspiration and specified bacterial pneumonias,
		acute renal failure, chronic kidney disease, Stage 5, unspecified
		renal failure, nephritis, pressure ulcer of skin with partial
		thickness skin loss*, pressure pre-ulcer skin changes, chronic
		ulcer of skin except pressure ulcer, lower limb/amputation
		complications
Maznyczka	2019	NA
Stehli	2019	age, diabetes mellitus, eGFR, previous PCI and/or coronary
		artery bypass grafting, history of peripheral vascular disease
		and CVD, LVEF, out-of-hospital and in-hospital cardiac arrest,
		cardiogenic shock, and occurrence time of symptom onset
Burgess	2020	NA
Dharma	2020	NA
Kerkmanx	2020	NA
Siabani	2020	BMI≥25, hypertension, diabetes, current smoking,
		hypercholesterolemia, congestive heart failure, Killip class (at
		first presentation) \geq II, symptom-to-balloon time> 360 min
		and door-to-balloon time > 90 min
	1	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

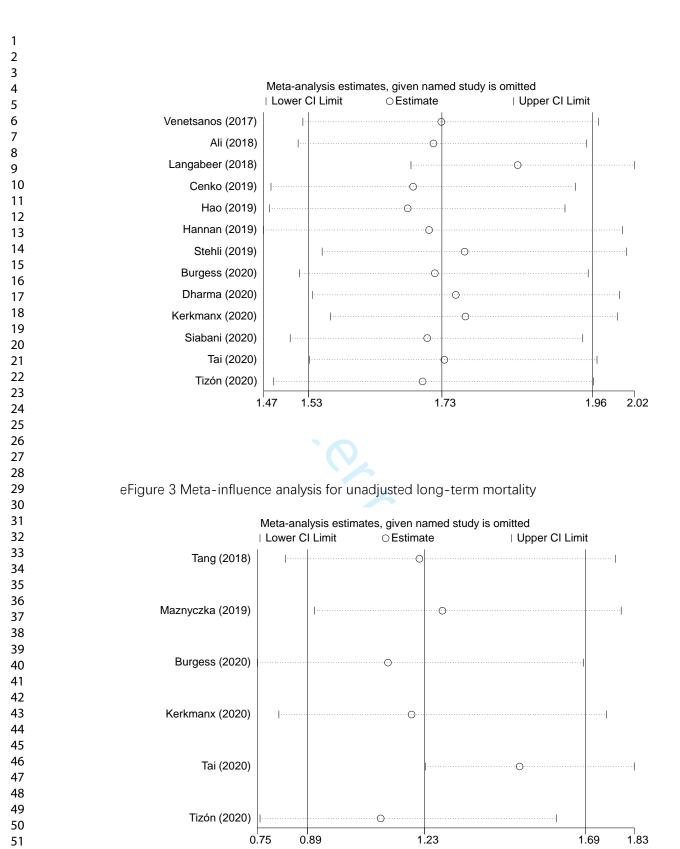
Таі	2020	NA
Tizón	2020	age, diabetes mellitus, recruitment year, time from symptom
		onset to culprit coronary artery opening, and Killip class

MI: myocardial infarction, PCI: percutaneous coronary intervention, ECG: electrocardiograph, eGFR: estimated glomerular filtration rate, CVD: cardiovascular disease, BMI: body mass index, LVEF: left ventricular ejection fraction, CABG: coronary artery bypass graft, CAD: coronary artery disease,

2	
3	
4	
5 6 7	
6	
7	
8	
9 10	
11	
12	
13	
14	
14 15 16 17 18	
16	
17	
18	
19	
20	
21	
22	
23	
24 25	
26 27	
28	
29	
30	
31	
32	
33	
34	
35	
36 37	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	

eTable 2 Assessment of study quality using Newcastle-Ottawa scale.

First	Year	Selection		Comparabilit Outcome				Total		
Author		Representativenes	Selection	Ascertainmen	Outcome of	У	Assessmen	Follow-up	Adequac	point
		s of the exposed	of the no	t of exposure	interest not		t of	long enough	y of	S
		cohor	exposed	to implants	present at		outcome	for	follow-	
			cohort		start of study			outcomes to	up	
								occur		
Venetsano	2017	*	*	*	*	**	*	λ	*	8
S					0.					
Ali	2018	λ	١	*	*	١	*	١	*	4
Langabeer	2018	*	*	*	*	*	*	λ	*	7
Tang	2018	λ	٨	*	*	**	*	*	*	7
Cenko	2019	*	*	*	*	**	*	١	*	8
Нао	2019	*	*	*	*	**	*	١.	*	8
Hannan	2019	*	*	*	*	**	*	١	*	8
Maznyczka	2019	λ	١	*	*	λ	*	*	*	5
Stehli	2019	*	*	*	*	**	*	λ	*	8


BMJ Open

Burgess	2020	۸	\	*	*	**	*	*	*	7
Dharma	2020	λ	λ	*	*	*	*	*	*	6
Kerkmanx	2020	*	*	*	*	λ	*	*	*	7
Siabani	2020	١	١	*	*	*	*	١	*	5
Таі	2020	١	۸.	*	*	**	*	*	*	7
Tizón	2020	*	*	*	*	**	*	*	*	9
						**				

eFigure 1


Study		%
ID	RR (95% CI)	Weight
1		
Venetsanos (2017)	1.74 (1.10, 2.74)	4.76
Cenko (2019)	2.08 (1.82, 2.39)	11.84
Нао (2019)	2.15 (1.90, 2.43)	12.22
Hannan (2019) 🔶 🔶	1.83 (1.71, 1.97)	13.28
Stehli (2019)	1.46 (1.20, 1.78)	10.15
Tizón (2020)	1.94 (1.71, 2.21)	12.06
Subtotal (I-squared = 63.4%, p = 0.018)	1.90 (1.73, 2.09)	64.30
0		
Ali (2018)	2.23 (1.15, 4.33)	2.73
Langabeer (2018)	1.18 (1.00, 1.39)	11.14
Burgess (2020)	2.19 (1.07, 4.49)	2.42
Dharma (2020)	1.54 (1.24, 1.93)	9.57
Kerkmanx (2020)	1.00 (0.57, 1.75)	3.54
Siabani (2020)	- 2.12 (1.44, 3.13)	5.78
Tai (2020)	1.13 (0.21, 5.96)	0.52
Subtotal (I-squared = 58.1%, p = 0.026)	1.52 (1.20, 1.93)	35.70
Overall (I-squared = 77.0%, p = 0.000)	1.73 (1.53, 1.96)	100.00
.168 Favors women 1 Favors men	I 5.96	

eFigure 2 Meta-influence analysis for unadjusted short-term mortality

eFigure 4 Funnel plots for publication bias for unadjusted short-term (A) and long-term (B) mortality

А

2	
3	
4	Contemporary sex differences in mortality among patients with ST-segment elevation
5	
6	myocardial infarction: a systematic review and meta-analysis
7	myooardia marcioni a cyclomalio romow and mola anaryolo
8	
9	Short title : Sex differences in STEMI
10	
11	Authors
12	Authors:
13	
14	Ziwei Xi ¹ , Hong Qiu ¹ , Tingting Guo ² , Yong Wang ¹ , Jianan Li ^{3,1} , Yang Li ¹ , Jianfeng Zheng ¹ ,
15	
16	
17	Runlin Gao ¹
18	
19	1. Department of Cardiology, Coronary artery disease center, Fuwai Hospital, National
20	The Department of Ourdiology, Coronary anory alocade center, Fuwar hoopital, Hallonar
21	
22	Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking
23	
24	Union Madie al Callana, Dalling, China
25	Union Medical College, Beijing, China
26	
27	2. Thrombosis Center, National Center for Cardiovascular Diseases, State Key
28	
29	
30	Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical
31	
32	Sciences and Peking Union Medical College, Beijing, China
33	Ociences and reking Onion Medical Obliege, Deijing, Onina
34	
35	3. Department of Cardiology and Macrovascular Disease, Beijing Tiantan Hospital,
36	
37	Capital Madical University, Daillag, China
38	Capital Medical University, Beijing, China 🥢 💋
39	
40	
41	Corresponding author:
42	
43	Corresponding author:
44	
45	Prof. Hong Qiu, M.D.
46	
47	
48	E-mail address: qiuhong6780@sina.com
49	
50	Development and efficient in the second of Operation of Operations
51	Department and affiliation: Department of Cardiology, Coronary artery disease center,
52	
53	Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
54	
55	
56	Medical Sciences and Peking Union Medical College, Beijing, China
57	
58	Telephone: 0016 13261170000
59	Telephone: 0016-13261179000
60	

Address: No.167 North Lishi Road, Xicheng District, Beijing, China

for occurrence with any only

 Contemporary sex differences in mortality among patients with ST-segment elevation

myocardial infarction: a systematic review and meta-analysis

Objectives: To assess the effect of sex differences on short- and long-term mortality among patients with ST-segment elevation myocardial infarction (STEMI).

Design: Systematic review and meta-analysis of contemporary available evidence.

Setting: PubMed, Embase and Cochrane Library were searched for relevant studies reporting sex specific outcomes among patients with STEMI published between January 1, 2010 to August 1, 2020. Risk ratio (RR) 95% 95% confidence intervals (CIs) were measured using DerSimonian and Laird random-effects model. Sensitivity analyses were performed and publication bias was also checked. All statistical analyses were performed using STATA version 15.0.

Participants: Studies providing data about short- or long-term mortality stratified by sex in patients with STEMI were included. Only study conducted in last ten years were included.

Primary and secondary outcome measures: The primary outcome was all-cause death at short-(in-hospital or 30 days) and long-term (at least 12 months) follow-up.

Results

A total of fifteen studies involving 128,585 patients (31,706 [24.7%] female and 96,879 [75.3%] male) were included. In the unadjusted analyses, female were at a higher risk of short-term mortality (RR, 1.73; 95%Cl, 1.53-1.96, P<0.001, I²=77%) but not long-term mortality (RR, 1.23; 95%Cl, 0.89-1.69, P=0.206, I²=77.5%). When adjusted effect estimates from individual studies were used in meta-analysis, the association between female and higher risk of short-term mortality remained significant (RR, 1.24; 95%Cl, 1.11-1.38, P<0.001, I²=39.6%). And adjusted long-term mortality was also similar between female and male (RR, 1.11; 95%Cl, 0.42-1.80, P=0.670, I²=74.5%).

Conclusions

An increased short- but not long-term mortality was found in female with STEMI. After adjustment for baseline cardiovascular risk factors and clinical profiles, short-term mortality remains higher in female with STEMI compared to male, indicating the need for further improvements in management in female patients.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

Strengths and limitations of this study

- We assessed the contemporary effect of sex differences on mortality among patients with STEMI by meta-analysis of studies from the last decade.
- A greater number of potentially eligible articles were screened and the large sample size ensures adequate statistical power to detect even a small effect of interest.
- Sensitivity analyses by excluding one study at a time and restricting to studies with high quality or with large sample size got consistent results.
- Substantial and nonnegligible heterogeneity still exist in our meta-analysis and might result in potential bias.
- Residual confounding bias could not be totally excluded due to the observational study design of most included studies.

BMJ Open

Contemporary sex differences in short- and long-term mortality among patients with STsegment elevation myocardial infarction: a systematic review and meta-analysis

Introduction

Acute myocardial infarction remains one of leading causes of mortality in both men and women worldwide despite improvement of acute cardiac care.¹ Numerous studies have reported that women have a higher risk of in-hospital and long-term adverse outcomes following ST-segment elevation myocardial infarction (STEMI) compared with men.² Confounders including advanced age and more frequent comorbidities, such as hypertension and diabetes mellitus^{3 4}, might contribute to excess mortality in women. Moreover, previous studies show lower rates of guideline directed medical therapy and revascularization are also associated with poorer prognosis for women with STEMI.⁵

Sex discrepancies in management and outcomes after STEMI have been increasingly reported in the literature and raised public awareness.⁶ Major progress in therapy for myocardial infarction and primary and secondary preventive interventions has been made to reduce cardiovascular mortality for women.¹⁷ And there have been marked reductions in cardiovascular disease mortality in women with acute myocardial infarction in the past two decades.¹ Conflicting results are noted in recent studies on sex differences following STEMI. It is unclear whether the sex differences still exist, in view of substantial improvements in prognosis of cardiovascular disease over the past decade.

In order to assess the contemporary effect of sex differences on short- and long-term

 mortality among patients with STEMI, we performed a systematic review and metaanalysis of all available evidence from last decade reporting sex-specific outcomes after STEMI.

Methods

The present systematic review and meta-analysis was performed following the principle of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.⁸

Literature search

We conducted a comprehensive search of the PubMed, EMBASE, and Cochrane Library from January 1, 2010 to August 1, 2020 to identify studies from the last decade that described sex differences in in short- or long-term mortality among patients with STEMI. Both observational studies and randomized clinical trials were eligible. We queried MeSH and the abstract text for the following three search terms: gender part (including "gender", "female", "male", "gender differences", "sex differences" or "sex characteristics"); outcome part (including "death", "mortality", "hospital mortality", "cardiac death", "sudden cardiac death", "all-cause mortality", "long term mortality", "one year mortality", "cardiovascular mortality" or "short term mortality"); myocardial infarction part (including "myocardial infarction", "acute myocardial infarction", "myocardial necrosis", "ST segment elevation myocardial infarction", "primary PCI", "primary percutaneous coronary intervention" or "primary angioplasty") to identify relevant studies. There was no language restriction or age limit.

Study selection

 According to the aim of our analyses, studies were included in this systematic review if data about short- (in-hospital or 30 days) or long-term (at least 12 months) mortality stratified by sex in patients with STEMI were reported. Two reviewers identified studies eligible for further review by performing an initial screen of titles or abstracts of the search results. Subsequently, a second screen of full texts eligibility was performed by another two reviewers. Studies had to fulfil the following criteria to be included in the present analyses: i) studies reporting data on all-cause mortality specific to STEMI population; and ii) studies providing enough details to obtain numbers of events or incidence rates according to sex; and iii) enrollment starting earlier than a decade ago. Editorials, letters, conference proceedings and abstracts were considered to be eligible only if sufficient information was available in abstracts or associated tables or figures. We excluded studies if they were review articles or case reports, or if they involved pregnant participants, critically ill patients, or provided insufficient data to allow for risk estimates to be calculated. Any disagreement was reviewed by a third reviewer and resolved by consensus.

Data extraction

Detailed data from selected studies were extracted independently by two reviewers using a standardized form independently. Data about study and participants characteristics,

BMJ Open

including year of study, sample size, time of enrollment, geographical location, endpoints of study, and follow-up duration, were collected. Any discrepancies were reviewed by a third reviewer and resolved by consensus. The quality of included studies was evaluated by Newcastle-Ottawa scale using prespecified items comprised of patients' selection (representativeness and selection of patients, ascertainment of exposure), comparability of cohorts based on design or analysis, and outcome (assessment of outcomes, adequacy of follow-up).⁹ A quality score (0–9 points) was generated according to a maximum of 1 point for each item.

Patient and public involvement

Due to the nature of the systematic review and meta-analysis, this study did not involve patients and the public in the design, or conduct, or reporting or dissemination plans.

Statistical analysis

The risk ratios (RRs) and 95% confidence interval (CI) were primarily used to represent the effect of sex differences on mortality after STEMI. And data were combined using random-effects model of DerSimonian and Laird with inverse variance weighting. Randomeffect model was used due to substantial clinical and statistical heterogeneity. Following analyses were performed: i) unadjusted RRs for short- and long-term all-cause mortality using raw number of death and total participants at risk for death specific to each sex, ii) adjusted RRs for short- and long-term all-cause mortality using adjusted RRs if they were described in those included studies. We assess heterogeneity across studies with Cochran's Q test and I2 test, with P<0.1 or I2 >50% considered significant. We also performed meta-regression to identify the potential sources of heterogeneity in the included studies. Furthermore, stratified analysis was conducted as well by dividing the included studies into different subgroups based on the Newcastle-Ottawa scale scores (>7 points or \leq 7 points) to assess the potential sources of heterogeneity. To assess the potential effect of publication bias, we inspected funnel plots for asymmetry and used the Egger's regression asymmetry test in which P<0.05 was considered to indicate significant publication bias.

Sensitivity analyses was conducted by excluding one study at a time and comparing the results with the complete one. In addition, we also performed sensitivity analyses by restricting to high-quality studies with a Newcastle-Ottawa scale of 5 points or more and restricting to studies with sample size bigger than 1000 participants. All statistical analyses were performed using STATA version 15.0 (Stata Corp, College Station, TX). Differences were considered statistically significant at P < .05 (2-sided).

Results

Literature search

Study selection details were outlined in Figure 1. The literature search identified 2,611 potentially relevant articles. After screening based on title and abstract review, 2495 records were excluded. A total of 116 full-text were finally assessed for eligibility, with 96 papers excluded due to enrollment starting earlier than a decade ago or no sufficient

BMJ Open

gender specific data to analyze. Another 5 papers reviewed in detail were excluded after due to data from the same cohorts. A total of 15 studies were finally included in the present systematic review and meta-analysis.¹⁰⁻²⁴

Study characteristics

Of the 15 included studies, 8 were multicenter studies and 4 studies enrolled more than 10,000 patients with STEMI. See Table 1 for further information of included studies. Baseline characteristics of participants were missing in some included studies, but all included studies provided sufficient data for analysis of sex differences in clinical outcomes. Except for 1 study, which was a prespecified gender analysis of randomized controlled trial, the remaining 14 were observational studies. Among the 10 included studies which reported adjusted analyses, most studied adjusted for age, diabetes mellitus, hypertension, and prior myocardial infarction/PCI, while some adjusted for renal insufficiency, cardiogenic shock, cardiac arrest at admission and occurrence time of symptom onset. Variables that were adjusted in the adjusted analyses from the included studies were presented in eTable 1 of the Supplementary Material. Results of assessment of study quality using Newcastle-Ottawa scale were shown in eTable 2 in the Supplementary Material.

Patient characteristics

A total of 128,585 patients with STEMI (31,706 [24.7%] female and 96,879 [75.3%] male) were involved in the 15 included studies. Female tended to be older and had higher

prevalence of diabetes mellitus in all included studies. And in most studies, other important comorbidities, including hypertension and hyperlipidemia, were more frequent in female. Greater proportions of male were smokers and had prior PCI or myocardial infarction. Besides, some studies reported that door-to-balloon time and symptom onset to balloon time were longer in female than male. Part of patient baseline characteristics were summarized in Table 2.

Short-term all-cause mortality

 Thirteen studies reported sex-specific unadjusted short-term mortality of patients with STEMI. There were 2,873 of 31,409 (9.1%) cases of all-cause mortality in female compared with 4,380 of 95,610 (4.6%) in male. Female were at a significantly higher risk of short-term mortality (RR, 1.73; 95%Cl, 1.53-1.96, P<0.001, I²=77%) compared with male (Figure 2 A). Nine studies involving 119,379 patients reported adjusted short-term mortality specific to sex. In adjusted analysis, the association between female and higher risk of short-term mortality remained significant (RR, 1.24; 95%Cl, 1.11-1.38, P<0.001, I²=39.6%) (Figure 2 B). However, the strength of association calculated with adjusted RRs from these 9 studies was attenuated. Subgroup analysis demonstrated that the results of studies with Newcastle-Ottawa scale >7 points (RR, 1.90; 95%Cl, 1.73-2.09, P=0.018, I2=63.4%) and studies with \leq 7 points (RR, 1.52; 95%Cl, 1.20-1.93, P=0.026, I2=58.1%) were consistent in unadjusted short-term mortality (See eFigure 1 in the Supplementary Material).

Long-term all-cause mortality

BMJ Open

Six studies involved 18,018 patients with STEMI (4,191 female and 13,827 male) and followed up for more than 1 year, and reported all-cause mortality for female and male. The incidence of long-term all-cause mortality was 13.9% (n=584) in female and 8.7% (n=1202) in male. In unadjusted analysis, no significant sex difference was found in long-term mortality (RR, 1.23; 95%CI, 0.89-1.69, P=0.206, I²=77.5%) (Figure 3 A). And the adjusted analysis of the pooled results from four studies, also showed a similar risk of mortality at long-term follow-up in female compared with male (RR, 1.11; 95%CI, 0.42-1.80, P=0.670, I²=74.5%) (Figure 3 B).

Meta-Regression Analysis, sensitivity analyses and publication bias

According to meta-regression analysis, differences in prevalence of diabetes (β coefficient, 0.248; P=0.337), hypertension (β coefficient, -0.255; P=0.538), hyperlipidemia(β coefficient, 0.260; P=0.415), smoking (β coefficient, -0.040; P=0.255), prior MI (β coefficient, -2.725; P=0.126), and prior PCI (β coefficient, 0.109; P=0.896) between sexes were not identified as significant sources of heterogeneity for short-term all-cause mortality. Given that not all included study provided information on confounders stratified by sex, the results of meta-regression analyses should be interpreted with caution.

Sensitivity analysis by excluding one study at a time (See eFigure 2 in the Supplementary Material) or restricted to data from studies with sample size bigger than 1000 (RR, 1.75; 95%CI, 1.54-1.99, P<.001, I²=82.9%) both indicated that none of the studies affected the results of short-term mortality in this meta-analysis significantly. In analysis for long-term mortality, sensitivity analysis showed a possibly higher influence on the result attribute to

the study of Tai et al (See eFigure 3 in the Supplementary Material). After removing this study from meta-analysis, the association of female with increased long-term mortality became significant (RR, 1.50; 95%CI, 1.23-1.83, P=0.148, I²=40.9%). We found no evidence of publication bias across studies based on visual inspection of funnel plots (See eFigure 4 in the Supplementary Material) and the results from Egger's tests for short-term mortality (P=0.462) and for long-term mortality (P=0.053).

Discussion:

Our systematic review and meta-analysis of contemporary literature on sex differences among patients with STEMI demonstrate that female have a higher risk of short- but not long-term mortality compared with male with STEMI. Furthermore, after adjustment for baseline cardiovascular risk factors and clinical profiles, the sex differences in short-term mortality are attenuated but remain significant, while female have the similar long-term mortality with male.

Our results are somewhat in accordance with several previously published meta-analysis.² ²⁵ A considerable number of studies have consistently suggested that women were at a higher risk of short-term mortality after ACS. However, whether risk of long-term mortality is also higher in women with ACS remains under debate. Some studies indicated that women with STEMI had a higher 1-year rate of death compared to men²⁶, while the 1-year mortality rate was conversely lower in women than men in some other studies^{23 24}. In our

BMJ Open

study, with respect to short-term mortality, the analyses of studies with high or low quality, and big or small sample size yielded similar results. However, in terms of long-term mortality, caution is needed when interpreting our finding of non-significant increased longterm mortality in adjusted analyses, due to the results of sensitivity analysis which showed a significant association between female and increased long-term mortality after removing one study from adjusted analyses.

It is widely accepted that there are significant differences in outcomes of women and men with acute myocardial infarction. In our study, after adjusted for participants' baseline cardiovascular risk factors and clinical profiles, the strength of association between gender and short-term mortality was substantially attenuated, which suggested that poorer baseline cardiovascular risk profile partially explained the impact of sex differences on mortality. Multiple studies have shown that women with STEMI present at older age and have a higher burden of comorbidities, contributing to the sex differences in mortality after STEMI.²⁷ All studies included in our meta-analysis demonstrate that female patients are older and with more diabetes mellitus as well as hypertension. In addition, some sexspecific studies found that certain risk factors and comorbidities were more potent in women.²⁸ Diabetes mellitus , hypertension and smoking status are more strongly associated with increased risk of cardiac events in women compared with men.^{27 29}

Notably, that these differences mentioned above still could not completely explain the gap in mortality between sexes. It has been proved that women with acute myocardial infarction

were less likely to be treated with guideline directed medical therapy and less likely to receive primary reperfusion therapy including primary percutaneous coronary intervention or fibrinolysis.³⁰ Regarding medical therapy, numerous studies conducted around the world consistently demonstrate female survivors are receiving less optimal medical therapy after acute myocardial infarction during hospitalization or at discharge.^{31 32} Though there might be no differences in treatment adherence between men and women, some studies report significant sex disparities in initiation of appropriate pharmacotherapy after myocardial infarction.³³ Results from these observational studies have shown women are receiving less optimal medical therapy including aspirin, statins, and angiotensin-converting enzyme inhibitors in all age groups, especially young women, and suggested that clinicians and patients may benefit from better education and awareness of undertreatment of younger women.^{33 34}

Lower rates of revascularization are observed among women with STEMI compared with men in several studies despite proven benefit of this therapy.³⁵ Moreover, the sex differences might be driven by delays in presentation to hospital and women with STEMI were more likely to experience longer delays than men. Although a great improvement in emergency medical services and timely revascularization over the past decades, recent studies show that women with STEMI still present later and have a longer ischemic time than men. Previous studies have shown consistently that women have longer door-to balloon times and longer door-to needle times.^{36 37} In addition, women are also more likely to exhibit longer pre-hospital delays in seeking medical care after the development of

BMJ Open

symptoms suggestive of myocardial infarction. Although there have been significant reductions in patient and system delay in the last decade, women continue to have longer presentation and treatment times.³⁸ Sex differences also exist in clinical presentation of STEMI. Although chest pain was the most common ACS symptom in both sexes, women were more likely to present without chest pain than men.^{39 40} Lower rates of typical chest pain reported among women with STEMI may also influence provider decision-making to pursue less aggressive care including invasive revascularization.

Some included studies of our meta-analysis enrolled STEMI patients in general¹⁴⁻¹⁶, while some others enrolled patients undergoing PCI for STEMI^{11 13 18}. The different prognosis of patients receiving reperfusion therapy or no-reperfusion therapy might be a potential source of heterogeneity of our study. Nevertheless, our results are completely consistent with a previous meta-analysis from Pancholy et al., which investigated sex differences in mortality among patients with STEMI treated with primary PCI.² Its results demonstrated that, when adjusted RRs were used, the increased risk for 1-year mortality in women was no longer significant and the risk of in-hospital mortality still significantly elevated. It should be noted that more than 50% of patients were treated with PCI in the most study conducted among the general STEMI patients and included by our analysis, even more than 90% in some included studies.^{12 24} The increasing rate of primary PCI in recent years might be a reason for the consistency of our fundings and previous studies conducted specifically among STEMI patients undergoing PCI

Complications including bleeding, heart failure and mechanical complications are more likely to develop in women with acute myocardial infarction and increase the risk of mortality.^{14 41 42} Bleeding secondary to antithrombotic therapies and invasive procedures is more frequent in women.⁴³ Three included studies reported incidence of bleeding following STEMI and they all found that women were at higher risk of bleeding.^{10 13 18} One study included in our analysis examined the relationships among sex, acute heart failure, and related outcomes after STEMI.¹⁴ Its results demonstrate that women are at higher risk to develop de novo heart failure after STEMI and women with de novo heart failure have worse survival compared with man. However, we could not compare the incidence of these complications due to the lack of sufficient data. Mechanical complications requiring surgical intervention are also much more common in women after acute myocardial infarction and associated with high mortality rates.⁴⁴

Several limitations of this meta-analysis should be considered. First, the included studies are all observational studies except one post hoc analysis of randomized controlled trial. Hence, there may be residual confounding bias inherent in the observational study design in our meta-analysis. Second, in adjusted analysis, not all included studies adjusted for the same confounders and not all studies reported adjusted RRs. The confounders which were adjusted in the included studies might differ greatly across studies. Third, there was substantial heterogeneity in our meta-analysis, which could partly be attributed to the wide variability in the sample sizes, locations, and treatment regimens across included studies. Additionally, although we calculated adjusted RRs for all-cause mortality, it needed to be

noted that relevant confounders might have differed across studies. Fourth, the analysis of long-term mortality, especially the adjusted analysis, included far fewer studies compared with analysis of short-term mortality. Hence, there might be significant bias in the results about long-term mortality.

In conclusion, our meta-analysis, pooling data from contemporary literature, shows that women with STENI have a higher risk of short-term mortality but not long-term mortality. The effect of sex differences on mortality in patients with STEMI remain significant after adjustment for baseline cardiovascular risk factors and clinical profiles, suggesting that public awareness of increased risk and further improvements in management in women ih. with STEMI are necessary.

Other Information:

Contribution statement

Ziwei Xi: Study concepts, Study design, Literature research, Statistical analysis, Manuscript preparation, Manuscript editing. Tingting Guo and Yong Wang: Data acquisition, Data analysis/interpretation. Jianan Li, Yang Li, Jianfeng Zheng and Runlin Gao: Manuscript revision/review. Hong Qiu: Manuscript final version approval.

Conflict of interest

The authors declare that there is no conflict of interest.

Funding

 This research received no specific grant from any funding agency in the public, commercial,

or not-for-profit sectors.

Ethics approval

The institutional central committee at Fuwai Hospital approved that the study protocol and inform consent was not required for a systematic review and meta-analysis.

Data sharing statement

As this is a systematic review and meta-analysis, the data used in the study have already been published by the authors of the included studies. All data relevant to the study are included in the article or uploaded as supplementary information.

Page 69 of 85

 Table 1 Characteristics of included studies.

First	Year	Region	Study design	Data source	Multicenter	Time of	Number of	Female	Endpoint	Follow-up
Author						enrollment	STEMI			
							patients			
Venetsano	2017	13	Prospective	Clinical	Yes	Sep, 2011-	1,862	369	Major adverse	30 d
S		countries		registry		Oct, 2013		(20.0)	cardiovascular events	
									and definite stent	
									thrombosis	
Ali	2018	Germany	Prospective	Administrativ	No	2013-2017	312	101	All-cause in-hospital	NA
				e database		.6	4	(32.4)	mortality	
Langabeer	2018	US	Prospective	Clinical	Yes	Jan, 2010-	9,674	2,569	In-hospital mortality	NA
				registry		Dec, 2015		(26.6)		
Tang	2018	China	Prospective	Administrativ	No	Jan, 2013-	1,238	210 (1.9)	Major adverse cardiac	730 ± 30
				e database		Dec, 2013			and cerebrovascular	
									events	

				1	1					
Cenko	2019	12	Prospective	Clinical	Yes	Jan, 2010-	10,443	3,112	30-day all-cause	30 d
		Europea		registry		Jul, 2018		(29.8)	mortality	
		n								
		countries								
Hao	2019	China	Prospective	Clinical	Yes	Nov, 2014-	50,203	11,016	In-hospital mortality	NA
			(registry		Jun, 2018		(21,9)		
Hannan	2019	US	Retrospective	Administrativ	Yes	Jan, 2013-	23,809	7,791	In hospital/30-day	30 d
				e database		Dec, 2015		(32.7)	mortality	
Maznyczka	2019	UK	Retrospective	Clinical	No	July, 2011-	324	87 (26.9)	All-cause death/ first	5 years
				registry		Nov, 2012			heart failure	
							ČO,	7/	hospitalization	
Stehli	2019	Australia	Prospective	Clinical	Yes	2013-2016	6,431	1,317	In hospital/30-day major	30 d
				registry				(20.5)	adverse events, and	
									major bleeding	
Burgess	2020	Australia	Prospective	Administrativ	No	Dec, 2010-	589	123 (21)	Cardiac death and	2 years

Page 71 of 85

45 46 BMJ Open

First	Year	Age, me	an (SD),	Diabete	Hypertensio	Нуре	rlipidemi	Smokin	Prior	Prior
able 2 Base	eline cha	racteristics o	of participan	ts in included studi	es.			5		
				registry			,	(23.7)	mortality	
Tizón	2020	Spain	Prospectiv	e database ve Clinical	Yes	Dec, 2017 2010-2016	14,690	3,486	mortality 30-day/1-year all-	cause 1 year
Tai	2020	China	Retrospec		/ No	Jan, 2013-	182	56 (30.8)	In hospital/	1-year 1 year
				registry		May, 2018				
Siabani	2020	Iran	Prospectiv	ve Clinical	No	Jun, 2016-	1,484	311(21)	In-hospital mortality	y NA
Kerkmanx	2020	Netherla nds	Retrospec	tive Administrative e database	/ Yes	2015-2016	787	229 (29)	All-cause mortality	1 year
		а		e database		Aug, 2019		(14.2)		year
Dharma	2020	Indonesi	Retrospec	tive Administrativ	/ No	Feb, 2011-	6,557	929	All-cause mortality	30 d and

Author		years		s, n (%)		n, n (%)		a, n (%)		g, n (%)		MI, n		PCI, n	
												(%)		(%)	
		Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Femal	Male	Fema	Male
												е		le	
Venetsan	2017	69 (13.0)	59 (11.0)	48	205	<mark>190</mark> (51.5)	605	<mark>117</mark> (31.7)	536	NA	NA	24	135	16	124
os				(13.0)	(13.7		(40.5		(35.9			(6.5)	(9.0)	(4.3)	(8.3)
)	0))						
Ali	2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Langabee	2018	62.5	60.2	759	1,975	NA	NA	1,265 (49.3)	3,693	951	2,763	435	1,304	NA	NA
r		(13.6)	(12.5)	(29.6)	(27.8				(52.0	(37.0)	(38.9	(16.9)	(18.4		
))))		
Tang	2018	64.5 (9.3)	54.4	66	311	<mark>141</mark> (67.1)	659	<mark>125</mark> (59.5)	749	33	957	10	83	60	282
			(10.7)	(31.4)	(25.1		(53.3		(60.3	(15.7)	(77.3	(4.8)	(6.7)	(28.6)	(22.8
)))))
Cenko	2019	66.1	59.7	925	1,531	<mark>2,322</mark> (74.6)	4,502	1,353 (43.3)	3,100	1,010	3,714	301	842	306	762

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 73 of 85

 BMJ Open

		(11.7)	(11.7)	(29.7)	(20.9		(61.4		(42.3	(32.5)	(50.7	(9.7)	(11.5	(9.8)	(10
))))))
Hao	2019	69.0	61.1	10,141	24,08	15,607	38,42	17,996 (85.4)	50,94	1,719	32,37	NA	NA	NA	NA
		(10.6)	(12.4)	(48.1)	2	(74.1)	6		4	(8.2)	7				
					(39.4		(62.9		(83.3		(53.0				
))))				
Hannan	2019	70.72	62.11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	868	22
		(14.73)	(12.82)											(11.1)	(1
Maznyczk	2019	61.2	58.6(11.2	<mark>8</mark> (9.2)	26	<mark>32</mark> (36.8)	73	28 (32.2)	66	57	139	<mark>5</mark> (5.7)	20	2	16
а		(12.2))		(11.0		(30.8		(27.8	(65.5)	(58.6		(8.4)	(2.3)	(6
))))				
Stehli	2019	66.5	60.8	245	770	NA	NA	NA	NA	NA	NA	NA	NA	104	57
		(13.2)	(12.2)	(18.6)	(15.1									(7.9)	(1
))

Page	74	of	85

Burgess	2020	62.7	58.2	39	88	<mark>84</mark> (68.3)	243	<mark>83</mark> (67.5)	253	64	252	<mark>9</mark> (7.3)	41	NA	NA
		(52.7-	(50.6-	(31.7)	(18.9		(52.1		(52.3	(52.0)	(54.1		(8.8)		
		73.2)	65.7)))))				
Dharma	2020	60 (10)	55 (10)	403	1548	<mark>647</mark> (69.6)	2,889	<mark>299</mark> (32.2)	1,779	109	4,049	NA	NA	NA	NA
				(43.4)	(27.5		(51.3		(31.6	(11.7)	(71.9				
				0	5)))				
Kerkmanx	2020	68 (14)	61 (12)	39	66	<mark>101</mark> (45.7)	178	<mark>56</mark> (25.9)	110	88	258	30	79	33	77
				(17.6)	(12.5		(33.6		(21.0	(41.1)	(49.3	(13.6)	(13.7	(14.4)	(14.2
))))))
Siabani	2020	65.8	59.0	114	187	<mark>195</mark> (63.7)	410	<mark>110</mark> (36.7)	208	41	655	NA	NA	NA	NA
		(11.3)	(12.4)	(37.7)	(16.2		(35.4		(18.5	(13.2)	(55.9				
))))				
Tai	2020	78 (76–	78 (76–	96	116	217 (79.5)	319	NA	NA	<mark>14</mark> (5.4)	239	NA	NA	36	78
		81)	80)	(35.2)	(26.5		(72.8				(56.5			(13.5)	(18.1
))))

Page 75 of 85

 BMJ Open

2	zón	2020	69.9	60.9	844	1,927	1,192 (34.2)	2,722	878 (25.2)	2,375	474	2,711	NA	NA	NA	NA
3 4 5			(13.7)	(12.6)	(24.2)	(17.2		(24.3		(21.2	(13.6)	(24.2				
6 7))))				

For peer review only

Reference:

- Virani SS, Alonso A, Benjamin EJ, et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. *Circulation* 2020;141(9):e139-e596. doi: 10.1161/cir.000000000000757 [published Online First: 2020/01/30]
- Pancholy SB, Shantha GP, Patel T, et al. Sex differences in short-term and long-term allcause mortality among patients with ST-segment elevation myocardial infarction treated by primary percutaneous intervention: a meta-analysis. *JAMA internal medicine* 2014;174(11):1822-30. doi: 10.1001/jamainternmed.2014.4762 [published Online First: 2014/09/30]
- Wenger NK, Arnold A, Bairey Merz CN, et al. Hypertension Across a Woman's Life Cycle. *Journal of the American College of Cardiology* 2018;71(16):1797-813. doi: 10.1016/j.jacc.2018.02.033 [published Online First: 2018/04/21]
- 4. Peters SAE, Woodward M. Sex Differences in the Burden and Complications of Diabetes. *Current diabetes reports* 2018;18(6):33. doi: 10.1007/s11892-018-1005-5 [published Online First: 2018/04/20]
- Huded CP, Johnson M, Kravitz K, et al. 4-Step Protocol for Disparities in STEMI Care and Outcomes in Women. *Journal of the American College of Cardiology* 2018;71(19):2122-32. doi: 10.1016/j.jacc.2018.02.039 [published Online First: 2018/03/15]
- Mehta LS, Beckie TM, DeVon HA, et al. Acute Myocardial Infarction in Women: A Scientific Statement From the American Heart Association. *Circulation* 2016;133(9):916-47. doi: 10.1161/cir.000000000000351 [published Online First: 2016/01/27]

7. Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet (London, England)
2017;389(10065):197-210. doi: 10.1016/s0140-6736(16)30677-8 [published Online
First: 2016/08/10]
8. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and
meta-analyses: the PRISMA statement. BMJ (Clinical research ed) 2009;339:b2535.
doi: 10.1136/bmj.b2535 [published Online First: 2009/07/23]
9. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality
of nonrandomized studies in meta-analyses. European journal of epidemiology
2010;25(9):603-5. doi: 10.1007/s10654-010-9491-z [published Online First:
2010/07/24]
10. Venetsanos D, Sederholm Lawesson S, Alfredsson J, et al. Association between gender
and short-term outcome in patients with ST elevation myocardial infraction participating
in the international, prospective, randomised Administration of Ticagrelor in the
catheterisation Laboratory or in the Ambulance for New ST elevation myocardial
Infarction to open the Coronary artery (ATLANTIC) trial: a prespecified analysis. BMJ
open 2017;7(9):e015241. doi: 10.1136/bmjopen-2016-015241 [published Online First:
2017/09/25]
11. Ali M, Lange SA, Wittlinger T, et al. In-hospital mortality after acute STEMI in patients
undergoing primary PCI. <i>Herz</i> 2018;43(8):741-45. doi: 10.1007/s00059-017-4621-y
[published Online First: 2017/10/11]

12. Langabeer JR, 2nd, Henry TD, Fowler R, et al. Sex-Based Differences in Discharge Disposition and Outcomes for ST-Segment Elevation Myocardial Infarction Patients

Within a Regional Network. Journal of women's health (2002) 2018;27(8):1001-06. doi:

10.1089/jwh.2017.6553 [published Online First: 2018/01/11]

- 13. Tang XF, Song Y, Xu JJ, et al. Effect of sex difference in clinical presentation (stable coronary artery disease vs unstable angina pectoris or non-ST-elevation myocardial infarction vs ST-elevation myocardial infarction) on 2-year outcomes in patients undergoing percutaneous coronary intervention. *Journal of interventional cardiology* 2018;31(1):5-14. doi: 10.1111/joic.12451 [published Online First: 2017/10/13]
- 14. Cenko E, van der Schaar M, Yoon J, et al. Sex-Related Differences in Heart Failure After ST-Segment Elevation Myocardial Infarction. *Journal of the American College of Cardiology* 2019;74(19):2379-89. doi: 10.1016/j.jacc.2019.08.1047 [published Online First: 2019/11/09]
- Hao Y, Liu J, Liu J, et al. Sex Differences in In-Hospital Management and Outcomes of Patients With Acute Coronary Syndrome. *Circulation* 2019;139(15):1776-85. doi: 10.1161/circulationaha.118.037655 [published Online First: 2019/01/23]
- 16. Hannan EL, Wu Y, Tamis-Holland J, et al. Sex differences in the treatment and outcomes of patients hospitalized with ST-elevation myocardial infarction. *Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions* 2020;95(2):196-204. doi: 10.1002/ccd.28286 [published Online First: 2019/04/24]
- 17. Maznyczka AM, Carrick D, Carberry J, et al. Sex-based associations with microvascular injury and outcomes after ST-segment elevation myocardial infarction. *Open heart* 2019;6(1):e000979. doi: 10.1136/openhrt-2018-000979 [published Online First:

2	
3	
4 5	
6	
7	
8	
9 10	
11	
12	
13 14	
15	
16	
17	
10	
20	
21	
22 23	
24	
25	
26 27	
28	
29	
30 31	
32	
33	
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 1\\ 32\\ 33\\ 4\\ 35\\ 36\\ 37\\ 38\end{array}$	
36	
37	
38 39	
40	
41	
42 43	
44	
45 46	
40 47	
48	
49 50	
51	
52	
53 54	
55	
56	
57 58	
58 59	
60	

2019/06/07]

18. Stehli J, Martin C, Brennan A, et al. Sex Differences Persist in Time to Presentation,
Revascularization, and Mortality in Myocardial Infarction Treated With Percutaneous
Coronary Intervention. Journal of the American Heart Association 2019;8(10):e012161.
doi: 10.1161/jaha.119.012161 [published Online First: 2019/05/17]

- Burgess SN, Juergens CP, Nguyen TL, et al. Comparison of Late Cardiac Death and Myocardial Infarction Rates in Women Vs Men With ST-Elevation Myocardial Infarction. *The American journal of cardiology* 2020;128:120-26. doi: 10.1016/j.amjcard.2020.04.044 [published Online First: 2020/07/12]
- 20. Dharma S, Dakota I, Andriantoro H, et al. Association of gender with clinical outcomes of patients with acute ST-segment elevation myocardial infarction presenting with acute heart failure. *Coronary artery disease* 2020 doi: 10.1097/mca.00000000000892 [published Online First: 2020/04/26]
- 21. Kerkman T, Ten Brinke LBG, Huybrechts B, et al. Evaluation of sex differences in patients with ST-elevated myocardial infarction: an observational cohort study in Amsterdam and surrounding region. *Netherlands heart journal : monthly journal of the Netherlands Society of Cardiology and the Netherlands Heart Foundation* 2020;28(11):595-603. doi:

10.1007/s12471-020-01435-9 [published Online First: 2020/06/13]

22. Siabani S, Davidson PM, Babakhani M, et al. Gender-based difference in early mortality among patients with ST-segment elevation myocardial infarction: insights from Kermanshah STEMI Registry. *Journal of cardiovascular and thoracic research* 2020;12(1):63-68. doi: 10.34172/jcvtr.2020.10 [published Online First: 2020/03/27]

- 23. Tai S, Li X, Yang H, et al. Sex Differences in the Outcomes of Elderly Patients with Acute Coronary Syndrome. *Cardiology research and practice* 2020;2020:5091490. doi: 10.1155/2020/5091490 [published Online First: 2020/05/27]
- 24. Tizón-Marcos H, Vaquerizo B, Marrugat J, et al. Differences in 30-day complications and 1-year mortality by sex in patients with a first STEMI managed by the Codi IAM network between 2010 and 2016. *Revista espanola de cardiologia (English ed)* 2020 doi: 10.1016/j.rec.2020.06.002 [published Online First: 2020/07/15]
- 25. Bavishi C, Bangalore S, Patel D, et al. Short and long-term mortality in women and men undergoing primary angioplasty: A comprehensive meta-analysis. *International journal of cardiology* 2015;198:123-30. doi: 10.1016/j.ijcard.2015.07.001 [published Online First: 2015/07/15]
- 26. Kosmidou I, Redfors B, Selker HP, et al. Infarct size, left ventricular function, and prognosis in women compared to men after primary percutaneous coronary intervention in STsegment elevation myocardial infarction: results from an individual patient-level pooled analysis of 10 randomized trials. *European heart journal* 2017;38(21):1656-63. doi: 10.1093/eurheartj/ehx159 [published Online First: 2017/04/14]
- Millett ERC, Peters SAE, Woodward M. Sex differences in risk factors for myocardial infarction: cohort study of UK Biobank participants. *BMJ (Clinical research ed)* 2018;363:k4247. doi: 10.1136/bmj.k4247 [published Online First: 2018/11/09]
- 28. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. *Lancet (London, England)* 2004;364(9438):937-52. doi: 10.1016/s0140-

BMJ Open

6736(04)17018-9 [published Online First: 2004/09/15]

- 29. Harreiter J, Fadl H, Kautzky-Willer A, et al. Do Women with Diabetes Need More Intensive Action for Cardiovascular Reduction than Men with Diabetes? *Current diabetes reports* 2020;20(11):61. doi: 10.1007/s11892-020-01348-2 [published Online First: 2020/10/10]
 30. Arora S, Stouffer GA, Kucharska-Newton AM, et al. Twenty Year Trends and Sex Differences in Young Adults Hospitalized With Acute Myocardial Infarction. *Circulation* 2019;139(8):1047-56. doi: 10.1161/circulationaha.118.037137 [published Online First: 2018/12/28]
- 31. Zhao M, Woodward M, Vaartjes I, et al. Sex Differences in Cardiovascular Medication Prescription in Primary Care: A Systematic Review and Meta-Analysis. *Journal of the American Heart Association* 2020;9(11):e014742. doi: 10.1161/jaha.119.014742 [published Online First: 2020/05/21]
- 32. Eindhoven DC, Hilt AD, Zwaan TC, et al. Age and gender differences in medical adherence after myocardial infarction: Women do not receive optimal treatment - The Netherlands claims database. *European journal of preventive cardiology* 2018;25(2):181-89. doi: 10.1177/2047487317744363 [published Online First: 2017/11/23]
- 33. Smolina K, Ball L, Humphries KH, et al. Sex Disparities in Post-Acute Myocardial Infarction Pharmacologic Treatment Initiation and Adherence: Problem for Young Women. *Circulation Cardiovascular quality and outcomes* 2015;8(6):586-92. doi: 10.1161/circoutcomes.115.001987 [published Online First: 2015/10/16]
- 34. Nguyen HL, Goldberg RJ, Gore JM, et al. Age and sex differences, and changing trends, in the use of evidence-based therapies in acute coronary syndromes: perspectives

 from a multinational registry. *Coronary artery disease* 2010;21(6):336-44. doi: 10.1097/MCA.0b013e32833ce07c [published Online First: 2010/07/28]

- 35. Pelletier R, Humphries KH, Shimony A, et al. Sex-related differences in access to care among patients with premature acute coronary syndrome. *CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne* 2014;186(7):497-504. doi: 10.1503/cmaj.131450 [published Online First: 2014/03/19]
- 36. Murphy AC, Yudi MB, Farouque O, et al. Impact of Gender and Door-to-Balloon Times on Long-Term Mortality in Patients Presenting With ST-Elevation Myocardial Infarction. *The American journal of cardiology* 2019;124(6):833-41. doi: 10.1016/j.amjcard.2019.06.008 [published Online First: 2019/07/23]
- 37. D'Onofrio G, Safdar B, Lichtman JH, et al. Sex differences in reperfusion in young patients with ST-segment-elevation myocardial infarction: results from the VIRGO study. *Circulation* 2015;131(15):1324-32. doi: 10.1161/circulationaha.114.012293 [published Online First: 2015/03/21]
- 38. Bugiardini R, Ricci B, Cenko E, et al. Delayed Care and Mortality Among Women and Men
 With Myocardial Infarction. *Journal of the American Heart Association* 2017;6(8) doi:
 10.1161/jaha.117.005968 [published Online First: 2017/09/02]
- Khan NA, Daskalopoulou SS, Karp I, et al. Sex differences in acute coronary syndrome symptom presentation in young patients. *JAMA internal medicine* 2013;173(20):1863-71. doi: 10.1001/jamainternmed.2013.10149 [published Online First: 2013/09/18]
- 40. Canto JG, Rogers WJ, Goldberg RJ, et al. Association of age and sex with myocardial infarction symptom presentation and in-hospital mortality. *Jama* 2012;307(8):813-22.

doi: 10.1001/jama.2012.199 [published Online First: 2012/02/24]

- 41. Moscucci M, Fox KA, Cannon CP, et al. Predictors of major bleeding in acute coronary syndromes: the Global Registry of Acute Coronary Events (GRACE). *European heart journal* 2003;24(20):1815-23. doi: 10.1016/s0195-668x(03)00485-8 [published Online First: 2003/10/18]
- 42. Kolte D, Khera S, Aronow WS, et al. Trends in incidence, management, and outcomes of cardiogenic shock complicating ST-elevation myocardial infarction in the United States. *Journal of the American Heart Association* 2014;3(1):e000590. doi: 10.1161/jaha.113.000590 [published Online First: 2014/01/15]
- 43. Nanna MG, Hajduk AM, Krumholz HM, et al. Sex-Based Differences in Presentation, Treatment, and Complications Among Older Adults Hospitalized for Acute Myocardial Infarction: The SILVER-AMI Study. *Circulation Cardiovascular quality and outcomes* 2019;12(10):e005691. doi: 10.1161/circoutcomes.119.005691 [published Online First: 2019/10/15]
- 44. Elbadawi A, Elgendy IY, Mahmoud K, et al. Temporal Trends and Outcomes of Mechanical Complications in Patients With Acute Myocardial Infarction. *JACC Cardiovascular interventions* 2019;12(18):1825-36. doi: 10.1016/j.jcin.2019.04.039 [published Online First: 2019/09/21]

Figure 1 Flowchart of selection of studies included in meta-analysis.

Figure 2 Forest plots of relative risks of short-term all-cause mortality among women and men with ST-segment elevation myocardial infarction.

Forest plots showing unadjusted (A) and adjusted (B) short-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

Figure 3 Forest plots of relative risks of long-term all-cause mortality among women and men with ST-segment elevation myocardial infarction.

Forest plots showing unadjusted (A) and adjusted (B) long-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

PRISMA 2020 Checklist

Section and Topic	ltem #	Checklist item	Location where item is reported
TITLE			-
Title	1	Identify the report as a systematic review.	Title
ABSTRACT	I		
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Abstract
INTRODUCTION	1		
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Page 4
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Page 4
METHODS	1		
; Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Page 5
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Page 4
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Page 4
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Page 5
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Page 5
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Page 5
, ,	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Page 5
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Page 5
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Page 5
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Page 5
l i	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Page 5
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Page 5
, ;)	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Page 5
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	Page 5
)	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	Page5
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	Page 5
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Page 5

BMJ Open

PRISMA 2020 Checklist

Section and Topic	ltem #	Checklist item	Location where item is reported
RESULTS	1		
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Figure 1
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Page 6
Study characteristics	17	Cite each included study and present its characteristics.	
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Table 2
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Page 6
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Page 6
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	Page 6
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	Page 7
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	Page 7
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Page 6
DISCUSSION	I		
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Page 7
	23b	Discuss any limitations of the evidence included in the review.	Page 8-9
	23c	Discuss any limitations of the review processes used.	Page 8-9
	23d	Discuss implications of the results for practice, policy, and future research.	Page 7-8
OTHER INFORMA	TION		
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	
Competing interests	26	Declare any competing interests of review authors.	
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	

44 From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 45 10.1136/bmj.n71 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml For more information, visit: <u>http://www.prisma-statement.org/</u>

46

BMJ Open

Contemporary sex differences in mortality among patients with ST-segment elevation myocardial infarction: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053379.R2
Article Type:	Original research
Date Submitted by the Author:	29-Nov-2021
Complete List of Authors:	Xi, Ziwei; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Qiu, Hong; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Guo, Tingting; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Wang, Yong; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Li, Jianan; Beijing Tiantan Hospital Li, Yang; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Zheng, Jianfeng; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Gao, R; Fuwai Hospital State Key Laboratory of Cardiovascular Disease
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Emergency medicine
Keywords:	EPIDEMIOLOGY, Coronary heart disease < CARDIOLOGY, Myocardial infarction < CARDIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Contemporary sex differences in mortality among patients with ST-segment elevation

myocardial infarction: a systematic review and meta-analysis

Short title : Sex differences in STEMI

Authors:

 Ziwei Xi¹, Hong Qiu¹, Tingting Guo², Yong Wang¹, Jianan Li^{3,1}, Yang Li¹, Jianfeng Zheng¹,

Runlin Gao¹

 Department of Cardiology, Coronary artery disease center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
 Thrombosis Center, National Center for Cardiovascular Diseases, State Key

Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

3. Department of Cardiology and Macrovascular Disease, Beijing Tiantan Hospital,

Capital Medical University, Beijing, China

Corresponding author:

Prof. Hong Qiu, M.D.

E-mail address: qiuhong6780@sina.com

Department and affiliation: Department of Cardiology, Coronary artery disease center,

Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of

Medical Sciences and Peking Union Medical College, Beijing, China

Telephone: 0016-13261179000

 Address: No.167 North Lishi Road, Xicheng District, Beijing, China

to perteries only

Contemporary sex differences in mortality among patients with ST-segment elevation

myocardial infarction: a systematic review and meta-analysis

Objectives: To assess the effect of sex differences on short- and long-term mortality among patients with ST-segment elevation myocardial infarction (STEMI).

Design: Systematic review and meta-analysis of contemporary available evidence.

Setting: PubMed, Embase and Cochrane Library were searched for relevant studies reporting sex specific outcomes among patients with STEMI published between January 1, 2010 to August 1, 2020. Risk ratio (RR) 95% 95% confidence intervals (CIs) were measured using DerSimonian and Laird random-effects model. Sensitivity analyses were performed and publication bias was also checked. All statistical analyses were performed using STATA version 15.0.

Participants: Studies providing data about short- or long-term mortality stratified by sex in patients with STEMI were included. Only study conducted in last ten years were included.

Primary and secondary outcome measures: The primary outcome was all-cause death at short-(in-hospital or 30 days) and long-term (at least 12 months) follow-up.

Results

A total of fifteen studies involving 128,585 patients (31,706 [24.7%] female and 96,879 [75.3%] male) were included. In the unadjusted analyses, female were at a higher risk of short-term mortality (RR, 1.73; 95%Cl, 1.53-1.96, P<0.001, I²=77%) but not long-term mortality (RR, 1.23; 95%Cl, 0.89-1.69, P=0.206, I²=77.5%). When adjusted effect estimates from individual studies were used in meta-analysis, the association between female and higher risk of short-term mortality remained significant (RR, 1.24; 95%Cl, 1.11-1.38, P<0.001, I²=39.6%). And adjusted long-term mortality was also similar between female and male (RR, 1.11; 95%Cl, 0.42-1.80, P=0.670, I²=74.5%).

Conclusions

An increased short- but not long-term mortality was found in female with STEMI. After adjustment for baseline cardiovascular risk factors and clinical profiles, short-term mortality remains higher in female with STEMI compared to male, indicating the need for further improvements in management in female patients.

Strengths and limitations of this study

- We assessed the contemporary effect of sex differences on mortality among patients with STEMI by meta-analysis of studies from the last decade.
- A greater number of potentially eligible articles were screened and the large sample size ensures adequate statistical power to detect even a small effect of interest.
- Sensitivity analyses by excluding one study at a time and restricting to studies with high quality or with large sample size got consistent results.
- Substantial and nonnegligible heterogeneity still exist in our meta-analysis and might result in potential bias.
- Residual confounding bias could not be totally excluded due to the observational study design of most included studies.

BMJ Open

Contemporary sex differences in short- and long-term mortality among patients with STsegment elevation myocardial infarction: a systematic review and meta-analysis

Introduction

Acute myocardial infarction remains one of leading causes of mortality in both men and women worldwide despite improvement of acute cardiac care.¹ Numerous studies have reported that women have a higher risk of in-hospital and long-term adverse outcomes following ST-segment elevation myocardial infarction (STEMI) compared with men.² Confounders including advanced age and more frequent comorbidities, such as hypertension and diabetes mellitus^{3 4}, might contribute to excess mortality in women. Moreover, previous studies show lower rates of guideline directed medical therapy and revascularization are also associated with poorer prognosis for women with STEMI.⁵

Sex discrepancies in management and outcomes after STEMI have been increasingly reported in the literature and raised public awareness.⁶ Major progress in therapy for myocardial infarction and primary and secondary preventive interventions has been made to reduce cardiovascular mortality for women.¹⁷ And there have been marked reductions in cardiovascular disease mortality in women with acute myocardial infarction in the past two decades.¹ Conflicting results are noted in recent studies on sex differences following STEMI. It is unclear whether the sex differences still exist, in view of substantial improvements in prognosis of cardiovascular disease over the past decade.

In order to assess the contemporary effect of sex differences on short- and long-term

mortality among patients with STEMI, we performed a systematic review and metaanalysis of all available evidence from last decade reporting sex-specific outcomes after STEMI.

Methods

 The present systematic review and meta-analysis was performed following the principle of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.⁸

Literature search

We conducted a comprehensive search of the PubMed, EMBASE, and Cochrane Library from January 1, 2010 to August 1, 2020 to identify studies from the last decade that described sex differences in in short- or long-term mortality among patients with STEMI. Both observational studies and randomized clinical trials were eligible. We queried MeSH and the abstract text for the following three search terms: gender part (including "gender", "female", "male", "gender differences", "sex differences" or "sex characteristics"); outcome part (including "death", "mortality", "hospital mortality", "cardiac death", "sudden cardiac death", "all-cause mortality", "long term mortality", "one year mortality", "cardiovascular mortality" or "short term mortality"); myocardial infarction part (including "myocardial infarction", "acute myocardial infarction", "myocardial necrosis", "ST segment elevation myocardial infarction", "primary PCI", "primary percutaneous coronary intervention" or

 BMJ Open

"primary angioplasty") to identify relevant studies. There was no language restriction or age limit.

Study selection

According to the aim of our analyses, studies were included in this systematic review if data about short- (in-hospital or 30 days) or long-term (at least 12 months) mortality stratified by sex in patients with STEMI were reported. Two reviewers identified studies eligible for further review by performing an initial screen of titles or abstracts of the search results. Subsequently, a second screen of full texts eligibility was performed by another two reviewers. Studies had to fulfil the following criteria to be included in the present analyses: i) studies reporting data on all-cause mortality specific to STEMI population; and ii) studies providing enough details to obtain numbers of events or incidence rates according to sex; and iii) enrollment starting earlier than a decade ago. Editorials, letters, conference proceedings and abstracts were considered to be eligible only if sufficient information was available in abstracts or associated tables or figures. We excluded studies if they were review articles or case reports, or if they involved pregnant participants, critically ill patients, or provided insufficient data to allow for risk estimates to be calculated. Any disagreement was reviewed by a third reviewer and resolved by consensus.

Data extraction

Detailed data from selected studies were extracted independently by two reviewers using a standardized form independently. Data about study and participants characteristics,

including year of study, sample size, time of enrollment, geographical location, endpoints of study, and follow-up duration, were collected. Any discrepancies were reviewed by a third reviewer and resolved by consensus. The quality of included studies was evaluated by Newcastle-Ottawa scale using prespecified items comprised of patients' selection (representativeness and selection of patients, ascertainment of exposure), comparability of cohorts based on design or analysis, and outcome (assessment of outcomes, adequacy of follow-up).⁹ A quality score (0–9 points) was generated according to a maximum of 1 point for each item.

Patient and public involvement

Due to the nature of the systematic review and meta-analysis, this study did not involve patients and the public in the design, or conduct, or reporting or dissemination plans.

Statistical analysis

The risk ratios (RRs) and 95% confidence interval (CI) were primarily used to represent the effect of sex differences on mortality after STEMI. And data were combined using random-effects model of DerSimonian and Laird with inverse variance weighting. Randomeffect model was used due to substantial clinical and statistical heterogeneity. Following analyses were performed: i) unadjusted RRs for short- and long-term all-cause mortality using raw number of death and total participants at risk for death specific to each sex, ii) adjusted RRs for short- and long-term all-cause mortality using adjusted RRs if they were described in those included studies. In terms of short-term mortality, the RRs for in-hospital

BMJ Open

and 30-day mortality were also calculated respectively.

We assess heterogeneity across studies with Cochran's Q test and I2 test, with P<0.1 or 12 >50% considered significant. We also performed meta-regression to identify the potential sources of heterogeneity in the included studies. The potential sources were differences in diabetes, hypertension, hyperlipidemia, smoking, prior MI, and prior PCI. Furthermore, stratified analysis was conducted as well by dividing the included studies into different subgroups based on the Newcastle-Ottawa scale scores (>7 points or ≤7 points) to assess the potential sources of heterogeneity. To assess the potential effect of publication bias, we inspected funnel plots for asymmetry and used the Egger's regression asymmetry test in which P<0.05 was considered to indicate significant publication bias. Sensitivity analyses was conducted by excluding one study at a time and comparing the results with the complete one. In addition, we also performed sensitivity analyses by restricting to high-quality studies with a Newcastle-Ottawa scale of 5 points or more and restricting to studies with sample size bigger than 1000 participants. All statistical analyses were performed using STATA version 15.0 (Stata Corp, College Station, TX). Differences were considered statistically significant at P < .05 (2-sided).

Results

Literature search

Study selection details were outlined in Figure 1. The literature search identified 2,611 potentially relevant articles. After screening based on title and abstract review, 2495

records were excluded. A total of 116 full-text were finally assessed for eligibility, with 96 papers excluded due to enrollment starting earlier than a decade ago or no sufficient gender specific data to analyze. Another 5 papers reviewed in detail were excluded after due to data from the same cohorts. A total of 15 studies were finally included in the present systematic review and meta-analysis.¹⁰⁻²⁴

Study characteristics

 Of the 15 included studies, 8 were multicenter studies and 4 studies enrolled more than 10,000 patients with STEMI. See Table 1 for further information of included studies. Baseline characteristics of participants were missing in some included studies, but all included studies provided sufficient data for analysis of sex differences in clinical outcomes. Except for 1 study, which was a prespecified gender analysis of randomized controlled trial, the remaining 14 were observational studies. Among the 10 included studies which reported adjusted analyses, most studied adjusted for age, diabetes mellitus, hypertension, and prior myocardial infarction/PCI, while some adjusted for renal insufficiency, cardiogenic shock, cardiac arrest at admission and occurrence time of symptom onset. Variables that were adjusted in the adjusted analyses from the included studies were presented in eTable 1 of the Supplementary Material. Results of assessment of study quality using Newcastle-Ottawa scale were shown in eTable 2 in the Supplementary Material.

Patient characteristics

BMJ Open

A total of 128,585 patients with STEMI (31,706 [24.7%] female and 96,879 [75.3%] male) were involved in the 15 included studies. Female tended to be older and had higher prevalence of diabetes mellitus in all included studies. And in most studies, other important comorbidities, including hypertension and hyperlipidemia, were more frequent in female. Greater proportions of male were smokers and had prior PCI or myocardial infarction. Besides, some studies reported that door-to-balloon time and symptom onset to balloon time were longer in female than male. Part of patient baseline characteristics were summarized in Table 2.

Short-term all-cause mortality

Thirteen studies reported sex-specific unadjusted short-term mortality (7 studies with 30day mortality and 6 studies with in-hospital mortality) of patients with STEMI. There were 2,873 of 31,409 (9.1%) cases of all-cause mortality in female compared with 4,380 of 95,610 (4.6%) in male. Female were at a significantly higher risk of short-term mortality (RR, 1.73; 95%CI, 1.53-1.96, P<0.001, I²=77%) compared with male (Figure 2 A). Nine studies involving 119,379 patients reported adjusted short-term mortality specific to sex. In adjusted analysis, the association between female and higher risk of short-term mortality remained significant (RR, 1.24; 95%CI, 1.11-1.38, P<0.001, I²=39.6%) (Figure 2 B). However, the strength of association calculated with adjusted RRs from these 9 studies was attenuated.

Subgroup analysis demonstrated that the results of studies with Newcastle-Ottawa scale >7 points (RR, 1.90; 95%CI, 1.73-2.09, P=0.018, I^2 =63.4%) and studies with \leq 7

points (RR, 1.52; 95%Cl, 1.20-1.93, P=0.026, I²=58.1%) were consistent in unadjusted short-term mortality (See eFigure 1 in the Supplementary Material). The impact of sex on in-hospital (RR, 1.71; 95%Cl, 1.27-2.31, P<.001, I²=86.4%) and 30-day mortality (RR, 1.81; 95%Cl, 1.62-2.02, P<.001, I²=56.6%) were consistent. The meta-analysis performed in studies of patients undergoing PCI for STEMI also showed increased unadjusted mortality (RR, 1.45; 95%Cl, 1.05-2.00, P=0.026, I²=39.5%) in female patients.

Long-term all-cause mortality

 Six studies involved 18,018 patients with STEMI (4,191 female and 13,827 male) and followed up for more than 1 year, and reported all-cause mortality for female and male. The incidence of long-term all-cause mortality was 13.9% (n=584) in female and 8.7% (n=1202) in male. In unadjusted analysis, no significant sex difference was found in long-term mortality (RR, 1.23; 95%Cl, 0.89-1.69, P=0.206, I²=77.5%) (Figure 3 A). The unadjusted long-term mortality was also similar between female and male patients undergoing PCI (RR, 1.28; 95%Cl, 0.95-1.73, P=0.108, I²=0.0%). And the adjusted analysis of the pooled results from four studies, also showed a similar risk of mortality at long-term follow-up in female compared with male (RR, 1.11; 95%Cl, 0.42-1.80, P=0.670, I²=74.5%) (Figure 3 B).

Meta-Regression Analysis, sensitivity analyses and publication bias

According to meta-regression analysis, differences in prevalence of diabetes (β coefficient, 0.248; P=0.337; adjusted R²=1.31%; I²=80.86%; τ^2 =0.044), hypertension (β coefficient, -

BMJ Open

0.255; P=0.538; adjusted R²=24.22%; I²=41.04%; τ^2 =0.008), hyperlipidemia(β coefficient, 0.260; P=0.415; adjusted R²=-1.84%; I²=83.59%; τ^2 =0.050), smoking (β coefficient, -0.040; P=0.255; adjusted R²=17.86%; I²=79.41%; τ^2 =0.045), prior MI (β coefficient, -2.725; P=0.126; adjusted R²=60.30%; I²=60.19%; τ^2 =0.032), and prior PCI (β coefficient, 0.109; P=0.896; adjusted R²=-58.31%; I²=61.73%; τ^2 =0.042) between sexes were not identified as significant sources of heterogeneity for short-term all-cause mortality. Given that not all included study provided information on confounders stratified by sex, the results of meta-regression analyses should be interpreted with caution.

Sensitivity analysis by excluding one study at a time (See eFigure 2 in the Supplementary Material) or restricted to data from studies with sample size bigger than 1000 (RR, 1.75; 95%Cl, 1.54-1.99, P<.001, I²=82.9%) both indicated that none of the studies affected the results of short-term mortality in this meta-analysis significantly. In analysis for long-term mortality, sensitivity analysis showed a possibly higher influence on the result attribute to the study of Tai et al (See eFigure 3 in the Supplementary Material). After removing this study from meta-analysis, the association of female with increased long-term mortality became significant (RR, 1.50; 95%Cl, 1.23-1.83, P<.001, I²=40.9%). We found no evidence of publication bias across studies based on visual inspection of funnel plots (See eFigure 4 in the Supplementary Material) and the results from Egger's tests for short-term mortality (P=0.462) and for long-term mortality (P=0.053).

Discussion:

BMJ Open

Our systematic review and meta-analysis of contemporary literature on sex differences among patients with STEMI demonstrate that female have a higher risk of short- but not long-term mortality compared with male with STEMI. Furthermore, after adjustment for baseline cardiovascular risk factors and clinical profiles, the sex differences in short-term mortality are attenuated but remain significant, while female have the similar long-term mortality with male.

Our results are somewhat in accordance with several previously published meta-analysis.² ²⁵ A considerable number of studies have consistently suggested that women were at a higher risk of short-term mortality after ACS. However, whether risk of long-term mortality is also higher in women with ACS remains under debate. Some studies indicated that women with STEMI had a higher 1-year rate of death compared to men²⁶, while the 1-year mortality rate was conversely lower in women than men in some other studies^{23 24}. In our study, with respect to short-term mortality, the analyses of studies with high or low quality, and big or small sample size yielded similar results. However, in terms of long-term mortality, caution is needed when interpreting our finding of non-significant increased longterm mortality in adjusted analyses, due to the results of sensitivity analysis which showed a significant association between female and increased long-term mortality after removing one study from adjusted analyses.

It is widely accepted that there are significant differences in outcomes of women and men with acute myocardial infarction. In our study, after adjusted for participants' baseline

BMJ Open

cardiovascular risk factors and clinical profiles, the strength of association between gender and short-term mortality was substantially attenuated, which suggested that poorer baseline cardiovascular risk profile partially explained the impact of sex differences on mortality. Multiple studies have shown that women with STEMI present at older age and have a higher burden of comorbidities, contributing to the sex differences in mortality after STEMI.²⁷ All studies included in our meta-analysis demonstrate that female patients are older and with more diabetes mellitus as well as hypertension. In addition, some sexspecific studies found that certain risk factors and comorbidities were more potent in women.²⁸ Diabetes mellitus , hypertension and smoking status are more strongly associated with increased risk of cardiac events in women compared with men.^{27 29}

Notably, that these differences mentioned above still could not completely explain the gap in mortality between sexes. It has been proved that women with acute myocardial infarction were less likely to be treated with guideline directed medical therapy and less likely to receive primary reperfusion therapy including primary percutaneous coronary intervention or fibrinolysis.³⁰ Regarding medical therapy, numerous studies conducted around the world consistently demonstrate female survivors are receiving less optimal medical therapy after acute myocardial infarction during hospitalization or at discharge.^{31 32} Though there might be no differences in treatment adherence between men and women, some studies report significant sex disparities in initiation of appropriate pharmacotherapy after myocardial infarction.³³ Results from these observational studies have shown women are receiving less optimal medical therapy including aspirin, statins, and angiotensin-converting enzyme

 inhibitors in all age groups, especially young women, and suggested that clinicians and patients may benefit from better education and awareness of undertreatment of younger women.^{33 34}

Lower rates of revascularization are observed among women with STEMI compared with men in several studies despite proven benefit of this therapy.³⁵ Moreover, the sex differences might be driven by delays in presentation to hospital and women with STEMI were more likely to experience longer delays than men. Although a great improvement in emergency medical services and timely revascularization over the past decades, recent studies show that women with STEMI still present later and have a longer ischemic time than men. Previous studies have shown consistently that women have longer door-to balloon times and longer door-to needle times.^{36 37} In addition, women are also more likely to exhibit longer pre-hospital delays in seeking medical care after the development of symptoms suggestive of myocardial infarction. Although there have been significant reductions in patient and system delay in the last decade, women continue to have longer presentation and treatment times.³⁸ Sex differences also exist in clinical presentation of STEMI. Although chest pain was the most common ACS symptom in both sexes, women were more likely to present without chest pain than men.^{39 40} Lower rates of typical chest pain reported among women with STEMI may also influence provider decision-making to pursue less aggressive care including invasive revascularization.

Some included studies of our meta-analysis enrolled STEMI patients in general¹⁴⁻¹⁶, while

BMJ Open

some others enrolled patients undergoing PCI for STEMI^{11 13 18}. The different prognosis of patients receiving reperfusion therapy or no-reperfusion therapy might be a potential source of heterogeneity of our study. Nevertheless, our results are completely consistent with a previous meta-analysis from Pancholy et al., which investigated sex differences in mortality among patients with STEMI treated with primary PCI.² Its results demonstrated that, when adjusted RRs were used, the increased risk for 1-year mortality in women was no longer significant and the risk of in-hospital mortality still significantly elevated. It should be noted that more than 50% of patients were treated with PCI in the most study conducted among the general STEMI patients and included by our analysis, even more than 90% in some included studies.^{12 24} The increasing rate of primary PCI in recent years might be a reason for the consistency of our fundings and previous studies conducted specifically among STEMI patients undergoing PCI

Complications including bleeding, heart failure and mechanical complications are more likely to develop in women with acute myocardial infarction and increase the risk of mortality.^{14 41 42} Bleeding secondary to antithrombotic therapies and invasive procedures is more frequent in women.⁴³ Three included studies reported incidence of bleeding following STEMI and they all found that women were at higher risk of bleeding.^{10 13 18} One study included in our analysis examined the relationships among sex, acute heart failure, and related outcomes after STEMI.¹⁴ Its results demonstrate that women are at higher risk to develop de novo heart failure after STEMI and women with de novo heart failure have worse survival compared with man. However, we could not compare the incidence of these

complications due to the lack of sufficient data. Mechanical complications requiring surgical intervention are also much more common in women after acute myocardial infarction and associated with high mortality rates.⁴⁴

Several limitations of this meta-analysis should be considered. First, the included studies are all observational studies except one post hoc analysis of randomized controlled trial. Hence, there may be residual confounding bias inherent in the observational study design in our meta-analysis. Second, in adjusted analysis, not all included studies adjusted for the same confounders and not all studies reported adjusted RRs. The confounders which were adjusted in the included studies might differ greatly across studies. Third, there was substantial heterogeneity in our meta-analysis, which could partly be attributed to the wide variability in the sample sizes, locations, and treatment regimens across included studies. Additionally, although we calculated adjusted RRs for all-cause mortality, it needed to be noted that relevant confounders might have differed across studies. Fourth, the analysis of long-term mortality, especially the adjusted analysis, included far fewer studies compared with analysis of short-term mortality. Hence, there might be significant bias in the results about long-term mortality.

In conclusion, our meta-analysis, pooling data from contemporary literature, shows that women with STENI have a higher risk of short-term mortality but not long-term mortality. The effect of sex differences on mortality in patients with STEMI remain significant after adjustment for baseline cardiovascular risk factors and clinical profiles, suggesting that

 public awareness of increased risk and further improvements in management in women with STEMI are necessary.

Other Information:

Contribution statement

Ziwei Xi: Study concepts, Study design, Literature research, Statistical analysis, Manuscript preparation, Manuscript editing. Tingting Guo and Yong Wang: Data acquisition, Data analysis/interpretation. Jianan Li, Yang Li, Jianfeng Zheng and Runlin Gao: Manuscript revision/review. Hong Qiu: Manuscript final version approval.

Conflict of interest

The authors declare that there is no conflict of interest.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Ethics approval

The institutional central committee at Fuwai Hospital approved that the study protocol and inform consent was not required for a systematic review and meta-analysis.

Data sharing statement

As this is a systematic review and meta-analysis, the data used in the study have already been published by the authors of the included studies. All data relevant to the study are included in the article or uploaded as supplementary information.

to beet teries only

Page 23 of 87

BMJ Open

Table 1 Characteristics of included studies.

First	Year	Region	Study design	Data source	Multicenter	Time of	Number of	Female	Endpoint	Follow-up
Author						enrollment	STEMI			
							patients			
Venetsano	2017	13	Prospective	Clinical	Yes	Sep, 2011-	1,862	369	Major adverse	30 d
S		countries		registry		Oct, 2013		(20.0)	cardiovascular events	
									and definite stent	
									thrombosis	
Ali	2018	Germany	Prospective	Administrativ	No	2013-2017	312	101	All-cause in-hospital	NA
				e database				(32.4)	mortality	
Langabeer	2018	US	Prospective	Clinical	Yes	Jan, 2010-	9,674	2,569	In-hospital mortality	NA
				registry		Dec, 2015		(26.6)		
Tang	2018	China	Prospective	Administrativ	No	Jan, 2013-	1,238	210 (1.9)	Major adverse cardiac	730 ± 30 d
				e database		Dec, 2013			and cerebrovascular	
									events	

Cenko	2019	12	Prospective	Clinical	Yes	Jan, 2010-	10,443	3,112	30-day all-cause	30 d
		Europea		registry		Jul, 2018		(29.8)	mortality	
		n								
		countries								
Hao	2019	China	Prospective	Clinical	Yes	Nov, 2014-	50,203	11,016	In-hospital mortality	NA
				registry		Jun, 2018		(21,9)		
Hannan	2019	US	Retrospective	Administrativ	Yes	Jan, 2013-	23,809	7,791	In hospital/30-day	30 d
				e database		Dec, 2015		(32.7)	mortality	
Maznyczka	2019	UK	Retrospective	Clinical	No	July, 2011-	324	87 (26.9)	All-cause death/ first	5 years
				registry		Nov, 2012			heart failure	
							Č O	b /	hospitalization	
Stehli	2019	Australia	Prospective	Clinical	Yes	2013-2016	6,431	1,317	In hospital/30-day major	30 d
				registry				(20.5)	adverse events, and	
									major bleeding	
Burgess	2020	Australia	Prospective	Administrativ	No	Dec, 2010-	589	123 (21)	Cardiac death and	2 years

Page 25 of 87

46

BMJ Open

First	Year	Age, me	an (SD),	Diabete	Hypertensio	Нуре	rlipidemi	Smokin	Prior	Prior
able 2 Base	eline cha	racteristics	of participant	s in included stud	lies.			5		
Tizón	2020	Spain	Prospectiv	e Clinical registry	Yes	2010-2016	14,690	3,486 (23.7)	30-day/1-year all-cau mortality	use 1 year
Tai	2020	China	Retrospec	e database	,	Jan, 2013- Dec, 2017	182	56 (30.8)	In hospital/1-y	-
Siabani	2020	Iran	Prospectiv	e Clinical registry	No	Jun, 2016- May, 2018	1,484	311(21)	In-hospital mortality	NA
Kerkmanx	2020	Netherla nds	Retrospec	tive Administra e database		2015-2016	787	229 (29)	All-cause mortality	1 year
Dharma	2020	Indonesi a	Retrospec	tive Administra e database		Feb, 2011- Aug, 2019	6,557	929 (14.2)	All-cause mortality	30 d and year

BMJ Open

Author		years		s, n (%)		n, n (%)		a, n (%)		g, n (%)		MI, n		PCI, n	
												(%)		(%)	
		Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Femal	Male	Fema	Male
												е		le	
Venetsan	2017	69 (13.0)	59 (11.0)	48	205	190 (51.5)	605	117 (31.7)	536	NA	NA	24	135	16	124
OS				(13.0)	(13.7		(40.5		(35.9			(6.5)	(9.0)	(4.3)	(8.3)
)))						
Ali	2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Langabee	2018	62.5	60.2	759	1,975	NA	NA	1,265 (49.3)	3,693	951	2,763	435	1,304	NA	NA
r		(13.6)	(12.5)	(29.6)	(27.8				(52.0	(37.0)	(38.9	(16.9)	(18.4		
))))		
Tang	2018	64.5 (9.3)	54.4	66	311	141 (67.1)	659	125 (59.5)	749	33	957	10	83	60	282
			(10.7)	(31.4)	(25.1		(53.3		(60.3	(15.7)	(77.3	(4.8)	(6.7)	(28.6)	(22.8
)))))
Cenko	2019	66.1	59.7	925	1,531	2,322 (74.6)	4,502	1,353 (43.3)	3,100	1,010	3,714	301	842	306	762

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 27 of 87

 BMJ Open

		(11.7)	(11.7)	(29.7)	(20.9		(61.4		(42.3	(32.5)	(50.7	(9.7)	(11.5	(9.8)	(10
))))))
Hao	2019	69.0	61.1	10,141	24,08	15,607	38,42	17,996 (85.4)	50,94	1,719	32,37	NA	NA	NA	N
		(10.6)	(12.4)	(48.1)	2	(74.1)	6		4	(8.2)	7				
					(39.4		(62.9		(83.3		(53.0				
))))				
Hannan	2019	70.72	62.11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	868	2
		(14.73)	(12.82)			Ch.	6							(11.1)	(*
Maznyczk	2019	61.2	58.6(11.2	8 (9.2)	26	32 (36.8)	73	28 (32.2)	66	57	139	5 (5.7)	20	2	1
а		(12.2))		(11.0		(30.8		(27.8	(65.5)	(58.6		(8.4)	(2.3)	(6
))))				
Stehli	2019	66.5	60.8	245	770	NA	NA	NA	NA	NA	NA	NA	NA	104	5
		(13.2)	(12.2)	(18.6)	(15.1									(7.9)	(1
))

BMJ Open

Page	28	of	87
------	----	----	----

Burgess	2020	62.7	58.2	39	88	84 (68.3)	243	83 (67.5)	253	64	252	9 (7.3)	41	NA	NA
		(52.7-	(50.6-	(31.7)	(18.9		(52.1		(52.3	(52.0)	(54.1		(8.8)		
		73.2)	65.7)))))				
Dharma	2020	60 (10)	55 (10)	403	1548	647 (69.6)	2,889	299 (32.2)	1,779	109	4,049	NA	NA	NA	NA
				(43.4)	(27.5		(51.3		(31.6	(11.7)	(71.9				
					5)))				
Kerkmanx	2020	68 (14)	61 (12)	39	66	101 (45.7)	178	56 (25.9)	110	88	258	30	79	33	77
				(17.6)	(12.5		(33.6		(21.0	(41.1)	(49.3	(13.6)	(13.7	(14.4)	(14.:
))))))
Siabani	2020	65.8	59.0	114	187	195 (63.7)	410	110 (36.7)	208	41	655	NA	NA	NA	NA
		(11.3)	(12.4)	(37.7)	(16.2		(35.4		(18.5	(13.2)	(55.9				
))))				
Tai	2020	78 (76–	78 (76–	96	116	217 (79.5)	319	NA	NA	14 (5.4)	239	NA	NA	36	78
		81)	80)	(35.2)	(26.5		(72.8				(56.5			(13.5)	(18.
))))

Page 29 of 87

 BMJ Open

Tizón	2020	69.9	60.9	844	1,927	1,192 (34.2)	2,722	878 (25.2)	2,375	474	2,711	NA	NA	NA	NA
		(13.7)	(12.6)	(24.2)	(17.2		(24.3		(21.2	(13.6)	(24.2				
))))				

For Deer review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Reference:

- Virani SS, Alonso A, Benjamin EJ, et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. *Circulation* 2020;141(9):e139-e596. doi: 10.1161/cir.000000000000757 [published Online First: 2020/01/30]
- Pancholy SB, Shantha GP, Patel T, et al. Sex differences in short-term and long-term allcause mortality among patients with ST-segment elevation myocardial infarction treated by primary percutaneous intervention: a meta-analysis. *JAMA internal medicine* 2014;174(11):1822-30. doi: 10.1001/jamainternmed.2014.4762 [published Online First: 2014/09/30]
- Wenger NK, Arnold A, Bairey Merz CN, et al. Hypertension Across a Woman's Life Cycle. *Journal of the American College of Cardiology* 2018;71(16):1797-813. doi: 10.1016/j.jacc.2018.02.033 [published Online First: 2018/04/21]
- 4. Peters SAE, Woodward M. Sex Differences in the Burden and Complications of Diabetes. *Current diabetes reports* 2018;18(6):33. doi: 10.1007/s11892-018-1005-5 [published Online First: 2018/04/20]
- Huded CP, Johnson M, Kravitz K, et al. 4-Step Protocol for Disparities in STEMI Care and Outcomes in Women. *Journal of the American College of Cardiology* 2018;71(19):2122-32. doi: 10.1016/j.jacc.2018.02.039 [published Online First: 2018/03/15]
- Mehta LS, Beckie TM, DeVon HA, et al. Acute Myocardial Infarction in Women: A Scientific Statement From the American Heart Association. *Circulation* 2016;133(9):916-47. doi: 10.1161/cir.000000000000351 [published Online First: 2016/01/27]

7. Ree	d GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet (London, England)
	2017;389(10065):197-210. doi: 10.1016/s0140-6736(16)30677-8 [published Online
	First: 2016/08/10]
8. Moh	er D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and
	meta-analyses: the PRISMA statement. BMJ (Clinical research ed) 2009;339:b2535.
	doi: 10.1136/bmj.b2535 [published Online First: 2009/07/23]
9. Stan	g A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality
	of nonrandomized studies in meta-analyses. European journal of epidemiology
	2010;25(9):603-5. doi: 10.1007/s10654-010-9491-z [published Online First:
	2010/07/24]
10. Vei	netsanos D, Sederholm Lawesson S, Alfredsson J, et al. Association between gender
	and short-term outcome in patients with ST elevation myocardial infraction participating
	in the international, prospective, randomised Administration of Ticagrelor in the
	catheterisation Laboratory or in the Ambulance for New ST elevation myocardial
	Infarction to open the Coronary artery (ATLANTIC) trial: a prespecified analysis. BMJ
	open 2017;7(9):e015241. doi: 10.1136/bmjopen-2016-015241 [published Online First:
	2017/09/25]
11. Ali	M, Lange SA, Wittlinger T, et al. In-hospital mortality after acute STEMI in patients
	undergoing primary PCI. Herz 2018;43(8):741-45. doi: 10.1007/s00059-017-4621-y
	[published Online First: 2017/10/11]

12. Langabeer JR, 2nd, Henry TD, Fowler R, et al. Sex-Based Differences in Discharge Disposition and Outcomes for ST-Segment Elevation Myocardial Infarction Patients

Within a Regional Network. Journal of women's health (2002) 2018;27(8):1001-06. doi:

10.1089/jwh.2017.6553 [published Online First: 2018/01/11]

- 13. Tang XF, Song Y, Xu JJ, et al. Effect of sex difference in clinical presentation (stable coronary artery disease vs unstable angina pectoris or non-ST-elevation myocardial infarction vs ST-elevation myocardial infarction) on 2-year outcomes in patients undergoing percutaneous coronary intervention. *Journal of interventional cardiology* 2018;31(1):5-14. doi: 10.1111/joic.12451 [published Online First: 2017/10/13]
- 14. Cenko E, van der Schaar M, Yoon J, et al. Sex-Related Differences in Heart Failure After ST-Segment Elevation Myocardial Infarction. *Journal of the American College of Cardiology* 2019;74(19):2379-89. doi: 10.1016/j.jacc.2019.08.1047 [published Online First: 2019/11/09]
- Hao Y, Liu J, Liu J, et al. Sex Differences in In-Hospital Management and Outcomes of Patients With Acute Coronary Syndrome. *Circulation* 2019;139(15):1776-85. doi: 10.1161/circulationaha.118.037655 [published Online First: 2019/01/23]
- 16. Hannan EL, Wu Y, Tamis-Holland J, et al. Sex differences in the treatment and outcomes of patients hospitalized with ST-elevation myocardial infarction. *Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions* 2020;95(2):196-204. doi: 10.1002/ccd.28286 [published Online First: 2019/04/24]
- 17. Maznyczka AM, Carrick D, Carberry J, et al. Sex-based associations with microvascular injury and outcomes after ST-segment elevation myocardial infarction. *Open heart* 2019;6(1):e000979. doi: 10.1136/openhrt-2018-000979 [published Online First:

1 2 3 4 5 6 7 8 9 10 11	18
12 13 14 15 16 17 18 19 20 21 22 22	15
23 24 25 26 27 28 29 30 31 32 33	20
34 35 36 37 38 39 40 41 42 43 44	2
45 46 47 48 49 50 51 52 53 54 55 56 57 58	2:
58 59 60	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2019/06/07]

- 18. Stehli J, Martin C, Brennan A, et al. Sex Differences Persist in Time to Presentation, Revascularization, and Mortality in Myocardial Infarction Treated With Percutaneous Coronary Intervention. *Journal of the American Heart Association* 2019;8(10):e012161. doi: 10.1161/jaha.119.012161 [published Online First: 2019/05/17]
- Burgess SN, Juergens CP, Nguyen TL, et al. Comparison of Late Cardiac Death and Myocardial Infarction Rates in Women Vs Men With ST-Elevation Myocardial Infarction. *The American journal of cardiology* 2020;128:120-26. doi: 10.1016/j.amjcard.2020.04.044 [published Online First: 2020/07/12]
- 20. Dharma S, Dakota I, Andriantoro H, et al. Association of gender with clinical outcomes of patients with acute ST-segment elevation myocardial infarction presenting with acute heart failure. *Coronary artery disease* 2020 doi: 10.1097/mca.000000000000892 [published Online First: 2020/04/26]
- 21. Kerkman T, Ten Brinke LBG, Huybrechts B, et al. Evaluation of sex differences in patients with ST-elevated myocardial infarction: an observational cohort study in Amsterdam and surrounding region. *Netherlands heart journal : monthly journal of the Netherlands Society of Cardiology and the Netherlands Heart Foundation* 2020;28(11):595-603. doi: 10.1007/s12471-020-01435-9 [published Online First: 2020/06/13]
- 22. Siabani S, Davidson PM, Babakhani M, et al. Gender-based difference in early mortality among patients with ST-segment elevation myocardial infarction: insights from Kermanshah STEMI Registry. *Journal of cardiovascular and thoracic research* 2020;12(1):63-68. doi: 10.34172/jcvtr.2020.10 [published Online First: 2020/03/27]

- 23. Tai S, Li X, Yang H, et al. Sex Differences in the Outcomes of Elderly Patients with Acute Coronary Syndrome. *Cardiology research and practice* 2020;2020:5091490. doi: 10.1155/2020/5091490 [published Online First: 2020/05/27]
- 24. Tizón-Marcos H, Vaquerizo B, Marrugat J, et al. Differences in 30-day complications and 1-year mortality by sex in patients with a first STEMI managed by the Codi IAM network between 2010 and 2016. *Revista espanola de cardiologia (English ed)* 2020 doi: 10.1016/j.rec.2020.06.002 [published Online First: 2020/07/15]
- 25. Bavishi C, Bangalore S, Patel D, et al. Short and long-term mortality in women and men undergoing primary angioplasty: A comprehensive meta-analysis. *International journal of cardiology* 2015;198:123-30. doi: 10.1016/j.ijcard.2015.07.001 [published Online First: 2015/07/15]
- 26. Kosmidou I, Redfors B, Selker HP, et al. Infarct size, left ventricular function, and prognosis in women compared to men after primary percutaneous coronary intervention in STsegment elevation myocardial infarction: results from an individual patient-level pooled analysis of 10 randomized trials. *European heart journal* 2017;38(21):1656-63. doi: 10.1093/eurheartj/ehx159 [published Online First: 2017/04/14]
- Millett ERC, Peters SAE, Woodward M. Sex differences in risk factors for myocardial infarction: cohort study of UK Biobank participants. *BMJ (Clinical research ed)* 2018;363:k4247. doi: 10.1136/bmj.k4247 [published Online First: 2018/11/09]
- Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. *Lancet (London, England)* 2004;364(9438):937-52. doi: 10.1016/s0140-

BMJ Open

6736(04)17018-9 [published Online First: 2004/09/15]

- Harreiter J, Fadl H, Kautzky-Willer A, et al. Do Women with Diabetes Need More Intensive Action for Cardiovascular Reduction than Men with Diabetes? *Current diabetes reports* 2020;20(11):61. doi: 10.1007/s11892-020-01348-2 [published Online First: 2020/10/10]
 Arora S, Stouffer GA, Kucharska-Newton AM, et al. Twenty Year Trends and Sex Differences in Young Adults Hospitalized With Acute Myocardial Infarction. *Circulation* 2019;139(8):1047-56. doi: 10.1161/circulationaha.118.037137 [published Online First: 2018/12/28]
- 31. Zhao M, Woodward M, Vaartjes I, et al. Sex Differences in Cardiovascular Medication Prescription in Primary Care: A Systematic Review and Meta-Analysis. *Journal of the American Heart Association* 2020;9(11):e014742. doi: 10.1161/jaha.119.014742 [published Online First: 2020/05/21]
- 32. Eindhoven DC, Hilt AD, Zwaan TC, et al. Age and gender differences in medical adherence after myocardial infarction: Women do not receive optimal treatment - The Netherlands claims database. *European journal of preventive cardiology* 2018;25(2):181-89. doi: 10.1177/2047487317744363 [published Online First: 2017/11/23]
- 33. Smolina K, Ball L, Humphries KH, et al. Sex Disparities in Post-Acute Myocardial Infarction Pharmacologic Treatment Initiation and Adherence: Problem for Young Women. *Circulation Cardiovascular quality and outcomes* 2015;8(6):586-92. doi: 10.1161/circoutcomes.115.001987 [published Online First: 2015/10/16]
- 34. Nguyen HL, Goldberg RJ, Gore JM, et al. Age and sex differences, and changing trends, in the use of evidence-based therapies in acute coronary syndromes: perspectives

 from a multinational registry. *Coronary artery disease* 2010;21(6):336-44. doi: 10.1097/MCA.0b013e32833ce07c [published Online First: 2010/07/28]

- 35. Pelletier R, Humphries KH, Shimony A, et al. Sex-related differences in access to care among patients with premature acute coronary syndrome. *CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne* 2014;186(7):497-504. doi: 10.1503/cmaj.131450 [published Online First: 2014/03/19]
- 36. Murphy AC, Yudi MB, Farouque O, et al. Impact of Gender and Door-to-Balloon Times on Long-Term Mortality in Patients Presenting With ST-Elevation Myocardial Infarction. *The American journal of cardiology* 2019;124(6):833-41. doi: 10.1016/j.amjcard.2019.06.008 [published Online First: 2019/07/23]
- 37. D'Onofrio G, Safdar B, Lichtman JH, et al. Sex differences in reperfusion in young patients with ST-segment-elevation myocardial infarction: results from the VIRGO study. *Circulation* 2015;131(15):1324-32. doi: 10.1161/circulationaha.114.012293 [published Online First: 2015/03/21]
- 38. Bugiardini R, Ricci B, Cenko E, et al. Delayed Care and Mortality Among Women and Men
 With Myocardial Infarction. *Journal of the American Heart Association* 2017;6(8) doi:
 10.1161/jaha.117.005968 [published Online First: 2017/09/02]
- Khan NA, Daskalopoulou SS, Karp I, et al. Sex differences in acute coronary syndrome symptom presentation in young patients. *JAMA internal medicine* 2013;173(20):1863-71. doi: 10.1001/jamainternmed.2013.10149 [published Online First: 2013/09/18]
- 40. Canto JG, Rogers WJ, Goldberg RJ, et al. Association of age and sex with myocardial infarction symptom presentation and in-hospital mortality. *Jama* 2012;307(8):813-22.

doi: 10.1001/jama.2012.199 [published Online First: 2012/02/24]

- 41. Moscucci M, Fox KA, Cannon CP, et al. Predictors of major bleeding in acute coronary syndromes: the Global Registry of Acute Coronary Events (GRACE). *European heart journal* 2003;24(20):1815-23. doi: 10.1016/s0195-668x(03)00485-8 [published Online First: 2003/10/18]
- 42. Kolte D, Khera S, Aronow WS, et al. Trends in incidence, management, and outcomes of cardiogenic shock complicating ST-elevation myocardial infarction in the United States. *Journal of the American Heart Association* 2014;3(1):e000590. doi: 10.1161/jaha.113.000590 [published Online First: 2014/01/15]
- 43. Nanna MG, Hajduk AM, Krumholz HM, et al. Sex-Based Differences in Presentation, Treatment, and Complications Among Older Adults Hospitalized for Acute Myocardial Infarction: The SILVER-AMI Study. *Circulation Cardiovascular quality and outcomes* 2019;12(10):e005691. doi: 10.1161/circoutcomes.119.005691 [published Online First: 2019/10/15]
- 44. Elbadawi A, Elgendy IY, Mahmoud K, et al. Temporal Trends and Outcomes of Mechanical Complications in Patients With Acute Myocardial Infarction. *JACC Cardiovascular interventions* 2019;12(18):1825-36. doi: 10.1016/j.jcin.2019.04.039 [published Online First: 2019/09/21]

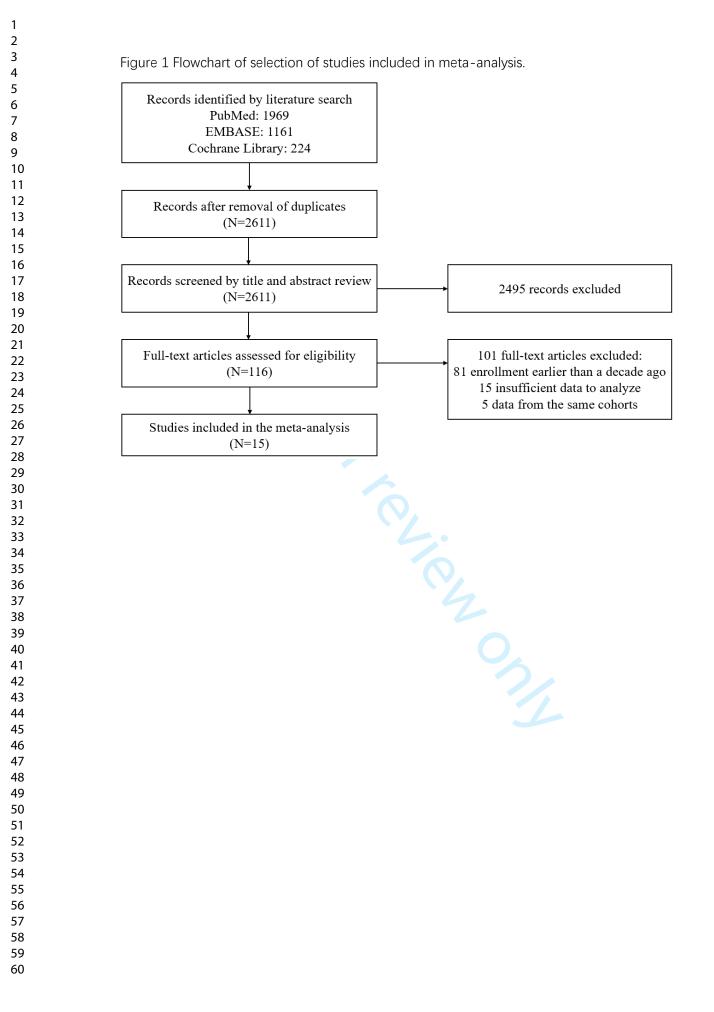
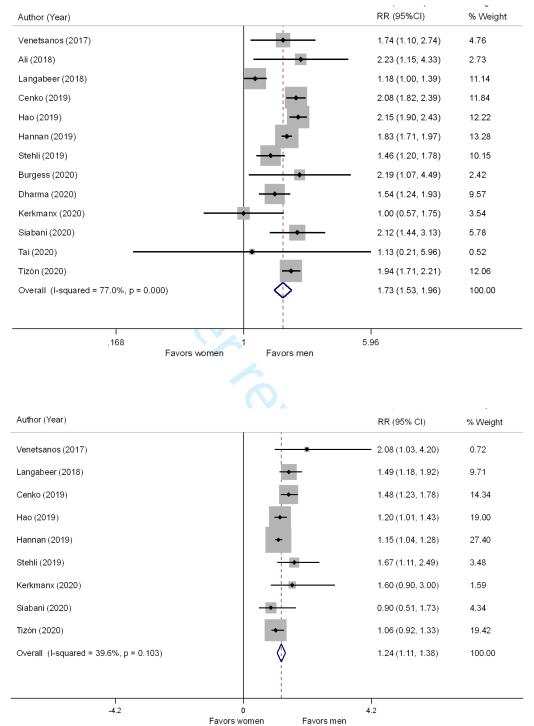
Figure 1 Flowchart of selection of studies included in meta-analysis.

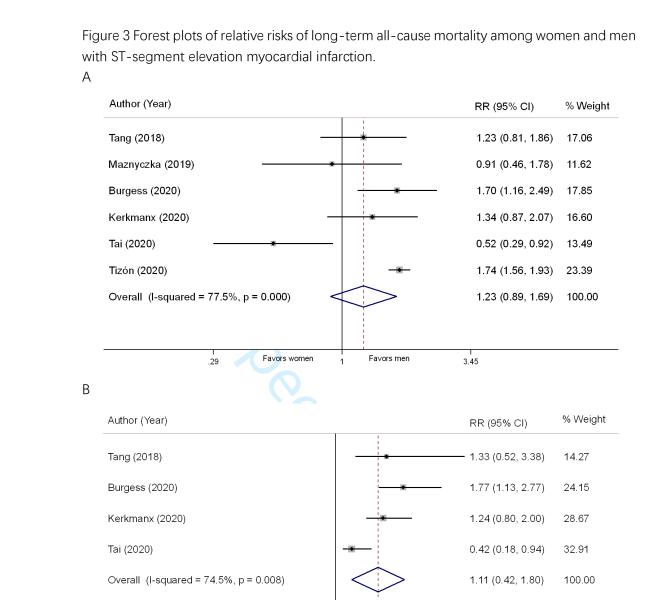
Figure 2 Forest plots of relative risks of short-term all-cause mortality among women and men with ST-segment elevation myocardial infarction.

Forest plots showing unadjusted (A) and adjusted (B) short-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

Figure 3 Forest plots of relative risks of long-term all-cause mortality among women and men with ST-segment elevation myocardial infarction.

Forest plots showing unadjusted (A) and adjusted (B) long-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.


Figure 2 Forest plots of relative risks of short-term all-cause mortality among women and men with ST-segment elevation myocardial infarction.

А

В

Forest plots showing unadjusted (A) and adjusted (B) short-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

Forest plots showing unadjusted (A) and adjusted (B) long-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

Fa∨ors men

Fa∨ors women

-3.38

3.38

eTable 1 Variables adjusted in the adjusted analyses from the included studies.

First Author	Year	Adjusted Variables
Venetsanos	2017	age, weight, prior MI, prior PCI, patient's history of diabetes, hypertension, non-hemorrhagic stroke, gastrointestinal bleeding, time from symptom onset to pre-PCI ECG, admission Killip class, baseline hemoglobin, eGFR, access site, use of Glycoprotein IIIb/IIa inhibitor, bivalirudin and unfractionated heparin, location of MI and revascularization
Langabeer	2018	age, smoking, diabetes, prior CVD, prior stroke, heart failure, shock, length of stay, teaching, insurance, total ischemic time, door to balloon
Tang	2018	age, BMI, LVEF, serum creatinine, use of proton pump inhibitors, use of dual-antiplatelet therapy, previous PCI, diabetes mellitus, hypertension, previous stroke, current smoker, thrombocytopenia, use of femoral approach, use of intra-aortic balloon pump, and multivessel disease
Cenko	2019	age, family history of CAD, diabetes, hypertension, hypercholesterolemia, current smoking, former smoking, prior angina pectoris, prior myocardial infarction, prior PCI, prior CABG, peripheral artery disease, prior stroke, ST-segment elevation in anterior leads (at ECG), systolic blood pressure at baseline, heart rate at baseline, serum creatinine at baseline, Killip Class ≥2
Нао	2019	Age, medical insurance status, acute heart failure, cardiogenic shock, cardiac arrest at admission, heart rate and systolic blood pressure, diabetes mellitus, smoking, history of CHD, heart failure, renal failure, and cerebrovascular disease, prehospital statin use, renal insufficiency, and transfer status.
Hannan	2019	age, STEMI location, heart rate, mean arterial pressure, history

1	
2 3	
4 5	
6 7	
8 9	
10 11	
12	
13 14	
15 16	
17 18	
19 20	
21 22	
23 24	
25 26	
27	
28 29	
30 31	
32 33	
34 35	
36 37	
38 39	
40 41	
42 43	
44 45	
46 47	
48 49	
50 51	
52	
53 54	
55 56	
57 58	
59 60	

		of hospitalization in last year, history of PCI, history of CABG surgery, septicemia/sepsis/systemic inflammatory response /shock, metastatic cancer/acute leukemia, diabetes with acute complications, end stage liver disease, inflammatory bowel disease, coagulation defects and other specified hematological disorders, dementia, polyneuropathy, muscular dystrophy, seizure disorders and convulsions, coma/brain compression/anoxic damage, cardiorespiratory failure and shock, congestive heart failure, specified heart arrhythmias, ischemic or unspecified stroke, hemiplegia/hemiparesis, vascular disease with complications, vascular disease without complications, aspiration and specified bacterial pneumonias, acute renal failure, chronic kidney disease, Stage 5, unspecified renal failure, nephritis, pressure ulcer of skin with partial thickness skin loss*, pressure pre-ulcer skin changes, chronic
		ulcer of skin except pressure ulcer, lower limb/amputation
		complications
Maznyczka	2019	NA
Stehli	2019	age, diabetes mellitus, eGFR, previous PCI and/or coronary artery bypass grafting, history of peripheral vascular disease and CVD, LVEF, out-of-hospital and in-hospital cardiac arrest cardiogenic shock, and occurrence time of symptom onset
Burgess	2020	NA
Dharma	2020	NA
Kerkmanx	2020	NA
Siabani	2020	BMI \geq 25, hypertension, diabetes, current smoking hypercholesterolemia, congestive heart failure, Killip class (at first presentation) \geq II, symptom-to-balloon time> 360 min and door-to-balloon time > 90 min

Tai	2020	NA
Tizón	2020	age, diabetes mellitus, recruitment year, time from symptom
		onset to culprit coronary artery opening, and Killip class

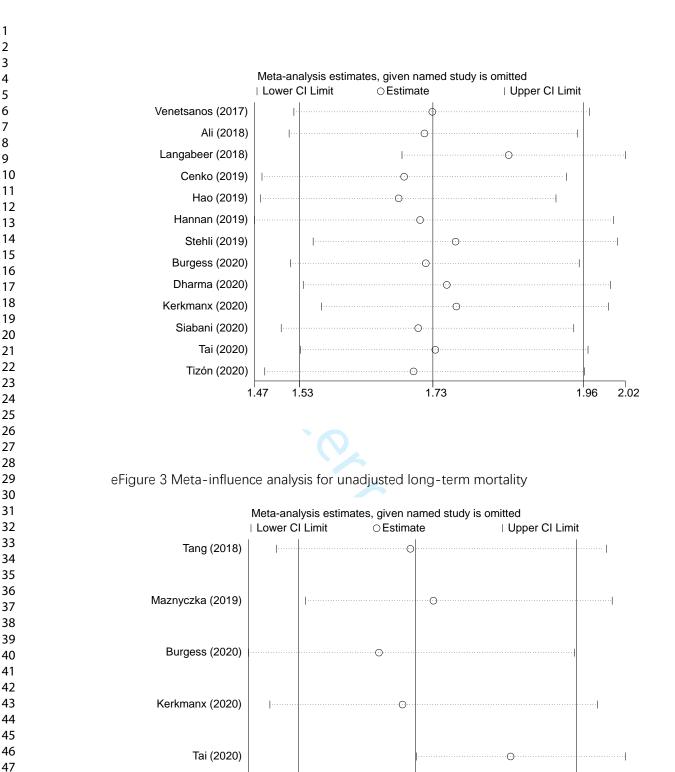
MI: myocardial infarction, PCI: percutaneous coronary intervention, ECG: electrocardiograph, eGFR: estimated glomerular filtration rate, CVD: cardiovascular disease, BMI: body mass index, LVEF: left ventricular ejection fraction, CABG: coronary artery bypass graft, CAD: coronary artery disease,

to occure work

1 2 3 4 5 6	
7 8 9 10 11 12 13	
14 15 16 17 18 19	
20 21 22 23 24 25	
26 27 28 29 30 31	
32 33 34 35 36 37	
38 39 40 41 42 43	
44 45 46	

eTable 2 Assessment of study quality using Newcastle-C	Ottawa scale.
--	---------------

First	Year	Selection				Comparabilit	Outcome			Total
Author		Representativenes	Selection	Ascertainmen	Outcome of	У	Assessmen	Follow-up	Adequac	point
		s of the exposed	of the no	t of exposure	interest not		t of	long enough	y of	S
		cohor	exposed	to implants	present at		outcome	for	follow-	
			cohort		start of study			outcomes to	up	
								occur		
Venetsano	2017	*	*	*	*	**	*	λ	*	8
S					0.					
Ali	2018	X	١	*	*	١	*	λ	*	4
Langabeer	2018	*	*	*	*	*	*	λ	*	7
Tang	2018	λ	١	*	*	**	*	*	*	7
Cenko	2019	*	*	*	*	**	*	λ	*	8
Нао	2019	*	*	*	*	**	*	λ	*	8
Hannan	2019	*	*	*	*	**	*	λ	*	8
Maznyczka	2019	λ	Λ	*	*	١	*	*	*	5
Stehli	2019	*	*	*	*	**	*	λ	*	8


2020	λ	λ	*	*	**	*	*	*	7
2020	λ	۸	*	*	*	*	*	*	6
« 2020	*	*	*	*	λ	*	*	*	7
2020	Λ	1	*	*	*	*	λ	*	5
2020	λ	١	*	*	**	*	*	*	7
2020	*	*	*	*	**	*	*	*	9

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

eFigure 1

Study		%
ID	RR (95% CI)	Weigh
1		
Venetsanos (2017)	1.74 (1.10, 2.74)	4.76
Cenko (2019)	2.08 (1.82, 2.39)	11.84
Нао (2019)	2.15 (1.90, 2.43)	12.22
Hannan (2019) 🔶 🔶	1.83 (1.71, 1.97)	13.28
Stehli (2019)	1.46 (1.20, 1.78)	10.15
Tizón (2020)	1.94 (1.71, 2.21)	12.06
Subtotal (I-squared = 63.4%, p = 0.018)	1.90 (1.73, 2.09)	64.30
0		
Ali (2018)	2.23 (1.15, 4.33)	2.73
Langabeer (2018)	1.18 (1.00, 1.39)	11.14
Burgess (2020)	2.19 (1.07, 4.49)	2.42
Dharma (2020)	1.54 (1.24, 1.93)	9.57
Kerkmanx (2020)	1.00 (0.57, 1.75)	3.54
Siabani (2020)	- 2.12 (1.44, 3.13)	5.78
Tai (2020)	1.13 (0.21, 5.96)	0.52
Subtotal (I-squared = 58.1%, p = 0.026)	1.52 (1.20, 1.93)	35.70
Overall (I-squared = 77.0%, p = 0.000)	1.73 (1.53, 1.96)	100.00
.168 Favors women 1 Favors men	I 5.96	

eFigure 2 Meta-influence analysis for unadjusted short-term mortality

eFigure 4 Funnel plots for publication bias for unadjusted short-term (A) and long-term (B) mortality

.

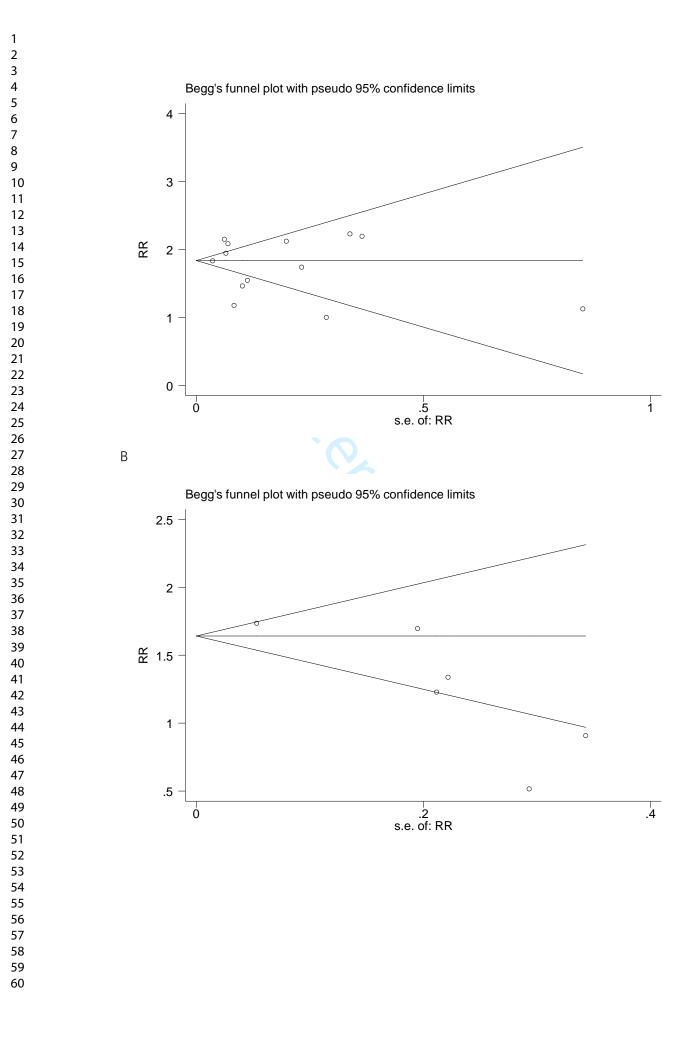
1.23

1.69

1.83

А

Tizón (2020)


0.75

0.89

48 49

50

57 58

PRISMA 2020 Checklist

Section and Topic	ltem #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	Title
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Abstract
INTRODUCTION	[
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Page 4
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Page 4
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Page 5
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Page 4
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Page 4
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Page 5
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Page 5
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Page 5
2	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Page 5
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Page 5
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Page 5
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Page 5
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Page 5
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Page 5
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Page 5
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	Page 5
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	Page5
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	Page 5
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Page 5

Page 51 of 87

PRISMA 2020 Checklist

Section and Topic	ltem #	Checklist item	Location where item is reported
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Figure 1
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Page 6
⁾ Study characteristics	17	Cite each included study and present its characteristics.	Table 1
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Page 7
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Table 2
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Page 6
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Page 6
)	20c	Present results of all investigations of possible causes of heterogeneity among study results.	Page 6
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	Page 7
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	Page 7
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Page 6
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Page 7
1	23b	Discuss any limitations of the evidence included in the review.	Page 8-9
)	23c	Discuss any limitations of the review processes used.	Page 8-9
	23d	Discuss implications of the results for practice, policy, and future research.	Page 7-8
OTHER INFORMA	TION		
Registration and	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	
protocol	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	
Competing interests	26	Declare any competing interests of review authors.	
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	

BMJ Open

44 From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 45 10.1136/bmj.n71 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml For more information, visit: <u>http://www.prisma-statement.org/</u>

- 46
- 47

Contemporary sex differences in mortality among patients with ST-segment elevation

myocardial infarction: a systematic review and meta-analysis

Short title : Sex differences in STEMI

Authors:

Ziwei Xi¹, Hong Qiu¹, Tingting Guo², Yong Wang¹, Jianan Li^{3,1}, Yang Li¹, Jianfeng Zheng¹,

Runlin Gao¹

 Department of Cardiology, Coronary artery disease center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
 Thrombosis Center, National Center for Cardiovascular Diseases, State Key

Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

3. Department of Cardiology and Macrovascular Disease, Beijing Tiantan Hospital,

Capital Medical University, Beijing, China

Corresponding author:

Prof. Hong Qiu, M.D.

E-mail address: qiuhong6780@sina.com

Department and affiliation: Department of Cardiology, Coronary artery disease center,

Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of

Medical Sciences and Peking Union Medical College, Beijing, China

Telephone: 0016-13261179000

 Address: No.167 North Lishi Road, Xicheng District, Beijing, China

for occurrence with

Contemporary sex differences in mortality among patients with ST-segment elevation

myocardial infarction: a systematic review and meta-analysis

Objectives: To assess the effect of sex differences on short- and long-term mortality among patients with ST-segment elevation myocardial infarction (STEMI).

Design: Systematic review and meta-analysis of contemporary available evidence.

Setting: PubMed, Embase and Cochrane Library were searched for relevant studies reporting sex specific outcomes among patients with STEMI published between January 1, 2010 to August 1, 2020. Risk ratio (RR) 95% 95% confidence intervals (CIs) were measured using DerSimonian and Laird random-effects model. Sensitivity analyses were performed and publication bias was also checked. All statistical analyses were performed using STATA version 15.0.

Participants: Studies providing data about short- or long-term mortality stratified by sex in patients with STEMI were included. Only study conducted in last ten years were included.

Primary and secondary outcome measures: The primary outcome was all-cause death at short-(in-hospital or 30 days) and long-term (at least 12 months) follow-up.

Results

A total of fifteen studies involving 128,585 patients (31,706 [24.7%] female and 96,879 [75.3%] male) were included. In the unadjusted analyses, female were at a higher risk of short-term mortality (RR, 1.73; 95%Cl, 1.53-1.96, P<0.001, I²=77%) but not long-term mortality (RR, 1.23; 95%Cl, 0.89-1.69, P=0.206, I²=77.5%). When adjusted effect estimates from individual studies were used in meta-analysis, the association between female and higher risk of short-term mortality remained significant (RR, 1.24; 95%Cl, 1.11-1.38, P<0.001, I²=39.6%). And adjusted long-term mortality was also similar between female and male (RR, 1.11; 95%Cl, 0.42-1.80, P=0.670, I²=74.5%).

Conclusions

An increased short- but not long-term mortality was found in female with STEMI. After adjustment for baseline cardiovascular risk factors and clinical profiles, short-term mortality remains higher in female with STEMI compared to male, indicating the need for further improvements in management in female patients.

Strengths and limitations of this study

- We assessed the contemporary effect of sex differences on mortality among patients with STEMI by meta-analysis of studies from the last decade.
- A greater number of potentially eligible articles were screened and the large sample size ensures adequate statistical power to detect even a small effect of interest.
- Sensitivity analyses by excluding one study at a time and restricting to studies with high quality or with large sample size got consistent results.
- Substantial and nonnegligible heterogeneity still exist in our meta-analysis and might result in potential bias.
- Residual confounding bias could not be totally excluded due to the observational study design of most included studies.

BMJ Open

Contemporary sex differences in short- and long-term mortality among patients with STsegment elevation myocardial infarction: a systematic review and meta-analysis

Introduction

Acute myocardial infarction remains one of leading causes of mortality in both men and women worldwide despite improvement of acute cardiac care.¹ Numerous studies have reported that women have a higher risk of in-hospital and long-term adverse outcomes following ST-segment elevation myocardial infarction (STEMI) compared with men.² Confounders including advanced age and more frequent comorbidities, such as hypertension and diabetes mellitus^{3 4}, might contribute to excess mortality in women. Moreover, previous studies show lower rates of guideline directed medical therapy and revascularization are also associated with poorer prognosis for women with STEMI.⁵

Sex discrepancies in management and outcomes after STEMI have been increasingly reported in the literature and raised public awareness.⁶ Major progress in therapy for myocardial infarction and primary and secondary preventive interventions has been made to reduce cardiovascular mortality for women.¹⁷ And there have been marked reductions in cardiovascular disease mortality in women with acute myocardial infarction in the past two decades.¹ Conflicting results are noted in recent studies on sex differences following STEMI. It is unclear whether the sex differences still exist, in view of substantial improvements in prognosis of cardiovascular disease over the past decade.

In order to assess the contemporary effect of sex differences on short- and long-term

mortality among patients with STEMI, we performed a systematic review and metaanalysis of all available evidence from last decade reporting sex-specific outcomes after STEMI.

Methods

The present systematic review and meta-analysis was performed following the principle of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.8

Literature search

We conducted a comprehensive search of the PubMed, EMBASE, and Cochrane Library from January 1, 2010 to August 1, 2020 to identify studies from the last decade that described sex differences in in short- or long-term mortality among patients with STEMI. Both observational studies and randomized clinical trials were eligible. We queried MeSH and the abstract text for the following three search terms: gender part (including "gender", "female", "male", "gender differences", "sex differences" or "sex characteristics"); outcome part (including "death", "mortality", "hospital mortality", "cardiac death", "sudden cardiac death", "all-cause mortality", "long term mortality", "one year mortality", "cardiovascular mortality" or "short term mortality"); myocardial infarction part (including "myocardial infarction", "acute myocardial infarction", "myocardial necrosis", "ST segment elevation myocardial infarction", "primary PCI", "primary percutaneous coronary intervention" or

 BMJ Open

"primary angioplasty") to identify relevant studies. There was no language restriction or age limit.

Study selection

According to the aim of our analyses, studies were included in this systematic review if data about short- (in-hospital or 30 days) or long-term (at least 12 months) mortality stratified by sex in patients with STEMI were reported. Two reviewers identified studies eligible for further review by performing an initial screen of titles or abstracts of the search results. Subsequently, a second screen of full texts eligibility was performed by another two reviewers. Studies had to fulfil the following criteria to be included in the present analyses: i) studies reporting data on all-cause mortality specific to STEMI population; and ii) studies providing enough details to obtain numbers of events or incidence rates according to sex; and iii) enrollment starting earlier than a decade ago. Editorials, letters, conference proceedings and abstracts were considered to be eligible only if sufficient information was available in abstracts or associated tables or figures. We excluded studies if they were review articles or case reports, or if they involved pregnant participants, critically ill patients, or provided insufficient data to allow for risk estimates to be calculated. Any disagreement was reviewed by a third reviewer and resolved by consensus.

Data extraction

Detailed data from selected studies were extracted independently by two reviewers using a standardized form independently. Data about study and participants characteristics,

including year of study, sample size, time of enrollment, geographical location, endpoints of study, and follow-up duration, were collected. Any discrepancies were reviewed by a third reviewer and resolved by consensus. The quality of included studies was evaluated by Newcastle-Ottawa scale using prespecified items comprised of patients' selection (representativeness and selection of patients, ascertainment of exposure), comparability of cohorts based on design or analysis, and outcome (assessment of outcomes, adequacy of follow-up).⁹ A quality score (0–9 points) was generated according to a maximum of 1 point for each item.

Patient and public involvement

Due to the nature of the systematic review and meta-analysis, this study did not involve patients and the public in the design, or conduct, or reporting or dissemination plans.

Statistical analysis

The risk ratios (RRs) and 95% confidence interval (CI) were primarily used to represent the effect of sex differences on mortality after STEMI. And data were combined using random-effects model of DerSimonian and Laird with inverse variance weighting. Randomeffect model was used due to substantial clinical and statistical heterogeneity. Following analyses were performed: i) unadjusted RRs for short- and long-term all-cause mortality using raw number of death and total participants at risk for death specific to each sex, ii) adjusted RRs for short- and long-term all-cause mortality using adjusted RRs if they were described in those included studies. In terms of short-term mortality, the RRs for in-hospital

BMJ Open

and 30-day mortality were also calculated respectively.

We assess heterogeneity across studies with Cochran's Q test and I2 test, with P<0.1 or 12 >50% considered significant. We also performed meta-regression to identify the potential sources of heterogeneity in the included studies. The potential sources were differences in diabetes, hypertension, hyperlipidemia, smoking, prior MI, and prior PCI. Furthermore, stratified analysis was conducted as well by dividing the included studies into different subgroups based on the Newcastle-Ottawa scale scores (>7 points or ≤7 points) to assess the potential sources of heterogeneity. To assess the potential effect of publication bias, we inspected funnel plots for asymmetry and used the Egger's regression asymmetry test in which P<0.05 was considered to indicate significant publication bias. Sensitivity analyses was conducted by excluding one study at a time and comparing the results with the complete one. In addition, we also performed sensitivity analyses by restricting to high-quality studies with a Newcastle-Ottawa scale of 5 points or more and restricting to studies with sample size bigger than 1000 participants. All statistical analyses were performed using STATA version 15.0 (Stata Corp, College Station, TX). Differences were considered statistically significant at P < .05 (2-sided).

Results

Literature search

Study selection details were outlined in Figure 1. The literature search identified 2,611 potentially relevant articles. After screening based on title and abstract review, 2495

records were excluded. A total of 116 full-text were finally assessed for eligibility, with 96 papers excluded due to enrollment starting earlier than a decade ago or no sufficient gender specific data to analyze. Another 5 papers reviewed in detail were excluded after due to data from the same cohorts. A total of 15 studies were finally included in the present systematic review and meta-analysis.¹⁰⁻²⁴

Study characteristics

 Of the 15 included studies, 8 were multicenter studies and 4 studies enrolled more than 10,000 patients with STEMI. See Table 1 for further information of included studies. Baseline characteristics of participants were missing in some included studies, but all included studies provided sufficient data for analysis of sex differences in clinical outcomes. Except for 1 study, which was a prespecified gender analysis of randomized controlled trial, the remaining 14 were observational studies. Among the 10 included studies which reported adjusted analyses, most studied adjusted for age, diabetes mellitus, hypertension, and prior myocardial infarction/PCI, while some adjusted for renal insufficiency, cardiogenic shock, cardiac arrest at admission and occurrence time of symptom onset. Variables that were adjusted in the adjusted analyses from the included studies were presented in eTable 1 of the Supplementary Material. Results of assessment of study quality using Newcastle-Ottawa scale were shown in eTable 2 in the Supplementary Material.

Patient characteristics

A total of 128,585 patients with STEMI (31,706 [24.7%] female and 96,879 [75.3%] male) were involved in the 15 included studies. Female tended to be older and had higher prevalence of diabetes mellitus in all included studies. And in most studies, other important comorbidities, including hypertension and hyperlipidemia, were more frequent in female. Greater proportions of male were smokers and had prior PCI or myocardial infarction. Besides, some studies reported that door-to-balloon time and symptom onset to balloon time were longer in female than male. Part of patient baseline characteristics were summarized in Table 2.

Short-term all-cause mortality

Thirteen studies reported sex-specific unadjusted short-term mortality (7 studies with 30day mortality and 6 studies with in-hospital mortality) of patients with STEMI. There were 2,873 of 31,409 (9.1%) cases of all-cause mortality in female compared with 4,380 of 95,610 (4.6%) in male. Female were at a significantly higher risk of short-term mortality (RR, 1.73; 95%CI, 1.53-1.96, P<0.001, I²=77%) compared with male (Figure 2 A). Nine studies involving 119,379 patients reported adjusted short-term mortality specific to sex. In adjusted analysis, the association between female and higher risk of short-term mortality remained significant (RR, 1.24; 95%CI, 1.11-1.38, P<0.001, I²=39.6%) (Figure 2 B). However, the strength of association calculated with adjusted RRs from these 9 studies was attenuated.

Subgroup analysis demonstrated that the results of studies with Newcastle-Ottawa scale >7 points (RR, 1.90; 95%CI, 1.73-2.09, P=0.018, I^2 =63.4%) and studies with ≤7

points (RR, 1.52; 95%Cl, 1.20-1.93, P=0.026, I²=58.1%) were consistent in unadjusted short-term mortality (See eFigure 1 in the Supplementary Material). The impact of sex on in-hospital (RR, 1.71; 95%Cl, 1.27-2.31, P<.001, I²=86.4%) and 30-day mortality (RR, 1.81; 95%Cl, 1.62-2.02, P<.001, I²=56.6%) were consistent. The meta-analysis performed in studies of patients undergoing PCI for STEMI also showed increased unadjusted mortality (RR, 1.45; 95%Cl, 1.05-2.00, P=0.026, I²=39.5%) in female patients.

Long-term all-cause mortality

Six studies involved 18,018 patients with STEMI (4,191 female and 13,827 male) and followed up for more than 1 year, and reported all-cause mortality for female and male. The incidence of long-term all-cause mortality was 13.9% (n=584) in female and 8.7% (n=1202) in male. In unadjusted analysis, no significant sex difference was found in long-term mortality (RR, 1.23; 95%Cl, 0.89-1.69, P=0.206, I²=77.5%) (Figure 3 A). The unadjusted long-term mortality was also similar between female and male patients undergoing PCI (RR, 1.28; 95%Cl, 0.95-1.73, P=0.108, I²=0.0%). And the adjusted analysis of the pooled results from four studies, also showed a similar risk of mortality at long-term follow-up in female compared with male (RR, 1.11; 95%Cl, 0.42-1.80, P=0.670, I²=74.5%) (Figure 3 B).

Meta-Regression Analysis, sensitivity analyses and publication bias

According to meta-regression analysis, differences in prevalence of diabetes (β coefficient, 0.248; P=0.337; adjusted R²=1.31%; I²=80.86%; τ^2 =0.044), hypertension (β coefficient, -

0.255; P=0.538; adjusted R²=24.22%; I²=41.04%; τ^2 =0.008), hyperlipidemia(β coefficient, 0.260; P=0.415; adjusted R²=-1.84%; I²=83.59%; τ^2 =0.050), smoking (β coefficient, -0.040; P=0.255; adjusted R²=17.86%; I²=79.41%; τ^2 =0.045), prior MI (β coefficient, -2.725; P=0.126; adjusted R²=60.30%; I²=60.19%; τ^2 =0.032), and prior PCI (β coefficient, 0.109; P=0.896; adjusted R²=-58.31%; I²=61.73%; τ^2 =0.042) between sexes were not identified as significant sources of heterogeneity for short-term all-cause mortality. Given that not all included study provided information on confounders stratified by sex, the results of meta-regression analyses should be interpreted with caution.

Sensitivity analysis by excluding one study at a time (See eFigure 2 in the Supplementary Material) or restricted to data from studies with sample size bigger than 1000 (RR, 1.75; 95%Cl, 1.54-1.99, P<.001, I²=82.9%) both indicated that none of the studies affected the results of short-term mortality in this meta-analysis significantly. In analysis for long-term mortality, sensitivity analysis showed a possibly higher influence on the result attribute to the study of Tai et al (See eFigure 3 in the Supplementary Material). After removing this study from meta-analysis, the association of female with increased long-term mortality became significant (RR, 1.50; 95%Cl, 1.23-1.83, P<.001, I²=40.9%). We found no evidence of publication bias across studies based on visual inspection of funnel plots (See eFigure 4 in the Supplementary Material) and the results from Egger's tests for short-term mortality (P=0.462) and for long-term mortality (P=0.053).

Discussion:

Our systematic review and meta-analysis of contemporary literature on sex differences among patients with STEMI demonstrate that female have a higher risk of short- but not long-term mortality compared with male with STEMI. Furthermore, after adjustment for baseline cardiovascular risk factors and clinical profiles, the sex differences in short-term mortality are attenuated but remain significant, while female have the similar long-term mortality with male.

Our results are somewhat in accordance with several previously published meta-analysis.² ²⁵ A considerable number of studies have consistently suggested that women were at a higher risk of short-term mortality after ACS. However, whether risk of long-term mortality is also higher in women with ACS remains under debate. Some studies indicated that women with STEMI had a higher 1-year rate of death compared to men²⁶, while the 1-year mortality rate was conversely lower in women than men in some other studies^{23 24}. In our study, with respect to short-term mortality, the analyses of studies with high or low quality, and big or small sample size yielded similar results. However, in terms of long-term mortality, caution is needed when interpreting our finding of non-significant increased longterm mortality in adjusted analyses, due to the results of sensitivity analysis which showed a significant association between female and increased long-term mortality after removing one study from adjusted analyses.

It is widely accepted that there are significant differences in outcomes of women and men with acute myocardial infarction. In our study, after adjusted for participants' baseline

BMJ Open

cardiovascular risk factors and clinical profiles, the strength of association between gender and short-term mortality was substantially attenuated, which suggested that poorer baseline cardiovascular risk profile partially explained the impact of sex differences on mortality. Multiple studies have shown that women with STEMI present at older age and have a higher burden of comorbidities, contributing to the sex differences in mortality after STEMI.²⁷ All studies included in our meta-analysis demonstrate that female patients are older and with more diabetes mellitus as well as hypertension. In addition, some sexspecific studies found that certain risk factors and comorbidities were more potent in women.²⁸ Diabetes mellitus , hypertension and smoking status are more strongly associated with increased risk of cardiac events in women compared with men.^{27 29}

Notably, that these differences mentioned above still could not completely explain the gap in mortality between sexes. It has been proved that women with acute myocardial infarction were less likely to be treated with guideline directed medical therapy and less likely to receive primary reperfusion therapy including primary percutaneous coronary intervention or fibrinolysis.³⁰ Regarding medical therapy, numerous studies conducted around the world consistently demonstrate female survivors are receiving less optimal medical therapy after acute myocardial infarction during hospitalization or at discharge.^{31 32} Though there might be no differences in treatment adherence between men and women, some studies report significant sex disparities in initiation of appropriate pharmacotherapy after myocardial infarction.³³ Results from these observational studies have shown women are receiving less optimal medical therapy including aspirin, statins, and angiotensin-converting enzyme

 inhibitors in all age groups, especially young women, and suggested that clinicians and patients may benefit from better education and awareness of undertreatment of younger women.^{33 34}

Lower rates of revascularization are observed among women with STEMI compared with men in several studies despite proven benefit of this therapy.³⁵ Moreover, the sex differences might be driven by delays in presentation to hospital and women with STEMI were more likely to experience longer delays than men. Although a great improvement in emergency medical services and timely revascularization over the past decades, recent studies show that women with STEMI still present later and have a longer ischemic time than men. Previous studies have shown consistently that women have longer door-to balloon times and longer door-to needle times.^{36 37} In addition, women are also more likely to exhibit longer pre-hospital delays in seeking medical care after the development of symptoms suggestive of myocardial infarction. Although there have been significant reductions in patient and system delay in the last decade, women continue to have longer presentation and treatment times.³⁸ Sex differences also exist in clinical presentation of STEMI. Although chest pain was the most common ACS symptom in both sexes, women were more likely to present without chest pain than men.^{39 40} Lower rates of typical chest pain reported among women with STEMI may also influence provider decision-making to pursue less aggressive care including invasive revascularization.

Some included studies of our meta-analysis enrolled STEMI patients in general¹⁴⁻¹⁶, while

some others enrolled patients undergoing PCI for STEMI^{11 13 18}. The different prognosis of patients receiving reperfusion therapy or no-reperfusion therapy might be a potential source of heterogeneity of our study. Nevertheless, our results are completely consistent with a previous meta-analysis from Pancholy et al., which investigated sex differences in mortality among patients with STEMI treated with primary PCI.² Its results demonstrated that, when adjusted RRs were used, the increased risk for 1-year mortality in women was no longer significant and the risk of in-hospital mortality still significantly elevated. It should be noted that more than 50% of patients were treated with PCI in the most study conducted among the general STEMI patients and included by our analysis, even more than 90% in some included studies.^{12 24} The increasing rate of primary PCI in recent years might be a reason for the consistency of our fundings and previous studies conducted specifically among STEMI patients undergoing PCI

Complications including bleeding, heart failure and mechanical complications are more likely to develop in women with acute myocardial infarction and increase the risk of mortality.^{14 41 42} Bleeding secondary to antithrombotic therapies and invasive procedures is more frequent in women.⁴³ Three included studies reported incidence of bleeding following STEMI and they all found that women were at higher risk of bleeding.^{10 13 18} One study included in our analysis examined the relationships among sex, acute heart failure, and related outcomes after STEMI.¹⁴ Its results demonstrate that women are at higher risk to develop de novo heart failure after STEMI and women with de novo heart failure have worse survival compared with man. However, we could not compare the incidence of these

complications due to the lack of sufficient data. Mechanical complications requiring surgical intervention are also much more common in women after acute myocardial infarction and associated with high mortality rates.⁴⁴

Several limitations of this meta-analysis should be considered. First, the included studies are all observational studies except one post hoc analysis of randomized controlled trial. Hence, there may be residual confounding bias inherent in the observational study design in our meta-analysis. Second, in adjusted analysis, not all included studies adjusted for the same confounders and not all studies reported adjusted RRs. The confounders which were adjusted in the included studies might differ greatly across studies. Third, there was substantial heterogeneity in our meta-analysis, which could partly be attributed to the wide variability in the sample sizes, locations, and treatment regimens across included studies. Additionally, although we calculated adjusted RRs for all-cause mortality, it needed to be noted that relevant confounders might have differed across studies. Fourth, the analysis of long-term mortality, especially the adjusted analysis, included far fewer studies compared with analysis of short-term mortality. Hence, there might be significant bias in the results about long-term mortality.

In conclusion, our meta-analysis, pooling data from contemporary literature, shows that women with STENI have a higher risk of short-term mortality but not long-term mortality. The effect of sex differences on mortality in patients with STEMI remain significant after adjustment for baseline cardiovascular risk factors and clinical profiles, suggesting that

public awareness of increased risk and further improvements in management in women with STEMI are necessary.

Other Information:

Contribution statement

Ziwei Xi: Study concepts, Study design, Literature research, Statistical analysis, Manuscript preparation, Manuscript editing. Tingting Guo and Yong Wang: Data acquisition, Data analysis/interpretation. Jianan Li, Yang Li, Jianfeng Zheng and Runlin Gao: Manuscript revision/review. Hong Qiu: Manuscript final version approval.

Conflict of interest

The authors declare that there is no conflict of interest.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Ethics approval

The institutional central committee at Fuwai Hospital approved that the study protocol and inform consent was not required for a systematic review and meta-analysis.

Data sharing statement

As this is a systematic review and meta-analysis, the data used in the study have already been published by the authors of the included studies. All data relevant to the study are included in the article or uploaded as supplementary information.

to beet terien only

Page 73 of 87

 Table 1 Characteristics of included studies.

First	Year	Region	Study design	Data source	Multicenter	Time of	Number of	Female	Endpoint	Follow-up
Author						enrollment	STEMI			
							patients			
Venetsano	2017	13	Prospective	Clinical	Yes	Sep, 2011-	1,862	369	Major adverse	30 d
s		countries		registry		Oct, 2013		(20.0)	cardiovascular events	
									and definite stent	
									thrombosis	
Ali	2018	Germany	Prospective	Administrativ	No	2013-2017	312	101	All-cause in-hospital	NA
				e database		` C		(32.4)	mortality	
Langabeer	2018	US	Prospective	Clinical	Yes	Jan, 2010-	9,674	2,569	In-hospital mortality	NA
				registry		Dec, 2015		(26.6)		
Tang	2018	China	Prospective	Administrativ	No	Jan, 2013-	1,238	210 (1.9)	Major adverse cardiac	730 ± 30
				e database		Dec, 2013			and cerebrovascular	
									events	

Cenko	2019	12	Prospective	Clinical	Yes	Jan, 2010-	10,443	3,112	30-day all-cause	30 d
		Europea		registry		Jul, 2018		(29.8)	mortality	
		n								
		countries								
Hao	2019	China	Prospective	Clinical	Yes	Nov, 2014-	50,203	11,016	In-hospital mortality	NA
			(registry		Jun, 2018		(21,9)		
Hannan	2019	US	Retrospective	Administrativ	Yes	Jan, 2013-	23,809	7,791	In hospital/30-day	30 d
				e database		Dec, 2015		(32.7)	mortality	
Maznyczka	2019	UK	Retrospective	Clinical	No	July, 2011-	324	87 (26.9)	All-cause death/ first	5 years
				registry		Nov, 2012			heart failure	
							ČO,	7/	hospitalization	
Stehli	2019	Australia	Prospective	Clinical	Yes	2013-2016	6,431	1,317	In hospital/30-day major	30 d
				registry				(20.5)	adverse events, and	
									major bleeding	
Burgess	2020	Australia	Prospective	Administrativ	No	Dec, 2010-	589	123 (21)	Cardiac death and	2 years

Page 75 of 87

45 46 BMJ Open

First	Year	Age, me	an (SD),	Diabete	Hypertensio	Нуре	rlipidemi	Smokin	Prior	Prior
able 2 Bas	eline cha	racteristics o	of participan	ts in included studio	es.			<i>J</i>		
Tizón	2020	Spain	Prospectiv	registry	Yes	2010-2016	14,690	3,486 (23.7)	30-day/1-year all-ca mortality	use 1 year
Tai	2020	China	Retrospec	e database		Jan, 2013- Dec, 2017		56 (30.8)	In hospital/1-y	
Siabani	2020	Iran	Prospectiv	ve Clinical registry	No	Jun, 2016- May, 2018	1,484	311(21)	In-hospital mortality	NA
Kerkmanx	2020	Netherla nds	Retrospec	tive Administrative e database	/ Yes	2015-2016	787	229 (29)	All-cause mortality	1 year
Dharma	2020	Indonesi a	Retrospec	tive Administrative e database	/ No	Feb, 2011- Aug, 2019	6,557	929 (14.2)	All-cause mortality	30 d and year

Author		years		s, n (%)		n, n (%)		a, n (%)		g, n (%)		MI, n		PCI, n	
												(%)		(%)	
		Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Femal	Male	Fema	Male
												е		le	
Venetsan	2017	69 (13.0)	59 (11.0)	48	205	<mark>190</mark> (51.5)	605	<mark>117</mark> (31.7)	536	NA	NA	24	135	16	124
os				(13.0)	(13.7		(40.5		(35.9			(6.5)	(9.0)	(4.3)	(8.3)
)	0))						
Ali	2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Langabee	2018	62.5	60.2	759	1,975	NA	NA	1,265 (49.3)	3,693	951	2,763	435	1,304	NA	NA
r		(13.6)	(12.5)	(29.6)	(27.8				(52.0	(37.0)	(38.9	(16.9)	(18.4		
))))		
Tang	2018	64.5 (9.3)	54.4	66	311	<mark>141</mark> (67.1)	659	125 (59.5)	749	33	957	10	83	60	282
			(10.7)	(31.4)	(25.1		(53.3		(60.3	(15.7)	(77.3	(4.8)	(6.7)	(28.6)	(22.8
)))))
Cenko	2019	66.1	59.7	925	1,531	<mark>2,322</mark> (74.6)	4,502	1,353 (43.3)	3,100	1,010	3,714	301	842	306	762

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 77 of 87

 BMJ Open

		(11.7)	(11.7)	(29.7)	(20.9		(61.4		(42.3	(32.5)	(50.7	(9.7)	(11.5	(9.8)	(10
))))))
Hao	2019	69.0	61.1	10,141	24,08	15,607	38,42	17,996 (85.4)	50,94	1,719	32,37	NA	NA	NA	NA
		(10.6)	(12.4)	(48.1)	2	(74.1)	6		4	(8.2)	7				
					(39.4		(62.9		(83.3		(53.0				
))))				
Hannan	2019	70.72	62.11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	868	22
		(14.73)	(12.82)											(11.1)	(1
Maznyczk	2019	61.2	58.6(11.2	<mark>8</mark> (9.2)	26	<mark>32</mark> (36.8)	73	28 (32.2)	66	57	139	<mark>5</mark> (5.7)	20	2	16
а		(12.2))		(11.0		(30.8		(27.8	(65.5)	(58.6		(8.4)	(2.3)	(6
))))				
Stehli	2019	66.5	60.8	245	770	NA	NA	NA	NA	NA	NA	NA	NA	104	57
		(13.2)	(12.2)	(18.6)	(15.1									(7.9)	(1
))

Burgess	2020	62.7	58.2	39	88	<mark>84</mark> (68.3)	243	<mark>83</mark> (67.5)	253	64	252	<mark>9</mark> (7.3)	41	NA	NA
		(52.7-	(50.6-	(31.7)	(18.9		(52.1		(52.3	(52.0)	(54.1		(8.8)		
		73.2)	65.7)))))				
Dharma	2020	60 (10)	55 (10)	403	1548	<mark>647</mark> (69.6)	2,889	<mark>299</mark> (32.2)	1,779	109	4,049	NA	NA	NA	NA
				(43.4)	(27.5		(51.3		(31.6	(11.7)	(71.9				
))))				
Kerkmanx	2020	68 (14)	61 (12)	39	66	<mark>101</mark> (45.7)	178	<mark>56</mark> (25.9)	110	88	258	30	79	33	77
				(17.6)	(12.5		(33.6		(21.0	(41.1)	(49.3	(13.6)	(13.7	(14.4)	(14.
))))))
Siabani	2020	65.8	59.0	114	187	<mark>195</mark> (63.7)	410	<mark>110</mark> (36.7)	208	41	655	NA	NA	NA	NA
		(11.3)	(12.4)	(37.7)	(16.2		(35.4		(18.5	(13.2)	(55.9				
))))				
Tai	2020	78 (76–	78 (76–	96	116	<mark>217</mark> (79.5)	319	NA	NA	<mark>14</mark> (5.4)	239	NA	NA	36	78
		81)	80)	(35.2)	(26.5		(72.8				(56.5			(13.5)	(18.
))))

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

htr

Page 79 of 87

 BMJ Open

1 2	Tizón	2020	69.9	60.9	844	1,927	1,192 (34.2)	2,722	<mark>878</mark> (25.2)	2,375	474	2,711	NA	NA	NA	NA
3 4 5			(13.7)	(12.6)	(24.2)	(17.2		(24.3		(21.2	(13.6)	(24.2				
6 7))))				

For peer review only

Reference:

- Virani SS, Alonso A, Benjamin EJ, et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. *Circulation* 2020;141(9):e139-e596. doi: 10.1161/cir.000000000000757 [published Online First: 2020/01/30]
- Pancholy SB, Shantha GP, Patel T, et al. Sex differences in short-term and long-term allcause mortality among patients with ST-segment elevation myocardial infarction treated by primary percutaneous intervention: a meta-analysis. *JAMA internal medicine* 2014;174(11):1822-30. doi: 10.1001/jamainternmed.2014.4762 [published Online First: 2014/09/30]
- Wenger NK, Arnold A, Bairey Merz CN, et al. Hypertension Across a Woman's Life Cycle. *Journal of the American College of Cardiology* 2018;71(16):1797-813. doi: 10.1016/j.jacc.2018.02.033 [published Online First: 2018/04/21]
- 4. Peters SAE, Woodward M. Sex Differences in the Burden and Complications of Diabetes. *Current diabetes reports* 2018;18(6):33. doi: 10.1007/s11892-018-1005-5 [published Online First: 2018/04/20]
- Huded CP, Johnson M, Kravitz K, et al. 4-Step Protocol for Disparities in STEMI Care and Outcomes in Women. *Journal of the American College of Cardiology* 2018;71(19):2122-32. doi: 10.1016/j.jacc.2018.02.039 [published Online First: 2018/03/15]
- Mehta LS, Beckie TM, DeVon HA, et al. Acute Myocardial Infarction in Women: A Scientific Statement From the American Heart Association. *Circulation* 2016;133(9):916-47. doi: 10.1161/cir.000000000000351 [published Online First: 2016/01/27]

7	7. Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet (London, England)
	2017;389(10065):197-210. doi: 10.1016/s0140-6736(16)30677-8 [published Online
	First: 2016/08/10]
8	3. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and
	meta-analyses: the PRISMA statement. BMJ (Clinical research ed) 2009;339:b2535.
	doi: 10.1136/bmj.b2535 [published Online First: 2009/07/23]
ç	9. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality
	of nonrandomized studies in meta-analyses. European journal of epidemiology
	2010;25(9):603-5. doi: 10.1007/s10654-010-9491-z [published Online First:
	2010/07/24]
	10. Venetsanos D, Sederholm Lawesson S, Alfredsson J, et al. Association between gender
	and short-term outcome in patients with ST elevation myocardial infraction participating
	in the international, prospective, randomised Administration of Ticagrelor in the
	catheterisation Laboratory or in the Ambulance for New ST elevation myocardial
	Infarction to open the Coronary artery (ATLANTIC) trial: a prespecified analysis. BMJ
	open 2017;7(9):e015241. doi: 10.1136/bmjopen-2016-015241 [published Online First:
	2017/09/25]
	11. Ali M, Lange SA, Wittlinger T, et al. In-hospital mortality after acute STEMI in patients
	undergoing primary PCI. Herz 2018;43(8):741-45. doi: 10.1007/s00059-017-4621-y
	[published Online First: 2017/10/11]

12. Langabeer JR, 2nd, Henry TD, Fowler R, et al. Sex-Based Differences in Discharge Disposition and Outcomes for ST-Segment Elevation Myocardial Infarction Patients

Within a Regional Network. Journal of women's health (2002) 2018;27(8):1001-06. doi:

10.1089/jwh.2017.6553 [published Online First: 2018/01/11]

- 13. Tang XF, Song Y, Xu JJ, et al. Effect of sex difference in clinical presentation (stable coronary artery disease vs unstable angina pectoris or non-ST-elevation myocardial infarction vs ST-elevation myocardial infarction) on 2-year outcomes in patients undergoing percutaneous coronary intervention. *Journal of interventional cardiology* 2018;31(1):5-14. doi: 10.1111/joic.12451 [published Online First: 2017/10/13]
- 14. Cenko E, van der Schaar M, Yoon J, et al. Sex-Related Differences in Heart Failure After ST-Segment Elevation Myocardial Infarction. *Journal of the American College of Cardiology* 2019;74(19):2379-89. doi: 10.1016/j.jacc.2019.08.1047 [published Online First: 2019/11/09]
- Hao Y, Liu J, Liu J, et al. Sex Differences in In-Hospital Management and Outcomes of Patients With Acute Coronary Syndrome. *Circulation* 2019;139(15):1776-85. doi: 10.1161/circulationaha.118.037655 [published Online First: 2019/01/23]
- 16. Hannan EL, Wu Y, Tamis-Holland J, et al. Sex differences in the treatment and outcomes of patients hospitalized with ST-elevation myocardial infarction. *Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions* 2020;95(2):196-204. doi: 10.1002/ccd.28286 [published Online First: 2019/04/24]
- 17. Maznyczka AM, Carrick D, Carberry J, et al. Sex-based associations with microvascular injury and outcomes after ST-segment elevation myocardial infarction. *Open heart* 2019;6(1):e000979. doi: 10.1136/openhrt-2018-000979 [published Online First:

1	
2	
3	
4	2019/06/07]
5	
6	18. Stehli J, Martin C, Brennan A, et al. Sex Differences Persist in Time to Presentation,
7	To. Sterin 5, Martin 6, Diennan A, et al. Sex Differences reisist in time to resentation,
8	
9	Revascularization, and Mortality in Myocardial Infarction Treated With Percutaneous
10	
11	Coronary Intervention. Journal of the American Heart Association 2019;8(10):e012161.
12	
13	
14	doi: 10.1161/jaha.119.012161 [published Online First: 2019/05/17]
15	
16	
17	19. Burgess SN, Juergens CP, Nguyen TL, et al. Comparison of Late Cardiac Death and
18	
19	Myocardial Infarction Rates in Women Vs Men With ST-Elevation Myocardial Infarction.
20	
21	
22	<i>The American journal of cardiology</i> 2020;128:120-26. doi:
23 24	
24 25	10.1016/j.amjcard.2020.04.044 [published Online First: 2020/07/12]
26	
20 27	
28	20. Dharma S, Dakota I, Andriantoro H, et al. Association of gender with clinical outcomes of
28	
30	nation to with agute ST assessment abustion muccordial inferation properties with agute
31	patients with acute ST-segment elevation myocardial infarction presenting with acute
32	
33	heart failure. Coronary artery disease 2020 doi: 10.1097/mca.000000000000892
34	
35	
36	[published Online First: 2020/04/26]
37	
38	21. Kerkman T, Ten Brinke LBG, Huybrechts B, et al. Evaluation of sex differences in patients
39	
40	
41	with ST-elevated myocardial infarction: an observational cohort study in Amsterdam
42	
43	and surrounding region. Netherlands heart journal : monthly journal of the Netherlands
44	
45	
46	Society of Cardiology and the Netherlands Heart Foundation 2020;28(11):595-603. doi:
47	
48	10.1007/s12471-020-01435-9 [published Online First: 2020/06/13]
49	10.1007/312471-020-01403-0 [published Offine 1 inst. 2020/00/10]
50	
51	22. Siabani S, Davidson PM, Babakhani M, et al. Gender-based difference in early mortality
52	
53	among nationts with ST accment elevation mysecritical inferction; insights from
54	among patients with ST-segment elevation myocardial infarction: insights from
55	
56	Kermanshah STEMI Registry. Journal of cardiovascular and thoracic research
57	
58	2020,42(4),62,60, doi: 10.24470/5.4.2020.40 [s.,k];-bd.Olise. Einst. 0000/02/07]
59	2020;12(1):63-68. doi: 10.34172/jcvtr.2020.10 [published Online First: 2020/03/27]
60	

- 23. Tai S, Li X, Yang H, et al. Sex Differences in the Outcomes of Elderly Patients with Acute Coronary Syndrome. *Cardiology research and practice* 2020;2020:5091490. doi: 10.1155/2020/5091490 [published Online First: 2020/05/27]
- 24. Tizón-Marcos H, Vaquerizo B, Marrugat J, et al. Differences in 30-day complications and 1-year mortality by sex in patients with a first STEMI managed by the Codi IAM network between 2010 and 2016. *Revista espanola de cardiologia (English ed)* 2020 doi: 10.1016/j.rec.2020.06.002 [published Online First: 2020/07/15]
- 25. Bavishi C, Bangalore S, Patel D, et al. Short and long-term mortality in women and men undergoing primary angioplasty: A comprehensive meta-analysis. *International journal of cardiology* 2015;198:123-30. doi: 10.1016/j.ijcard.2015.07.001 [published Online First: 2015/07/15]
- 26. Kosmidou I, Redfors B, Selker HP, et al. Infarct size, left ventricular function, and prognosis in women compared to men after primary percutaneous coronary intervention in STsegment elevation myocardial infarction: results from an individual patient-level pooled analysis of 10 randomized trials. *European heart journal* 2017;38(21):1656-63. doi: 10.1093/eurheartj/ehx159 [published Online First: 2017/04/14]
- Millett ERC, Peters SAE, Woodward M. Sex differences in risk factors for myocardial infarction: cohort study of UK Biobank participants. *BMJ (Clinical research ed)* 2018;363:k4247. doi: 10.1136/bmj.k4247 [published Online First: 2018/11/09]
- Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. *Lancet (London, England)* 2004;364(9438):937-52. doi: 10.1016/s0140-

BMJ Open

6736(04)17018-9 [published Online First: 2004/09/15]

- Harreiter J, Fadl H, Kautzky-Willer A, et al. Do Women with Diabetes Need More Intensive Action for Cardiovascular Reduction than Men with Diabetes? *Current diabetes reports* 2020;20(11):61. doi: 10.1007/s11892-020-01348-2 [published Online First: 2020/10/10]
 Arora S, Stouffer GA, Kucharska-Newton AM, et al. Twenty Year Trends and Sex Differences in Young Adults Hospitalized With Acute Myocardial Infarction. *Circulation* 2019;139(8):1047-56. doi: 10.1161/circulationaha.118.037137 [published Online First: 2018/12/28]
- 31. Zhao M, Woodward M, Vaartjes I, et al. Sex Differences in Cardiovascular Medication Prescription in Primary Care: A Systematic Review and Meta-Analysis. *Journal of the American Heart Association* 2020;9(11):e014742. doi: 10.1161/jaha.119.014742 [published Online First: 2020/05/21]
- 32. Eindhoven DC, Hilt AD, Zwaan TC, et al. Age and gender differences in medical adherence after myocardial infarction: Women do not receive optimal treatment - The Netherlands claims database. *European journal of preventive cardiology* 2018;25(2):181-89. doi: 10.1177/2047487317744363 [published Online First: 2017/11/23]
- 33. Smolina K, Ball L, Humphries KH, et al. Sex Disparities in Post-Acute Myocardial Infarction Pharmacologic Treatment Initiation and Adherence: Problem for Young Women. *Circulation Cardiovascular quality and outcomes* 2015;8(6):586-92. doi: 10.1161/circoutcomes.115.001987 [published Online First: 2015/10/16]
- 34. Nguyen HL, Goldberg RJ, Gore JM, et al. Age and sex differences, and changing trends, in the use of evidence-based therapies in acute coronary syndromes: perspectives

 from a multinational registry. *Coronary artery disease* 2010;21(6):336-44. doi: 10.1097/MCA.0b013e32833ce07c [published Online First: 2010/07/28]

- 35. Pelletier R, Humphries KH, Shimony A, et al. Sex-related differences in access to care among patients with premature acute coronary syndrome. *CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne* 2014;186(7):497-504. doi: 10.1503/cmaj.131450 [published Online First: 2014/03/19]
- 36. Murphy AC, Yudi MB, Farouque O, et al. Impact of Gender and Door-to-Balloon Times on Long-Term Mortality in Patients Presenting With ST-Elevation Myocardial Infarction. *The American journal of cardiology* 2019;124(6):833-41. doi: 10.1016/j.amjcard.2019.06.008 [published Online First: 2019/07/23]
- 37. D'Onofrio G, Safdar B, Lichtman JH, et al. Sex differences in reperfusion in young patients with ST-segment-elevation myocardial infarction: results from the VIRGO study. *Circulation* 2015;131(15):1324-32. doi: 10.1161/circulationaha.114.012293 [published Online First: 2015/03/21]
- 38. Bugiardini R, Ricci B, Cenko E, et al. Delayed Care and Mortality Among Women and Men
 With Myocardial Infarction. *Journal of the American Heart Association* 2017;6(8) doi:
 10.1161/jaha.117.005968 [published Online First: 2017/09/02]
- Khan NA, Daskalopoulou SS, Karp I, et al. Sex differences in acute coronary syndrome symptom presentation in young patients. *JAMA internal medicine* 2013;173(20):1863-71. doi: 10.1001/jamainternmed.2013.10149 [published Online First: 2013/09/18]
- 40. Canto JG, Rogers WJ, Goldberg RJ, et al. Association of age and sex with myocardial infarction symptom presentation and in-hospital mortality. *Jama* 2012;307(8):813-22.

doi: 10.1001/jama.2012.199 [published Online First: 2012/02/24]

- 41. Moscucci M, Fox KA, Cannon CP, et al. Predictors of major bleeding in acute coronary syndromes: the Global Registry of Acute Coronary Events (GRACE). *European heart journal* 2003;24(20):1815-23. doi: 10.1016/s0195-668x(03)00485-8 [published Online First: 2003/10/18]
- 42. Kolte D, Khera S, Aronow WS, et al. Trends in incidence, management, and outcomes of cardiogenic shock complicating ST-elevation myocardial infarction in the United States. *Journal of the American Heart Association* 2014;3(1):e000590. doi: 10.1161/jaha.113.000590 [published Online First: 2014/01/15]
- 43. Nanna MG, Hajduk AM, Krumholz HM, et al. Sex-Based Differences in Presentation, Treatment, and Complications Among Older Adults Hospitalized for Acute Myocardial Infarction: The SILVER-AMI Study. *Circulation Cardiovascular quality and outcomes* 2019;12(10):e005691. doi: 10.1161/circoutcomes.119.005691 [published Online First: 2019/10/15]
- 44. Elbadawi A, Elgendy IY, Mahmoud K, et al. Temporal Trends and Outcomes of Mechanical Complications in Patients With Acute Myocardial Infarction. *JACC Cardiovascular interventions* 2019;12(18):1825-36. doi: 10.1016/j.jcin.2019.04.039 [published Online First: 2019/09/21]

Figure 1 Flowchart of selection of studies included in meta-analysis.

Figure 2 Forest plots of relative risks of short-term all-cause mortality among women and men with ST-segment elevation myocardial infarction.

Forest plots showing unadjusted (A) and adjusted (B) short-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

Figure 3 Forest plots of relative risks of long-term all-cause mortality among women and men with ST-segment elevation myocardial infarction.

Forest plots showing unadjusted (A) and adjusted (B) long-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

BMJ Open

Contemporary sex differences in mortality among patients with ST-segment elevation myocardial infarction: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053379.R3
Article Type:	Original research
Date Submitted by the Author:	06-Dec-2021
Complete List of Authors:	Xi, Ziwei; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Qiu, Hong; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Guo, Tingting; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Wang, Yong; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Li, Jianan; Beijing Tiantan Hospital Li, Yang; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Zheng, Jianfeng; Fuwai Hospital State Key Laboratory of Cardiovascular Disease Gao, R; Fuwai Hospital State Key Laboratory of Cardiovascular Disease
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Emergency medicine
Keywords:	EPIDEMIOLOGY, Coronary heart disease < CARDIOLOGY, Myocardial infarction < CARDIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Contemporary sex differences in mortality among patients with ST-segment elevation myocardial infarction: a systematic review and meta-analysis Short title : Sex differences in STEMI

Authors:

Ziwei Xi¹, Hong Qiu¹, Tingting Guo², Yong Wang¹, Jianan Li^{3,1}, Yang Li¹, Jianfeng Zheng¹,

Runlin Gao¹

 Department of Cardiology, Coronary artery disease center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
 Thrombosis Center, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical

Sciences and Peking Union Medical College, Beijing, China

3. Department of Cardiology and Macrovascular Disease, Beijing Tiantan Hospital,

Capital Medical University, Beijing, China

Corresponding author:

Prof. Hong Qiu, M.D.

E-mail address: qiuhong6780@sina.com

Department and affiliation: Department of Cardiology, Coronary artery disease center,

Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of

Medical Sciences and Peking Union Medical College, Beijing, China

Telephone: 0016-13261179000

Address: No.167 North Lishi Road, Xicheng District, Beijing, China

Contemporary sex differences in mortality among patients with ST-segment elevation myocardial infarction: a systematic review and meta-analysis

Objectives: To assess the effect of sex differences on short- and long-term mortality among patients with ST-segment elevation myocardial infarction (STEMI).

Design: Systematic review and meta-analysis of contemporary available evidence.

Setting: PubMed, Embase and Cochrane Library were searched for relevant studies reporting sex specific outcomes among patients with STEMI published between January 1, 2010 to August 1, 2020. Risk ratio (RR) 95% 95% confidence intervals (CIs) were measured using DerSimonian and Laird random-effects model. Sensitivity analyses were performed and publication bias was also checked. All statistical analyses were performed using STATA version 15.0.

Participants: Studies providing data about short- or long-term mortality stratified by sex in patients with STEMI were included. Only study conducted in last ten years were included.

Primary and secondary outcome measures: The primary outcome was all-cause death at short-(in-hospital or 30 days) and long-term (at least 12 months) follow-up.

Results

A total of fifteen studies involving 128,585 patients (31,706 [24.7%] female and 96,879 [75.3%] male) were included. In the unadjusted analyses, female were at a higher risk of short-term mortality (RR, 1.73; 95%CI, 1.53-1.96, P<0.001, I²=77%) but not long-term mortality (RR, 1.23; 95%CI, 0.89-1.69, P=0.206, I²=77.5%). When adjusted effect estimates from individual studies were used in meta-analysis, the association between female and higher risk of short-term mortality remained significant (RR, 1.24; 95%CI, 1.11-1.38, P<0.001, I²=39.6%). And adjusted long-term mortality was also similar between female and male (RR, 1.11; 95%CI, 0.42-1.80, P=0.670, I²=74.5%).

Conclusions

An increased short- but not long-term mortality was found in female with STEMI. After adjustment for baseline cardiovascular risk factors and clinical profiles, short-term mortality remains higher in female with STEMI compared to male, indicating the need for further improvements in management in female patients.

to peet terien ony

2	
3	
4	
5	
ر م	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
17	
18	
19	
20	
21	
22	
21 22 23	
24	
25	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

Strengths and limitations of this study

- We assessed the contemporary effect of sex differences on mortality among patients with STEMI by meta-analysis of studies from the last decade.
- A greater number of potentially eligible articles were screened and the large sample size ensures adequate statistical power to detect even a small effect of interest.
- Sensitivity analyses by excluding one study at a time and restricting to studies with high quality or with large sample size got consistent results.
- Substantial and nonnegligible heterogeneity still exist in our meta-analysis and might result in potential bias.
- Residual confounding bias could not be totally excluded due to the observational study design of most included studies.

Contemporary sex differences in mortality among patients with ST-segment elevation myocardial infarction: a systematic review and meta-analysis

Introduction

Acute myocardial infarction remains one of leading causes of mortality in both men and women worldwide despite improvement of acute cardiac care.¹ Numerous studies have reported that women have a higher risk of in-hospital and long-term adverse outcomes following ST-segment elevation myocardial infarction (STEMI) compared with men.² Confounders including advanced age and more frequent comorbidities, such as hypertension and diabetes mellitus^{3 4}, might contribute to excess mortality in women. Moreover, previous studies show lower rates of guideline directed medical therapy and revascularization are also associated with poorer prognosis for women with STEMI.⁵

Sex discrepancies in management and outcomes after STEMI have been increasingly reported in the literature and raised public awareness.⁶ Major progress in therapy for myocardial infarction and primary and secondary preventive interventions has been made to reduce cardiovascular mortality for women.¹⁷ And there have been marked reductions in cardiovascular disease mortality in women with acute myocardial infarction in the past two decades.¹ Conflicting results are noted in recent studies on sex differences following STEMI. It is unclear whether the sex differences still exist, in view of substantial improvements in prognosis of cardiovascular disease over the past decade.

In order to assess the contemporary effect of sex differences on short- and long-term mortality among patients with STEMI, we performed a systematic review and meta-analysis of all available evidence from last decade reporting sex-specific outcomes after STEMI.

Methods

The present systematic review and meta-analysis was performed following the principle of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.⁸

Literature search

We conducted a comprehensive search of the PubMed, EMBASE, and Cochrane Library from January 1, 2010 to August 1, 2020 to identify studies from the last decade that described sex differences in in short- or long-term mortality among patients with STEMI. Both observational studies and randomized clinical trials were eligible. We queried MeSH and the abstract text for the following three search terms: gender part (including "gender", "female", "male", "gender differences", "sex differences" or "sex characteristics"); outcome part (including "death", "mortality", "hospital mortality", "cardiac death", "sudden cardiac death", "all-cause mortality", "long term mortality", "one year mortality", "cardiovascular mortality" or "short term mortality"); myocardial infarction part (including "myocardial infarction", "acute myocardial infarction", "myocardial necrosis", "ST segment elevation myocardial infarction", "primary PCI", "primary percutaneous coronary intervention" or "primary angioplasty") to identify relevant studies. There was no language restriction or age limit. The full search strategies were presented in eTable 1 of the Supplementary Material.

Study selection

According to the aim of our analyses, studies were included in this systematic review if data about short- (in-hospital or 30 days) or long-term (at least 12 months) mortality stratified by sex in patients with STEMI were reported. Two reviewers identified studies eligible for further review by performing an initial screen of titles or abstracts of the search results. Subsequently, a second screen of full texts eligibility was performed by another two reviewers. Studies had to fulfil the following criteria to be included in the present analyses: i) studies reporting data on all-cause mortality specific to STEMI population; and ii) studies providing enough details to obtain numbers of events or incidence rates according to sex; and iii) enrollment starting not earlier than a decade ago. Editorials, letters, conference proceedings and abstracts were considered to be eligible only if sufficient information was available in abstracts or associated tables or figures. We excluded studies if they were review articles or case reports, or if they involved pregnant participants, critically ill patients, or provided insufficient data to allow for risk estimates to be calculated. Any disagreement was reviewed by a third reviewer and resolved by consensus.

Data extraction

Detailed data from selected studies were extracted independently by two reviewers using a standardized form independently. Data about study and participants characteristics, including year of study, sample size, time of enrollment, geographical location, endpoints of study, and follow-up duration, were collected. Any discrepancies were reviewed by a third reviewer and resolved by consensus. The quality of included studies was evaluated by Newcastle-Ottawa scale using prespecified items comprised of patients' selection (representativeness and selection of patients, ascertainment of exposure), comparability of cohorts based on design or analysis, and outcome (assessment of outcomes, adequacy of follow-up).⁹ A quality score (0–9 points) was generated according to a maximum of 1 point for each item.

Patient and public involvement

Due to the nature of the systematic review and meta-analysis, this study did not involve patients and the public in the design, or conduct, or reporting or dissemination plans.

Statistical analysis

 The risk ratios (RRs) and 95% confidence interval (CI) were primarily used to represent the effect of sex differences on mortality after STEMI. And data were combined using random-effects model of DerSimonian and Laird with inverse variance weighting. Random-effect model was used due to substantial clinical and statistical heterogeneity. Following analyses were performed: i) unadjusted RRs for short- and long-term all-cause mortality using raw number of death and total participants at risk for death specific to each sex, ii) adjusted RRs for short- and long-term all-cause mortality using raw number of short- and long-term mortality using adjusted RRs if they were described in those included studies. In terms of short-term mortality, the RRs for in-hospital and 30-day mortality were also calculated respectively.

We assess heterogeneity across studies with Cochran's Q test and I2 test, with P<0.1 or I2 >50% considered significant. We also performed meta-regression to identify the potential sources of heterogeneity in the included studies. The potential sources were differences in diabetes, hypertension, hyperlipidemia, smoking, prior MI, and prior PCI. Furthermore, stratified analysis was conducted as well by dividing the included studies into different subgroups based on the Newcastle-Ottawa scale scores (>7 points or \leq 7 points) to assess the potential sources of heterogeneity. To assess the potential effect of publication bias, we inspected funnel plots for

BMJ Open

asymmetry and used the Egger's regression asymmetry test in which P<0.05 was considered to indicate significant publication bias.

Sensitivity analyses was conducted by excluding one study at a time and comparing the results with the complete one. In addition, we also performed sensitivity analyses by restricting to high-quality studies with a Newcastle-Ottawa scale of 5 points or more and restricting to studies with sample size bigger than 1000 participants. All statistical analyses were performed using STATA version 15.0 (Stata Corp, College Station, TX). Differences were considered statistically significant at P < .05 (2-sided).

Results

Literature search

Study selection details were outlined in Figure 1. The literature search identified 2,611 potentially relevant articles. After screening based on title and abstract review, 2495 records were excluded. A total of 116 full-text were finally assessed for eligibility, with 96 papers excluded due to enrollment starting earlier than a decade ago or no sufficient gender specific data to analyze. Another 5 papers reviewed in detail were excluded after due to data from the same cohorts. A total of 15 studies were finally included in the present systematic review and meta-analysis.¹⁰⁻²⁴

Study characteristics

Of the 15 included studies, 8 were multicenter studies and 4 studies enrolled more than 10,000 patients with STEMI. See Table 1 for further information of included studies. Baseline characteristics of participants were missing in some included studies, but all included studies provided sufficient data for analysis of sex differences in clinical outcomes. Except for 1 study, which was a prespecified gender analysis of randomized controlled trial, the remaining 14 were observational studies. Among the 10 included studies which reported adjusted analyses, most studied adjusted for age, diabetes mellitus, hypertension, and prior myocardial infarction/PCI, while some adjusted for renal insufficiency, cardiogenic shock, cardiac arrest at admission and occurrence time of symptom onset. Variables that were adjusted in the adjusted analyses from the included studies were presented in eTable 2 of the Supplementary Material. Results of assessment of study

quality using Newcastle-Ottawa scale were shown in eTable 3 in the Supplementary Material.

Patient characteristics

A total of 128,585 patients with STEMI (31,706 [24.7%] female and 96,879 [75.3%] male) were involved in the 15 included studies. Female tended to be older and had higher prevalence of diabetes mellitus in all included studies. And in most studies, other important comorbidities, including hypertension and hyperlipidemia, were more frequent in female. Greater proportions of male were smokers and had prior PCI or myocardial infarction. Besides, some studies reported that door-to-balloon time and symptom onset to balloon time were longer in female than male. Part of patient baseline characteristics were summarized in Table 2.

Short-term all-cause mortality

Thirteen studies reported sex-specific unadjusted short-term mortality (7 studies with 30-day mortality and 6 studies with in-hospital mortality) of patients with STEMI. There were 2,873 of 31,409 (9.1%) cases of all-cause mortality in female compared with 4,380 of 95,610 (4.6%) in male. Female were at a significantly higher risk of short-term mortality (RR, 1.73; 95%CI, 1.53-1.96, P<0.001, $I^2=77\%$) compared with male (Figure 2 A). Nine studies involving 119,379 patients reported adjusted short-term mortality specific to sex. In adjusted analysis, the association between female and higher risk of short-term mortality remained significant (RR, 1.24; 95%CI, 1.11-1.38, P<0.001, $I^2=39.6\%$) (Figure 2 B). However, the strength of association calculated with adjusted RRs from these 9 studies was attenuated.

Subgroup analysis demonstrated that the results of studies with Newcastle-Ottawa scale >7 points (RR, 1.90; 95%CI, 1.73-2.09, P=0.018, I²=63.4%) and studies with \leq 7 points (RR, 1.52; 95%CI, 1.20-1.93, P=0.026, I²=58.1%) were consistent in unadjusted short-term mortality (See eFigure 1 in the Supplementary Material). The impact of sex on in-hospital (RR, 1.71; 95%CI, 1.27-2.31, P<.001, I²=86.4%) and 30-day mortality (RR, 1.81; 95%CI, 1.62-2.02, P<.001, I²=56.6%) were consistent. The meta-analysis performed in studies of patients undergoing PCI for STEMI also showed increased unadjusted mortality (RR, 1.45; 95%CI, 1.05-2.00, P=0.026, I²=39.5%) in female patients.

Long-term all-cause mortality

Page 11 of 38

BMJ Open

Six studies involved 18,018 patients with STEMI (4,191 female and 13,827 male) and followed up for more than 1 year, and reported all-cause mortality for female and male. The incidence of long-term all-cause mortality was 13.9% (n=584) in female and 8.7% (n=1202) in male. In unadjusted analysis, no significant sex difference was found in long-term mortality (RR, 1.23; 95%CI, 0.89-1.69, P=0.206, I²=77.5%) (Figure 3 A). The unadjusted long-term mortality was also similar between female and male patients undergoing PCI (RR, 1.28; 95%CI, 0.95-1.73, P=0.108, I²=0.0%). And the adjusted analysis of the pooled results from four studies, also showed a similar risk of mortality at long-term follow-up in female compared with male (RR, 1.11; 95%CI, 0.42-1.80, P=0.670, I²=74.5%) (Figure 3 B).

Meta-Regression Analysis, sensitivity analyses and publication bias

According to meta-regression analysis, differences in prevalence of diabetes (β coefficient, 0.248; P=0.337; adjusted R²=1.31%; I²=80.86%; τ^2 =0.044), hypertension (β coefficient, -0.255; P=0.538; adjusted R²=24.22%; I²=41.04%; τ^2 =0.008), hyperlipidemia(β coefficient, 0.260; P=0.415; adjusted R²=-1.84%; I²=83.59%; τ^2 =0.050), smoking (β coefficient, -0.040; P=0.255; adjusted R²=17.86%; I²=79.41%; τ^2 =0.045), prior MI (β coefficient, -2.725; P=0.126; adjusted R²=60.30%; I²=60.19%; τ^2 =0.032), and prior PCI (β coefficient, 0.109; P=0.896; adjusted R²=-58.31%; I²=61.73%; τ^2 =0.042) between sexes were not identified as significant sources of heterogeneity for short-term all-cause mortality. Given that not all included study provided information on confounders stratified by sex, the results of meta-regression analyses should be interpreted with caution.

Sensitivity analysis by excluding one study at a time (See eFigure 2 in the Supplementary Material) or restricted to data from studies with sample size bigger than 1000 (RR, 1.75; 95%CI, 1.54-1.99, $P<.001, I^2=82.9\%$) both indicated that none of the studies affected the results of short-term mortality in this meta-analysis significantly. In analysis for long-term mortality, sensitivity analysis showed a possibly higher influence on the result attribute to the study of Tai et al (See eFigure 3 in the Supplementary Material). After removing this study from meta-analysis, the association of female with increased long-term mortality became significant (RR, 1.50; 95%CI, 1.23-1.83, P<.001, I^2=40.9%). We found no evidence of publication bias across studies based on visual inspection of funnel plots (See eFigure 4 in the Supplementary Material) and the results from Egger's tests for 10

short-term mortality (P=0.462) and for long-term mortality (P=0.053).

Discussion:

Our systematic review and meta-analysis of contemporary literature on sex differences among patients with STEMI demonstrate that female have a higher risk of short- but not long-term mortality compared with male with STEMI. Furthermore, after adjustment for baseline cardiovascular risk factors and clinical profiles, the sex differences in short-term mortality are attenuated but remain significant, while female have the similar long-term mortality with male.

Our results are somewhat in accordance with several previously published meta-analysis.² ²⁵ A considerable number of studies have consistently suggested that women were at a higher risk of short-term mortality after ACS. However, whether risk of long-term mortality is also higher in women with ACS remains under debate. Some studies indicated that women with STEMI had a higher 1-year rate of death compared to men²⁶, while the 1-year mortality rate was conversely lower in women than men in some other studies²³ ²⁴. In our study, with respect to short-term mortality, the analyses of studies with high or low quality, and big or small sample size yielded similar results. However, in terms of long-term mortality in adjusted analyses, due to the results of sensitivity analysis which showed a significant association between female and increased long-term mortality after removing one study from adjusted analyses.

It is widely accepted that there are significant differences in outcomes of women and men with acute myocardial infarction. In our study, after adjusted for participants' baseline cardiovascular risk factors and clinical profiles, the strength of association between gender and short-term mortality was substantially attenuated, which suggested that poorer baseline cardiovascular risk profile partially explained the impact of sex differences on mortality. Multiple studies have shown that women with STEMI present at older age and have a higher burden of comorbidities, contributing to the sex differences in mortality after STEMI.²⁷ All studies included in our meta-analysis demonstrate that female patients are older and with more diabetes mellitus as well as hypertension.

BMJ Open

In addition, some sex-specific studies found that certain risk factors and comorbidities were more potent in women.²⁸ Diabetes mellitus , hypertension and smoking status are more strongly associated with increased risk of cardiac events in women compared with men.^{27 29}

Notably, that these differences mentioned above still could not completely explain the gap in mortality between sexes. It has been proved that women with acute myocardial infarction were less likely to be treated with guideline directed medical therapy and less likely to receive primary reperfusion therapy including primary percutaneous coronary intervention or fibrinolysis.³⁰ Regarding medical therapy, numerous studies conducted around the world consistently demonstrate female survivors are receiving less optimal medical therapy after acute myocardial infarction during hospitalization or at discharge.^{31 32} Though there might be no differences in treatment adherence between men and women, some studies report significant sex disparities in initiation of appropriate pharmacotherapy after myocardial infarction.³³ Results from these observational studies have shown women are receiving less optimal medical therapy including aspirin, statins, and angiotensin-converting enzyme inhibitors in all age groups, especially young women, and suggested that clinicians and patients may benefit from better education and awareness of undertreatment of younger women.^{33 34}

Lower rates of revascularization are observed among women with STEMI compared with men in several studies despite proven benefit of this therapy.³⁵ Moreover, the sex differences might be driven by delays in presentation to hospital and women with STEMI were more likely to experience longer delays than men. Although a great improvement in emergency medical services and timely revascularization over the past decades, recent studies show that women with STEMI still present later and have a longer ischemic time than men. Previous studies have shown consistently that women have longer door-to balloon times and longer door-to needle times.^{36 37} In addition, women are also more likely to exhibit longer pre-hospital delays in seeking medical care after the development of symptoms suggestive of myocardial infarction. Although there have been significant reductions in patient and system delay in the last decade, women continue to have longer presentation and treatment times.³⁸ Sex differences also exist in clinical presentation of STEMI. Although chest pain was the most common ACS symptom in both sexes, women were more likely

to present without chest pain than men.^{39 40} Lower rates of typical chest pain reported among women with STEMI may also influence provider decision-making to pursue less aggressive care including invasive revascularization.

Some included studies of our meta-analysis enrolled STEMI patients in general¹⁴⁻¹⁶, while some others enrolled patients undergoing PCI for STEMI^{11 13 18}. The different prognosis of patients receiving reperfusion therapy or no-reperfusion therapy might be a potential source of heterogeneity of our study. Nevertheless, our results are completely consistent with a previous meta-analysis from Pancholy et al., which investigated sex differences in mortality among patients with STEMI treated with primary PCI.² Its results demonstrated that, when adjusted RRs were used, the increased risk for 1-year mortality in women was no longer significant and the risk of in-hospital mortality still significantly elevated. It should be noted that more than 50% of patients were treated with PCI in the most study conducted among the general STEMI patients and included by our analysis, even more than 90% in some included studies.^{12 24} The increasing rate of primary PCI in recent years might be a reason for the consistency of our findings and previous studies conducted specifically among STEMI patients undergoing PCI.

Complications including bleeding, heart failure and mechanical complications are more likely to develop in women with acute myocardial infarction and increase the risk of mortality.^{14 41 42} Bleeding secondary to antithrombotic therapies and invasive procedures is more frequent in women.⁴³ Three included studies reported incidence of bleeding following STEMI and they all found that women were at higher risk of bleeding.^{10 13 18} One study included in our analysis examined the relationships among sex, acute heart failure, and related outcomes after STEMI.¹⁴ Its results demonstrate that women are at higher risk to develop de novo heart failure after STEMI and women with de novo heart failure have worse survival compared with man. However, we could not compare the incidence of these complications due to the lack of sufficient data. Mechanical complications requiring surgical intervention are also much more common in women after acute myocardial infarction and associated with high mortality rates.⁴⁴

Several limitations of this meta-analysis should be considered. First, the included studies are all 13

BMJ Open

observational studies except one post hoc analysis of randomized controlled trial. Hence, there may be residual confounding bias inherent in the observational study design in our meta-analysis. Second, in adjusted analysis, not all included studies adjusted for the same confounders and not all studies reported adjusted RRs. The confounders which were adjusted in the included studies might differ greatly across studies. Third, there was substantial heterogeneity in our meta-analysis, which could partly be attributed to the wide variability in the sample sizes, locations, and treatment regimens across included studies. Additionally, although we calculated adjusted RRs for all-cause mortality, it needed to be noted that relevant confounders might have differed across studies. Fourth, the analysis of long-term mortality, especially the adjusted analysis, included far fewer studies compared with analysis of short-term mortality. Hence, there might be significant bias in the results about long-term mortality.

In conclusion, our meta-analysis, pooling data from contemporary literature, shows that women with STENI have a higher risk of short-term mortality but not long-term mortality. The effect of sex differences on mortality in patients with STEMI remain significant after adjustment for baseline cardiovascular risk factors and clinical profiles, suggesting that public awareness of increased risk and further improvements in management in women with STEMI are necessary.

Other Information:

Contribution statement

Ziwei Xi: Study concepts, Study design, Literature research, Statistical analysis, Manuscript preparation, Manuscript editing. Tingting Guo and Yong Wang: Data acquisition, Data analysis/interpretation. Jianan Li, Yang Li, Jianfeng Zheng and Runlin Gao: Manuscript revision/review. Hong Qiu: Manuscript final version approval.

Conflict of interest

The authors declare that there is no conflict of interest.

Funding

This research received no specific grant from any funding agency in the public, commercial,

or not-for-profit sectors.

Ethics approval

The institutional central committee at Fuwai Hospital approved that the study protocol and inform consent was not required for a systematic review and meta-analysis.

Data sharing statement

As this is a systematic review and meta-analysis, the data used in the study have already been published by the authors of the included studies. All data relevant to the study are included in the article or uploaded as supplementary information.

 Table 1 Characteristics of included studies.

First Author	Year	Region	Study design	Data source	Multicente r	Time of enrollment	Number of STEMI	Female	Endpoint	Follow-up
Venetsanos	2017	13 countries	Prospective	Clinical registry	Yes	Sep, 2011- Oct, 2013	patients 1,862	369 (20.0)	Major adverse cardiovascular events and definite stent thrombosis	30 d
Ali	2018	Germany	Prospective	Administrativ e database	No	2013-2017	312	101 (32.4)	All-cause in-hospital mortality	NA
Langabeer	2018	US	Prospective	Clinical registry	Yes	Jan, 2010- Dec, 2015	9,674	2,569 (26.6)	In-hospital mortality	NA
Tang	2018	China	Prospective	Administrativ e database	No	Jan, 2013- Dec, 2013	1,238	210 (1.9)	Major adverse cardiac and cerebrovascular events	730 ± 30
Cenko	2019	12 European countries	Prospective	Clinical registry	Yes	Jan, 2010-Jul, 2018	10,443	3,112 (29.8)	30-day all-cause mortality	30 d
Hao	2019	China	Prospective	Clinical registry	Yes	Nov, 2014- Jun, 2018	50,203	11,016 (21,9)	In-hospital mortality	NA
Hannan	2019	US	Retrospective	Administrativ e database	Yes	Jan, 2013- Dec, 2015	23,809	7,791 (32.7)	In hospital/30-day mortality	30 d

Maznyczka	2019	UK	Retrospective	Clinical registry	No	July, 2011- Nov, 2012	324	87 (26.9)	All-cause death/ first heart failure hospitalization	5 years
Stehli	2019	Australia	Prospective	Clinical registry	Yes	2013-2016	6,431	1,317 (20.5)	In hospital/30-day major adverse events, and major bleeding	30 d
Burgess	2020	Australia	Prospective	Administrativ e database	No	Dec, 2010- Apr, 2014	589	123 (21)	Cardiac death and myocardial infarction	2 years
Dharma	2020	Indonesia	Retrospective	Administrativ e database	No	Feb, 2011- Aug, 2019	6,557	929 (14.2)	All-cause mortality	30 d and 1 year
Kerkmanx	2020	Netherlan ds	Retrospective	Administrativ e database	Yes	2015-2016	787	229 (29)	All-cause mortality	1 year
Siabani	2020	Iran	Prospective	Clinical registry	No	Jun, 2016- May, 2018	1,484	311(21)	In-hospital mortality	NA
Tai	2020	China	Retrospective	Administrativ e database	No	Jan, 2013- Dec, 2017	182	56 (30.8)	In hospital/1-year mortality	1 year
Tizón	2020	Spain	Prospective	Clinical registry	Yes	2010-2016	14,690	3,486 (23.7)	30-day/1-year all-cause mortality	1 year

Table 2 Baseline characteristics of participants in included studies.

er review only - http://bmiop	pen.bmi.com/site/about/guid	delines.xhtml		
9	er review only - http://bmjop	er review only - http://bmjopen.bmj.com/site/about/guid	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Author				, n (%)		n, n (%)		a, n (%)		g, n (%)		MI, n (%)		PCI, n (%)	
		Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Femal e	M
Venetsano s	2017	69 (13.0)	59 (11.0)	48 (13.0)	205 (13.7)	190 (51.5)	605 (40.5)	117 (31.7)	536 (35.9)	NA	NA	24 (6.5)	135 (9.0)	16 (4.3)	12
Ali	2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N
Langabeer	2018	62.5 (13.6)	60.2 (12.5)	759 (29.6)	1,975 (27.8)	NA	NA	1,265 (49.3)	3,693 (52.0)	951 (37.0)	2,763 (38.9)	435 (16.9)	1,304 (18.4)	NA	N
Tang	2018	64.5 (9.3)	54.4 (10.7)	66 (31.4)	311 (25.1)	141 (67.1)	659 (53.3)	125 (59.5)	749 (60.3)	33 (15.7)	957 (77.3)	10 (4.8)	83 (6.7)	60 (28.6)	23
Cenko	2019	66.1 (11.7)	59.7 (11.7)	925 (29.7)	1,531 (20.9)	2,322 (74.6)	4,502 (61.4)	1,353 (43.3)	3,100 (42.3)	1,010 (32.5)	3,714 (50.7)	301 (9.7)	842 (11.5)	306 (9.8)	7 (1
Нао	2019	69.0 (10.6)	61.1 (12.4)	10,141 (48.1)	24,08 2 (39.4)	15,607 (74.1)	38,42 6 (62.9)	17,996 (85.4)	50,94 4 (83.3)	1,719 (8.2)	32,37 7 (53.0)	NA	NA	NA	N
Hannan	2019	70.72 (14.73)	62.11 (12.82)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	868 (11.1)	22
Maznyczk a	2019	61.2 (12.2)	58.6(11.2)	8 (9.2)	26 (11.0)	32 (36.8)	73 (30.8)	28 (32.2)	66 (27.8)	57 (65.5)	139 (58.6)	5 (5.7)	20 (8.4)	2 (2.3)	16

Stehli	2019	66.5	60.8	245	770	NA	NA	NA	NA	NA	NA	NA	NA	104	577
		(13.2)	(12.2)	(18.6)	(15.1)									(7.9)	(11.3)
Burgess	2020	62.7	58.2	39 (31.7)	88	84 (68.3)	243	83 (67.5)	253	64 (52.0)	252	9 (7.3)	41	NA	NA
		(52.7-	(50.6-		(18.9)		(52.1)		(52.3)		(54.1)		(8.8)		
		73.2)	65.7)												
Dharma	2020	60 (10)	55 (10)	403	1548	647 (69.6)	2,889	299 (32.2)	1,779	109	4,049	NA	NA	NA	NA
				(43.4)	(27.5)		(51.3)		(31.6)	(11.7)	(71.9)				
Kerkmanx	2020	68 (14)	61 (12)	39 (17.6)	66	101 (45.7)	178	56 (25.9)	110	88 (41.1)	258	30	79	33	77
					(12.5)		(33.6)		(21.0)		(49.3)	(13.6)	(13.7)	(14.4)	(14.2)
Siabani	2020	65.8	59.0	114	187	195 (63.7)	410	110 (36.7)	208	41 (13.2)	655	NA	NA	NA	NA
		(11.3)	(12.4)	(37.7)	(16.2)		(35.4)		(18.5)		(55.9)				
Tai	2020	78 (76–	78 (76–	96 (35.2)	116	217 (79.5)	319	NA	NA	14 (5.4)	239	NA	NA	36	78
		81)	80)		(26.5)		(72.8)				(56.5)			(13.5)	(18.1)
Tizón	2020	69.9	60.9	844	1,927	1,192 (34.2)	2,722	878 (25.2)	2,375	474	2,711	NA	NA	NA	NA
		(13.7)	(12.6)	(24.2)	(17.2)		(24.3)		(21.2)	(13.6)	(24.2)				

Reference:

2	
3 ⊿	
5	
6	
7 8	
2 3 4 5 6 7 8 9 10	
10 11	
12	
13	
14 15	
16	
17 18	
19	
20	
21 22	
23	
24 25	
26	
27 28	
29	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	
32	
33 34	
34 35	
36	
37 38	
39	
40 41	
42	
43 44	
45	
46 47	
48	
49 50	
50 51	
52	
53 54	
55	
56 57	
58	
59	
60	

1. Virani SS, Alonso A, Benjamin EJ, et al. Heart Disease and Stroke Statistics-2020 Update:
A Report From the American Heart Association. <i>Circulation</i> 2020;141(9):e139-e596.
doi: 10.1161/cir.000000000000757 [published Online First: 2020/01/30]
2. Pancholy SB, Shantha GP, Patel T, et al. Sex differences in short-term and long-term all-
cause mortality among patients with ST-segment elevation myocardial infarction
treated by primary percutaneous intervention: a meta-analysis. JAMA internal medicine
2014;174(11):1822-30. doi: 10.1001/jamainternmed.2014.4762 [published Online First:
2014/09/30]
3. Wenger NK, Arnold A, Bairey Merz CN, et al. Hypertension Across a Woman's Life Cycle.
Journal of the American College of Cardiology 2018;71(16):1797-813. doi:
10.1016/j.jacc.2018.02.033 [published Online First: 2018/04/21]
4 Peters SAE Woodward M. Sex Differences in the Burden and Complications of Diabetes

- Peters SAE, Woodward M. Sex Differences in the Burden and Complications of Diabetes. *Current diabetes reports* 2018;18(6):33. doi: 10.1007/s11892-018-1005-5 [published Online First: 2018/04/20]
- Huded CP, Johnson M, Kravitz K, et al. 4-Step Protocol for Disparities in STEMI Care and Outcomes in Women. *Journal of the American College of Cardiology* 2018;71(19):2122-32. doi: 10.1016/j.jacc.2018.02.039 [published Online First: 2018/03/15]
- Mehta LS, Beckie TM, DeVon HA, et al. Acute Myocardial Infarction in Women: A Scientific Statement From the American Heart Association. *Circulation* 2016;133(9):916-47. doi: 10.1161/cir.000000000000351 [published Online First: 2016/01/27]

- 7. Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. *Lancet (London, England)* 2017;389(10065):197-210. doi: 10.1016/s0140-6736(16)30677-8 [published Online
 First: 2016/08/10]
- Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ (Clinical research ed)* 2009;339:b2535. doi: 10.1136/bmj.b2535 [published Online First: 2009/07/23]
- 9. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *European journal of epidemiology* 2010;25(9):603-5. doi: 10.1007/s10654-010-9491-z [published Online First: 2010/07/24]
- 10. Venetsanos D, Sederholm Lawesson S, Alfredsson J, et al. Association between gender and short-term outcome in patients with ST elevation myocardial infraction participating in the international, prospective, randomised Administration of Ticagrelor in the catheterisation Laboratory or in the Ambulance for New ST elevation myocardial Infarction to open the Coronary artery (ATLANTIC) trial: a prespecified analysis. *BMJ open* 2017;7(9):e015241. doi: 10.1136/bmjopen-2016-015241 [published Online First: 2017/09/25]
- 11. Ali M, Lange SA, Wittlinger T, et al. In-hospital mortality after acute STEMI in patients undergoing primary PCI. *Herz* 2018;43(8):741-45. doi: 10.1007/s00059-017-4621-y [published Online First: 2017/10/11]
- 12. Langabeer JR, 2nd, Henry TD, Fowler R, et al. Sex-Based Differences in Discharge Disposition and Outcomes for ST-Segment Elevation Myocardial Infarction Patients

BMJ Open

Within a Regional Network. Journal of women's health (2002) 2018;27(8):1001-06. doi:
10.1089/jwh.2017.6553 [published Online First: 2018/01/11]
13. Tang XF, Song Y, Xu JJ, et al. Effect of sex difference in clinical presentation (stable
coronary artery disease vs unstable angina pectoris or non-ST-elevation myocardial
infarction vs ST-elevation myocardial infarction) on 2-year outcomes in patients
undergoing percutaneous coronary intervention. Journal of interventional cardiology
2018;31(1):5-14. doi: 10.1111/joic.12451 [published Online First: 2017/10/13]
14. Cenko E, van der Schaar M, Yoon J, et al. Sex-Related Differences in Heart Failure After
ST-Segment Elevation Myocardial Infarction. Journal of the American College of
Cardiology 2019;74(19):2379-89. doi: 10.1016/j.jacc.2019.08.1047 [published Online
First: 2019/11/09]

- Hao Y, Liu J, Liu J, et al. Sex Differences in In-Hospital Management and Outcomes of Patients With Acute Coronary Syndrome. *Circulation* 2019;139(15):1776-85. doi: 10.1161/circulationaha.118.037655 [published Online First: 2019/01/23]
- 16. Hannan EL, Wu Y, Tamis-Holland J, et al. Sex differences in the treatment and outcomes of patients hospitalized with ST-elevation myocardial infarction. *Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions* 2020;95(2):196-204. doi: 10.1002/ccd.28286 [published Online First: 2019/04/24]
- 17. Maznyczka AM, Carrick D, Carberry J, et al. Sex-based associations with microvascular injury and outcomes after ST-segment elevation myocardial infarction. *Open heart* 2019;6(1):e000979. doi: 10.1136/openhrt-2018-000979 [published Online First:

2019/06/07]

- Stehli J, Martin C, Brennan A, et al. Sex Differences Persist in Time to Presentation, Revascularization, and Mortality in Myocardial Infarction Treated With Percutaneous Coronary Intervention. *Journal of the American Heart Association* 2019;8(10):e012161. doi: 10.1161/jaha.119.012161 [published Online First: 2019/05/17]
- Burgess SN, Juergens CP, Nguyen TL, et al. Comparison of Late Cardiac Death and Myocardial Infarction Rates in Women Vs Men With ST-Elevation Myocardial Infarction. *The American journal of cardiology* 2020;128:120-26. doi: 10.1016/j.amjcard.2020.04.044 [published Online First: 2020/07/12]
- 20. Dharma S, Dakota I, Andriantoro H, et al. Association of gender with clinical outcomes of patients with acute ST-segment elevation myocardial infarction presenting with acute heart failure. *Coronary artery disease* 2020 doi: 10.1097/mca.00000000000892 [published Online First: 2020/04/26]
- 21. Kerkman T, Ten Brinke LBG, Huybrechts B, et al. Evaluation of sex differences in patients with ST-elevated myocardial infarction: an observational cohort study in Amsterdam and surrounding region. *Netherlands heart journal : monthly journal of the Netherlands Society of Cardiology and the Netherlands Heart Foundation* 2020;28(11):595-603. doi:

10.1007/s12471-020-01435-9 [published Online First: 2020/06/13]

22. Siabani S, Davidson PM, Babakhani M, et al. Gender-based difference in early mortality among patients with ST-segment elevation myocardial infarction: insights from Kermanshah STEMI Registry. *Journal of cardiovascular and thoracic research* 2020;12(1):63-68. doi: 10.34172/jcvtr.2020.10 [published Online First: 2020/03/27]

23. Tai S, Li X, Yang H, et al. Sex Differences in the Outcomes of Elderly Patients with Acute	
Coronary Syndrome. Cardiology research and practice 2020;2020:5091490. doi:	
10.1155/2020/5091490 [published Online First: 2020/05/27]	
24. Tizón-Marcos H, Vaquerizo B, Marrugat J, et al. Differences in 30-day complications and	
1-year mortality by sex in patients with a first STEMI managed by the Codi IAM network	
between 2010 and 2016. Revista espanola de cardiologia (English ed) 2020 doi:	

10.1016/j.rec.2020.06.002 [published Online First: 2020/07/15]

- 25. Bavishi C, Bangalore S, Patel D, et al. Short and long-term mortality in women and men undergoing primary angioplasty: A comprehensive meta-analysis. *International journal of cardiology* 2015;198:123-30. doi: 10.1016/j.ijcard.2015.07.001 [published Online First: 2015/07/15]
- 26. Kosmidou I, Redfors B, Selker HP, et al. Infarct size, left ventricular function, and prognosis in women compared to men after primary percutaneous coronary intervention in STsegment elevation myocardial infarction: results from an individual patient-level pooled analysis of 10 randomized trials. *European heart journal* 2017;38(21):1656-63. doi: 10.1093/eurheartj/ehx159 [published Online First: 2017/04/14]
- Millett ERC, Peters SAE, Woodward M. Sex differences in risk factors for myocardial infarction: cohort study of UK Biobank participants. *BMJ (Clinical research ed)* 2018;363:k4247. doi: 10.1136/bmj.k4247 [published Online First: 2018/11/09]
- 28. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. *Lancet (London, England)* 2004;364(9438):937-52. doi: 10.1016/s0140-

6736(04)17018-9 [published Online First: 2004/09/15]

 Harreiter J, Fadl H, Kautzky-Willer A, et al. Do Women with Diabetes Need More Intensive Action for Cardiovascular Reduction than Men with Diabetes? *Current diabetes reports* 2020;20(11):61. doi: 10.1007/s11892-020-01348-2 [published Online First: 2020/10/10]
 Arora S, Stouffer GA, Kucharska-Newton AM, et al. Twenty Year Trends and Sex Differences in Young Adults Hospitalized With Acute Myocardial Infarction. *Circulation* 2019;139(8):1047-56. doi: 10.1161/circulationaha.118.037137 [published Online First:

2018/12/28]

- 31. Zhao M, Woodward M, Vaartjes I, et al. Sex Differences in Cardiovascular Medication Prescription in Primary Care: A Systematic Review and Meta-Analysis. *Journal of the American Heart Association* 2020;9(11):e014742. doi: 10.1161/jaha.119.014742 [published Online First: 2020/05/21]
- 32. Eindhoven DC, Hilt AD, Zwaan TC, et al. Age and gender differences in medical adherence after myocardial infarction: Women do not receive optimal treatment - The Netherlands claims database. *European journal of preventive cardiology* 2018;25(2):181-89. doi: 10.1177/2047487317744363 [published Online First: 2017/11/23]
- 33. Smolina K, Ball L, Humphries KH, et al. Sex Disparities in Post-Acute Myocardial Infarction Pharmacologic Treatment Initiation and Adherence: Problem for Young Women. *Circulation Cardiovascular quality and outcomes* 2015;8(6):586-92. doi: 10.1161/circoutcomes.115.001987 [published Online First: 2015/10/16]
- 34. Nguyen HL, Goldberg RJ, Gore JM, et al. Age and sex differences, and changing trends, in the use of evidence-based therapies in acute coronary syndromes: perspectives

59 60

1	
2	
3	
4	from a multinational registry. <i>Coronary artery disease</i> 2010;21(6):336-44. doi:
5	
6	
7	10.1097/MCA.0b013e32833ce07c [published Online First: 2010/07/28]
8	
9	35. Pelletier R, Humphries KH, Shimony A, et al. Sex-related differences in access to care
10	
11	
12	among patients with premature acute coronary syndrome. CMAJ : Canadian Medical
13	
14	According inversel = inversel do "According modicale considering 2014;196/7);407
15	Association journal = journal de l'Association medicale canadienne 2014;186(7):497-
16	
17	504. doi: 10.1503/cmaj.131450 [published Online First: 2014/03/19]
18	
19	
20	36. Murphy AC, Yudi MB, Farouque O, et al. Impact of Gender and Door-to-Balloon Times on
21	
22	Long-Term Mortality in Patients Presenting With ST-Elevation Myocardial Infarction.
23	
24	
25	<i>The American journal of cardiology</i> 2019;124(6):833-41. doi:
26	
27	10.1016/j.amjcard.2019.06.008 [published Online First: 2019/07/23]
28	
29	
30	37. D'Onofrio G, Safdar B, Lichtman JH, et al. Sex differences in reperfusion in young patients
31	
32	
33	with ST-segment-elevation myocardial infarction: results from the VIRGO study.
34	
35	Circulation 2045 424/45) 4224 20 dair 40 4464/circulationship 444 042202 [mublished
36	<i>Circulation</i> 2015;131(15):1324-32. doi: 10.1161/circulationaha.114.012293 [published
37	
38	Online First: 2015/03/21]
39	
40	38. Bugiardini R, Ricci B, Cenko E, et al. Delayed Care and Mortality Among Women and Men
41	
42	
43	With Myocardial Infarction. <i>Journal of the American Heart Association</i> 2017;6(8) doi:
44	
45	
46	10.1161/jaha.117.005968 [published Online First: 2017/09/02]
47	
48	39. Khan NA, Daskalopoulou SS, Karp I, et al. Sex differences in acute coronary syndrome
49	
50	
51	symptom presentation in young patients. JAMA internal medicine 2013;173(20):1863-
52	
53	
54	71. doi: 10.1001/jamainternmed.2013.10149 [published Online First: 2013/09/18]
55	
56	40 Cente IC Degree WIL Coldhere DL et al Association of any and association
	40. Canto JG, Rogers WJ, Goldberg RJ, et al. Association of age and sex with myocardial
57	

infarction symptom presentation and in-hospital mortality. Jama 2012;307(8):813-22.

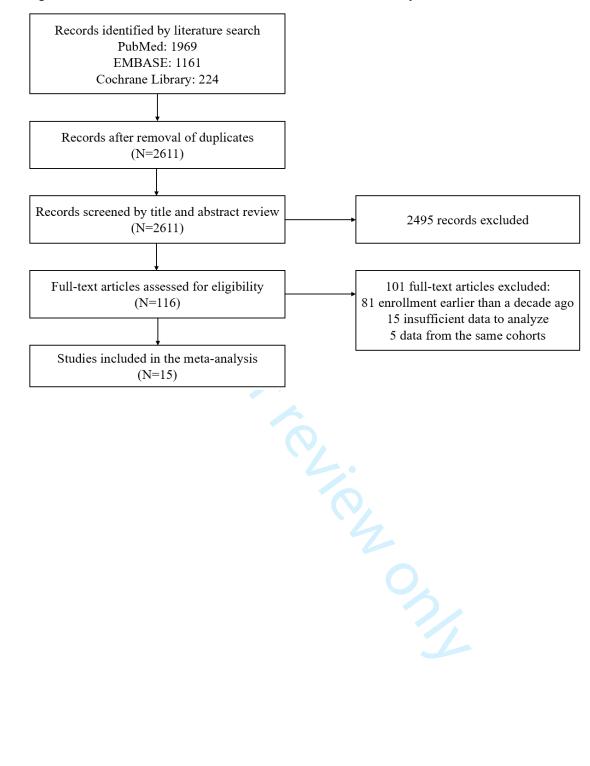
26

doi: 10.1001/jama.2012.199 [published Online First: 2012/02/24]

- 41. Moscucci M, Fox KA, Cannon CP, et al. Predictors of major bleeding in acute coronary syndromes: the Global Registry of Acute Coronary Events (GRACE). *European heart journal* 2003;24(20):1815-23. doi: 10.1016/s0195-668x(03)00485-8 [published Online First: 2003/10/18]
- 42. Kolte D, Khera S, Aronow WS, et al. Trends in incidence, management, and outcomes of cardiogenic shock complicating ST-elevation myocardial infarction in the United States. *Journal of the American Heart Association* 2014;3(1):e000590. doi: 10.1161/jaha.113.000590 [published Online First: 2014/01/15]
- 43. Nanna MG, Hajduk AM, Krumholz HM, et al. Sex-Based Differences in Presentation, Treatment, and Complications Among Older Adults Hospitalized for Acute Myocardial Infarction: The SILVER-AMI Study. *Circulation Cardiovascular quality and outcomes* 2019;12(10):e005691. doi: 10.1161/circoutcomes.119.005691 [published Online First: 2019/10/15]
- 44. Elbadawi A, Elgendy IY, Mahmoud K, et al. Temporal Trends and Outcomes of Mechanical Complications in Patients With Acute Myocardial Infarction. *JACC Cardiovascular interventions* 2019;12(18):1825-36. doi: 10.1016/j.jcin.2019.04.039 [published Online First: 2019/09/21]

BMJ Open

Figure 1 Flowchart of selection of studies included in meta-analysis.


Figure 2 Forest plots of relative risks of short-term all-cause mortality among women and men with ST-segment elevation myocardial infarction.

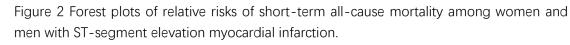

Forest plots showing unadjusted (A) and adjusted (B) short-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

Figure 3 Forest plots of relative risks of long-term all-cause mortality among women and men with ST-segment elevation myocardial infarction.

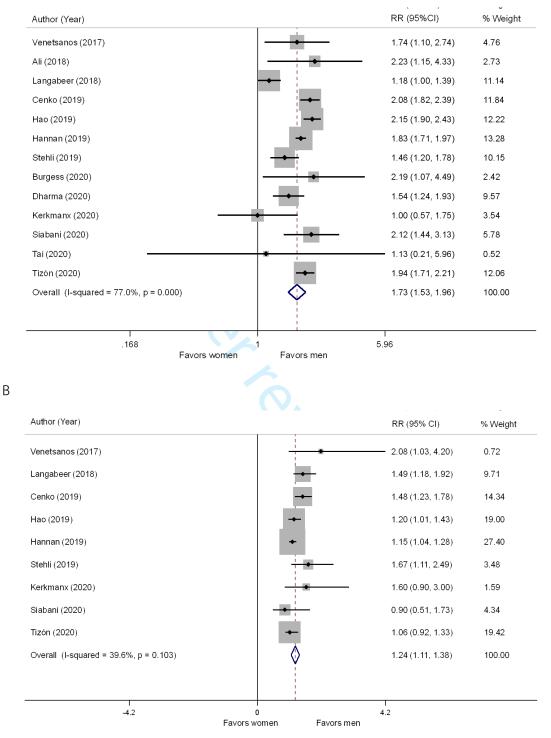
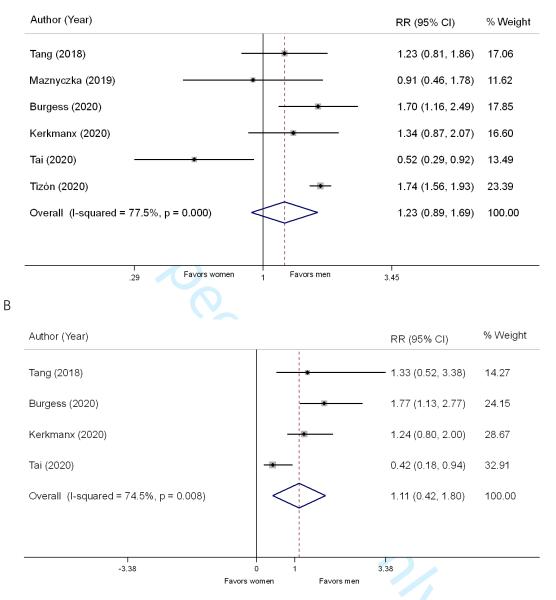

Forest plots showing unadjusted (A) and adjusted (B) long-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

Figure 1 Flowchart of selection of studies included in meta-analysis.


А

Forest plots showing unadjusted (A) and adjusted (B) short-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

Figure 3 Forest plots of relative risks of long-term all-cause mortality among women and men with ST-segment elevation myocardial infarction.

А

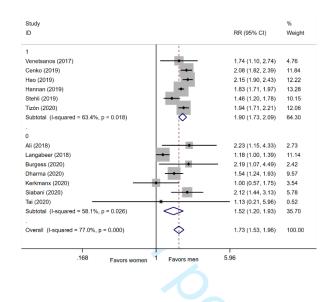
Forest plots showing unadjusted (A) and adjusted (B) long-term all-cause mortality of women compared with men with ST-segment elevation myocardial infarction using random-effects model.

eTable 1 Full search strategies for meta-analysis of studies reporting sex specific outcomes of patients with
STEMI.

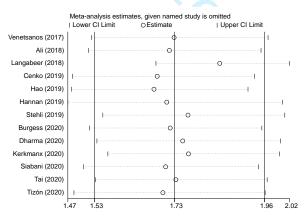
Database	Search strategy (publications accessible January 1, 2010 to August 1, 2020)
PubMed	("gender"[Title/Abstract] OR "female"[Title/Abstract] OR "male"[Title/Abstract]
	OR "gender differences"[Title/Abstract] OR "sex differences"[Title/Abstract] OR
	"sex characteristics" [MeSH Terms]) AND ("death" [MeSH Terms] OR
	"mortality"[MeSH Terms] OR "hospital mortality"[MeSH Terms] OR "cardiac
	death"[Title/Abstract] OR "sudden cardiac death"[MeSH Terms] OR "all-cause
	mortality"[Title/Abstract] OR "long term mortality"[Title/Abstract] OR "one year
	mortality"[Title/Abstract] OR "cardiovascular mortality"[Title/Abstract] OR
	"short term mortality"[Title/Abstract]) AND ("myocardial infarction"[MeSH
	Terms] OR "acute myocardial infarction"[Title/Abstract] OR "ST Elevation
	Myocardial Infarction"[MeSH Terms] OR "myocardial necrosis"[Title/Abstract]
	OR "primary percutaneous coronary intervention"[Title/Abstract] OR "primary
	PCI"[Title/Abstract] OR "primary angioplasty"[Title/Abstract])
EMBASE	(gender.mp OR female.mp OR male.mp OR gender differences.mp OR sex
	differences.mp OR sex characteristics.mp) AND (death.mp OR mortality.mp OR
	hospital mortality.mp OR cardiac death.mp OR sudden cardiac death.mp OR
	all-cause mortality.mp OR long term mortality OR one year mortality.mp OR
	cardiovascular mortality.mp OR short term mortality) AND (myocardial
	infarction.mp OR acute myocardial infarction.mp OR ST Elevation Myocardial
	Infarction.mp OR myocardial necrosis.mp OR primary percutaneous coronary
	intervention.mp OR primary PCI.mp OR primary angioplasty.mp)
Cochrane Library	[Title and abstract search] (gender OR female OR male OR gender differences
	OR sex differences OR sex characteristics) AND (death OR mortality OR
	hospital mortality OR cardiac death OR sudden cardiac death OR all-cause
	mortality OR long term mortality OR one year mortality OR cardiovascular
	mortality OR short term mortality) AND (myocardial infarction OR acute
	myocardial infarction OR ST Elevation Myocardial Infarction OR myocardial
	necrosis OR primary percutaneous coronary intervention OR primary PCI OR
	primary angioplasty)

eTable 2 Variables adjusted in the adjusted analyses from the included studies.

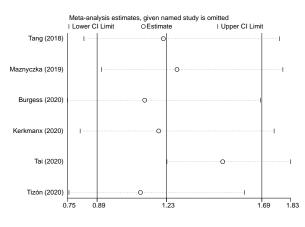
First Author	Year	Adjusted Variables
Venetsanos	2017	age, weight, prior MI, prior PCI, patient's history of diabetes, hypertension, non-hemorrhagic stroke, gastrointestinal bleeding, time from symptom onset to pre-PCI ECG, admission Killip class, baseline
		hemoglobin, eGFR, access site, use of Glycoprotein IIIb/IIa inhibitor, bivalirudin and unfractionated heparin, location of MI and revascularization
Langabeer	2018	age, smoking, diabetes, prior CVD, prior stroke, heart failure, shock, length of stay, teaching, insurance, total ischemic time, door to balloon
Tang	2018	age, BMI, LVEF, serum creatinine, use of proton pump inhibitors, use of dual-antiplatelet therapy, previous PCI, diabetes mellitus, hypertension, previous stroke, current smoker, thrombocytopenia, use of femoral approach, use of intra-aortic balloon pump, and multivessel disease
Cenko	2019	age, family history of CAD, diabetes, hypertension, hypercholesterolemia, current smoking, former

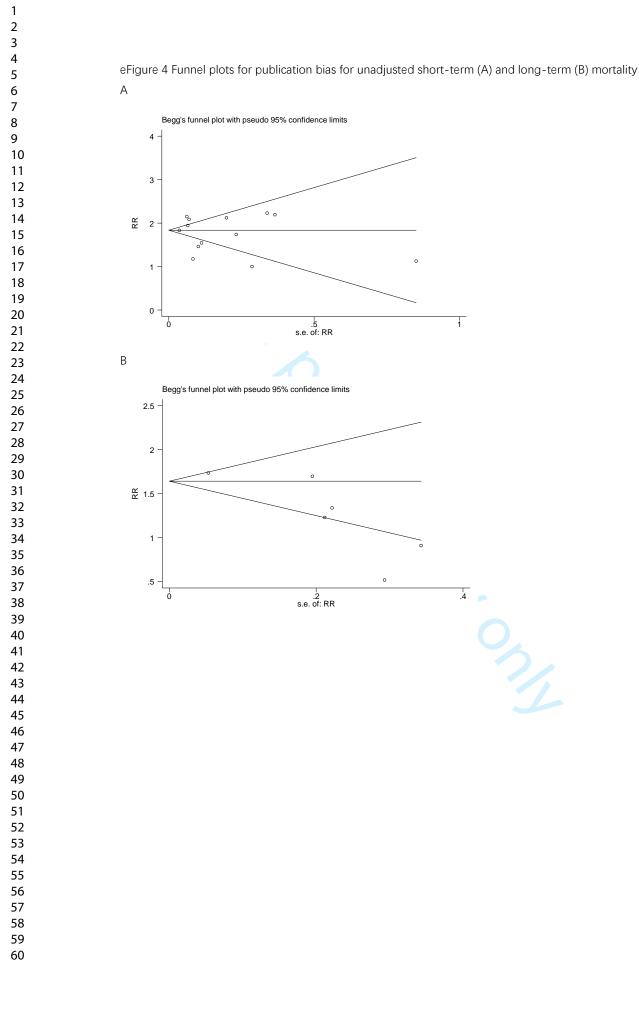

		smoking, prior angina pectoris, prior myocardial infarction, prior PCI, prior CABG, peripheral arted disease, prior stroke, ST-segment elevation in anterior leads (at ECG), systolic blood pressure baseline, heart rate at baseline, serum creatinine at baseline, Killip Class ≥2
Нао	2019	Age, medical insurance status, acute heart failure, cardiogenic shock, cardiac arrest at admission heart rate and systolic blood pressure, diabetes mellitus, smoking, history of CHD, heart failure, rep failure, and cerebrovascular disease, prehospital statin use, renal insufficiency, and transfer status
Hannan	2019	age, STEMI location, heart rate, mean arterial pressure, history of hospitalization in last year, history of PCI, history of CABG surgery, septicemia/sepsis/systemic inflammatory response /sho metastatic cancer/acute leukemia, diabetes with acute complications, end stage liver disea inflammatory bowel disease, coagulation defects and other specified hematological disorded dementia, polyneuropathy, muscular dystrophy, seizure disorders and convulsions, coma/bra compression/anoxic damage, cardiorespiratory failure and shock, congestive heart failure, specific heart arrhythmias, ischemic or unspecified stroke, hemiplegia/hemiparesis, vascular disease w complications, vascular disease without complications, aspiration and specified bacter pneumonias, acute renal failure, chronic kidney disease, Stage 5, unspecified renal failure, nephripressure ulcer of skin with partial thickness skin loss*, pressure pre-ulcer skin changes, chronic ull of skin except pressure ulcer, lower limb/amputation complications
Maznyczka	2019	NA
Stehli	2019	age, diabetes mellitus, eGFR, previous PCI and/or coronary artery bypass grafting, history peripheral vascular disease and CVD, LVEF, out-of-hospital and in-hospital cardiac arre cardiogenic shock, and occurrence time of symptom onset
Burgess	2020	NA
Dharma	2020	NA
Kerkmanx	2020	NA
Siabani	2020	BMI≥25, hypertension, diabetes, current smoking, hypercholesterolemia, congestive heart failu Killip class (at first presentation) ≥ II, symptom-to-balloon time> 360 min and door-to-ballo time > 90 min
Tai	2020	NA
Tizón	2020	age, diabetes mellitus, recruitment year, time from symptom onset to culprit coronary arter opening, and Killip class

 BMJ Open


eTable 3 Assessment of study quality using Newcastle-Ottawa scale.
--

First Author	Year	Selection	Comparability	Outcome			Total			
		Representativeness	Selection of	Ascertainment	Outcome of		Assessment	Follow-up long	Adequacy	points
		of the exposed cohor	the no	of exposure to	interest not		of outcome	enough for	of follow-	
			exposed	implants	present at start			outcomes to	up	
			cohort		of study			occur		
Venetsanos	2017	*	*	*	*	**	*	λ	*	8
Ali	2018	λ	Λ	*	*	λ	*	λ	*	4
Langabeer	2018	*	*	*	*	*	*	λ	*	7
Tang	2018	λ	١	*	*	**	*	*	*	7
Cenko	2019	*	*	*	*	**	*	λ	*	8
Нао	2019	*	*	*	*	**	*	λ	*	8
Hannan	2019	*	*	*	*	**	*	λ	*	8
Maznyczka	2019	λ	١.	*	*	λ	*	*	*	5
Stehli	2019	*	*	*	*	**	*	λ	*	8
Burgess	2020	λ	١.	*	*	**	*	*	*	7
Dharma	2020	λ	۸.	*	*	*	*	*	*	6
Kerkmanx	2020	*	*	*	*	١	*	*	*	7
Siabani	2020	λ	1	*	*	*	*	λ	*	5
Tai	2020	λ	\	*	*	**	*	*	*	7
Tizón	2020	*	*	*	*	**	*	*	*	9


eFigure 1 Forest plots of relative risks of short-term all-cause mortality of studies with Newcastle-Ottawa scale >7 points and with \leq 7 points.



eFigure 2 Meta-influence analysis for unadjusted short-term mortality

eFigure 3 Meta-influence analysis for unadjusted long-term mortality

Page 38 of 38

PRISMA 2020 Checklist

Section and Topic	ltem #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	Title
ABSTRACT	1		
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Abstract
INTRODUCTION	1		
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Page 4
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Page 4
METHODS	1		
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Page 5
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Page 4
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Page 4
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Page 5
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Page 5
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Page 5
2	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Page 5
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Page 5
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Page 5
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Page 5
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Page 5
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Page 5
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Page 5
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	Page 5
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	Page5
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	Page 5
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Page 5

Page 39 of 38

PRISMA 2020 Checklist

Section and Topic	ltem #	Checklist item	Location where item is reported						
RESULTS									
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Figure 1						
	16b	6b Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.							
Study characteristics	17	Cite each included study and present its characteristics.							
Risk of bias in studies	18	Present assessments of risk of bias for each included study.							
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Table 2						
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Page 6						
1 syntheses 8 9	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Page 6						
0	20c	Present results of all investigations of possible causes of heterogeneity among study results.	Page 6						
1	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	Page 7						
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	Page 7						
Certainty of evidence									
DISCUSSION	1								
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Page 7						
8	23b	Discuss any limitations of the evidence included in the review.	Page 8-9						
9	23c	Discuss any limitations of the review processes used.	Page 8-9						
0 1	23d	Discuss implications of the results for practice, policy, and future research.	Page 7-8						
OTHER INFORMA									
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.							
4 '	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.							
5	24c	Describe and explain any amendments to information provided at registration or in the protocol.							
⊈ Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.							
Competing interests	26	Declare any competing interests of review authors.							
Availability of data, code and other materials	27	27 Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.							

BMJ Open

44 From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 45 10.1136/bmj.n71 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml For more information, visit: <u>http://www.prisma-statement.org/</u>