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Supporting information: 4 simulation figures and extended methods 

 

 

Fig. SI 1. A threshold strength of persistent gNa in multipolar neurons suffices for model 
endopiriform collective bursting and amplification of L2pyr activity. Parameters in these 
simulations were as in Fig. 3, but with multipolar gNa(P) density 0.25 × transient gNa density (in 
A), and 0.1 × transient gNa density (in B).  Note the profound difference in activities.  
Simulations piriformENDO105,106. 
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Fig. SI 2. With a fixed density of multipolar synaptic interconnections (above the percolation 
limit), a critical strength of multipolar recurrent synaptic excitation is necessary for collective 
bursting. In each of the 4 simulations illustrated, all LOT afferents were active for 200 ms with 
mean interval between spikes = 300 ms.  Each multipolar neuron contacted 12 others, chosen 
randomly.  a: gAMPA scaling = 0.75; b: 0.80; c: 0.85; d: 1.5.  A: the multipolar “fields” (inverted 
average of multipolar somatic potentials, for the multipolar populations).  B: somatic potentials 
of 3 multipolar neurons.  Note the sharp transition between a and b, and the shortening latency as 
gAMPA is further increased.  Simulations piriformENDO41,43,42,39. 
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Fig. SI 3. Further demonstration of the importance of gAMPA  (multipolar→multipolar)scaling for 
collective bursting. In these 3 simulations, afferents were silent and a 5 ms, 0.6 nA depolarizing 
somatic current pulse was delivered to 50 multipolar neurons (arrows).  a: each multipolar cell 
contacts 8 others, gAMPA scaling 0.6; b: each multipolar cell contacts 12 others, gAMPA scaling 0.6; 
c: each multipolar cell contacts 12 others, gAMPA scaling 1.5: sustained firing now occurs.  
Simulations piriformENDO65,66,67. 
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Fig. SI 4. Critical collective behavior of the multipolar (endopiriform) population as a function 
of afferent intensity, with consequent effects on the L2pyr population. This figure extends Fig. 4 
of the main text, although here bias currents to the multipolar neurons are different (Fig. 4: -0.25 
nA, Fig. SI 4: -0.05 nA).  In this figure, each model multipolar neuron contacts 3 others with 
scaling factor gAMPA  (multipolar→multipolar) = 0.6.  The density of persistent gNa was 0.5 × 
transient gNa, as in Fig. 4.  In each of the 4 simulations illustrated here, LOT afferents were active 
for 200 ms.  a: mean interval between spikes in each LOT axon = 800 ms; b: 600 ms; c: 550 ms; 
d: 500 ms.  Note the transition between b and c and the associated switch in L2pyr activities. 
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Detailed formulation of the (endopiriform) multipolar cell model. 

Note that the programs for modeling all of the other cell types have a similar logical structure to 
this one, although cell architecture, conductance densities, and possibly membrane kinetics will 
vary from cell type to cell type.  This model is a descendant of the one described in Ref. (1). 

Fig. SI 5. Schematic of the multipolar cell architecture (not to scale).  There are 59 
compartments, 1 for the soma, 6 for the branching axon, 13 for each of the branching dendrites. 

 

The endopiriform multipolar neuron has a compartmental structure as shown in Fig. SI 5.  All 
compartments are cylindrical.  The model was based on an earlier basket cell model, with soma 
dimensions in microns: radius 7.5, length 20; axon compartmental dimensions = radius 0.8 
tapering to 0.5, length 50; dendritic compartmental dimensions = radius 1.06 tapering to 0.42, 
length 40.  To convert this structure to a multipolar cell, the dendritic compartments were 
doubled in length, then doubled in area (to account for spines). 

A consistent set of units for the model consists of mV, ms (or ms-1 for rate functions), nF, nA, 
µS. 

We simulated electrical and calcium-mediated activity with the standard discrete compartmental 
cable equation (2).  Electrotonic parameters were membrane capacitance density 0.9 µF/cm2, 
membrane resistivity Rm = 50,000 Ω-cm2 for soma/dendrites and 1,000 Ω-cm2 for the axon, 
internal resistivity Ri = 250 Ω-cm for soma/dendrites and 100 Ω-cm for the axon.  Synaptic and 
leak conductances are taken to be ohmic, with reversal potentials in mV: leak -65, K+ (and 
GABAB) -85, Na+ 50, Ca2+ 125, anomalous rectifier (h-current) -40, AMPA and NMDA 0, 
GABAA -75. 

As per usual, for compartment k,  

Ck dVk / dt = Σ m γm, k (Vm – Vk) – Iionic, k 
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where Ck is the membrane capacitance of compartment k, the V’s are transmembrane potentials 
of various compartments (and the extracellular space is assumed isopotential), the sum is taken 
over all compartments directly connected to compartment k, and Iionic, k is the ionic 
transmembrane current for the respective compartment.  This latter term includes the leak, 
synaptic currents, and active transmembrane currents. 

Active transmembrane currents included these: transient gNa, persistent gNa, 5 types of gK, 2 types 
of gCa, and the anomalous rectifier.  The gK types were gK(DR), the delayed rectifier; gK(A) (“A” 
current); gK(M) (“M” current); gK(C) (“C” current), and gK(AHP) (slow afterhyperpolarization).  The 
gCa types were gCa(L) (high-threshold) and gCa(T) (low-threshold “T” type).  Membrane kinetics for 
all channel types except gK(AHP) depended on transmembrane voltage. gK(C) depended on [Ca2+]i 
as well; and gK(AHP) depended on [Ca2+]i but not on voltage. 

The voltage-dependent kinetics of the different transmembrane currents were simulated with a 
standard Hodgkin-Huxley type of scheme, where there are activation (“m”) and possibly 
inactivation (“h”) state variables, specific to each conductance type, having kinetics that depend 
on membrane voltage only.  The conductance in a given compartment depends on a scaling 
constant, say gK(A) (dropping the compartmental subscript “k”), multiplied by powers of “m” and 
“h” for that conductance and that compartment.  The state variables each evolve according to the 
differential equations: 

dm / dt = αm × (1 – m) – βm × m  ;   dh / dt = αh × (1 – h) – βh × h 

The α’s and β’s are designated the forward and backward rate functions, respectively; they are 
functions of transmembrane voltage and of course have different properties for each conductance 
type.  An equivalent formulation of these kinetics uses the relations of the sort:  

m∞ (V) = αm (V) / [αm (V) + βm (V)] ;  τm (V) = 1 / [αm (V) + βm (V)] , 

(likewise for h∞ and τh).  Here, m∞ is the steady-state value that m would obtain if V were held 
constant, and τm is the respective time constant.  (It is easy to show that these numbers are well-
defined).  Hence, kinetic properties can be defined by the rate functions (of voltage), or by 
steady-state values and time constants.  We use both formulations below. 

Hence (dropping compartmental subscripts), the ionic current depending on membrane channels 
(excluding synaptic currents), and using “g” parameters as scaling constants and using a 
consistent set of units, will be: 

gL (V + 65) + [gNa(F) mNa(F)
3 hNa(F) + gNa(P) mNa(P)

3] (V – 50) + 

   [gK(DR) mK(DR)
4 + gK(A) mK(A)

4 hK(A) + gK(M) mK(M) + gK(C) mK(C) Γ(χ) +  

    gK(AHP) m(AHP)] (V + 85) + [gCa(L) mCa(L)
2 + gCa(T) mCa(T)

2 hCa(T)] (V - 125) + 

    + gAR mAR (V + 40) 

In the above equation, χ stands for [Ca2+]i in the respective compartment, and Γ a function 
thereof, to be defined below. 
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Kinetics of voltage-dependent membrane conductances are as follows: 

Transient gNa:: m∞ = 1 / [1 + exp((-V – 38) / 10)];  

   τm =  0.0125 + 0.1525 exp((V + 30)/10)  if V < 30 mV 

        = 0.02 + 0.145 exp((-V-30)/10) otherwise. 

     h∞ = 1 / [1 + exp ((V + 58.3)/6.7)] 

     τh = 0.225 + 1.125 / [1 + exp(V + 37)/15)] 

Persistent gNa:: activation kinetics as above (but for other principal cell types, there may be shifts 
along the voltage axis); there is no inactivation. 

Delayed rectifier: m∞ = 1 / [1 + exp((-V – 27) /11.5)]; 

     τm =  0.25 + 4.35 exp((V + 10)/10)  if V < -10 mV 

         = 0.25 + 4.35 exp((-V-10)/10) otherwise. 

A current:: m∞ = 1 / [1 + exp((-V – 60) / 8.5)];  

   τm =  0.185 + 0.5 / [ exp((V + 35.8)/19.7)  + exp((-V-79.7)/12.7)] 

    h∞ = 1 / [1 + exp ((V + 78.0)/6.0)] 

    τh = 0.5 / [exp((V + 46)/5) + exp((-V-238)/37.5)]  if V < -63 mV 

         =  9.5 otherwise. 

Anomalous rectifier: m∞ = 1 / [1 + exp((V + 75) /5.5)]; 

     τm = 1 / [exp(-14.6 – 0.086 V) + exp(-1.87 + 0.07 V)] 

C current (voltage-dependent part):  if V < -10 mV then 

  αm = 0.106 exp ((V + 50)/11 – (V + 53.5)/27) 

  βm = 4 exp ((-V – 53.5)/27) - αm  ;  otherwise 

  αm = 4 exp((-V – 53.5)/27) and βm = 0 

M current:   αm = 0.02 / [1 + exp((-V – 20)/5)] 

                     βm = 0.01 exp((-V – 43)/18) 

High-threshold gCa (gCa(L)): αm = 1.6 / [1 + exp(-0.072 (V – 5))] 

                     βm = 0.1 ((V + 8.9)/5) / [exp(V + 8.9)/5) – 1] 

Low-threshold gCa (gCa(T)): m∞ =1 / [1 + exp((-V – 52)/7.4)] 

                                             τm- = 1 + 0.33 /[exp((V + 27)/10) + exp((-V-102)/15)] 

                           h∞ = 1 / [1 + exp((V + 80)/5)] 



8 
 

                           τh = 28.3 + 0.33 /[exp((V + 48)/4) + exp((-V – 407)/50)] 

Scaling factors for membrane conductances (as in multipolar.f). These are given in units of 
mS/cm2. 

Transient gNa:: 400 (axon), 60 (soma and proximal dendrites), 30 → 10 (rest of the dendrites) 

Persistent gNa:: Varies, depending on the simulation 

Delayed rectifier: 400 (axon), 100 (soma and proximal dendrites), 20 (rest of the dendrites) 

A current:  1 (axon), 2 (soma), 1 (dendrites) 

AHP current (slow, gated by Ca2+) 0 (axon), 0.12 (soma and dendrites) 

Anomalous rectifier: 0 (axon), 0.02 (soma and dendrites) 

C current: 10 (soma), 0 elsewhere 

M current:   8 (axon), 6 (soma and dendrites) 

High-threshold gCa (gCa(L)): 0 (axon), 0.5 (soma and proximal dendrites), 2.5 (distal dendrites) 

Low-threshold gCa (gCa(T)): 0 (axon), 0.05 (soma and proximal dendrites), 0.5 (distal dendrites) 

 

[Ca2+]i dynamics and slow AHP conductance. [Ca2+]i (denoted “chi” in the code, and “χ” here) 
rises with Ca2+ current through high-threshold (gCa(L)) channels, into a thin cylindrical shell in 
each soma-dendritic compartment.  For each soma-dendritic compartment, a parameter “cafor” is 
defined as 52 × 106 / [compartment area in microns2] (respectively                                              
26 × 106 / [compartment area in microns2] for the soma).  For compartment k, then,  

dχk / dt = “cafor” × [high-threshold inward ICa in nA for compartment k] - βχ × χk 

The relaxation parameters βχ are 0.05 for dendrites and 0.02 for the soma, corresponding to decay 
time constants of 20 ms and 50 ms, respectively.  Note the model does not include Ca2+ currents 
in the axon. 

The quantities χk are coupled to K+ currents as follows.  First, for gK(C), the term Γ(χ), which 
appears in the equation for total ionic current, is equal to min (1, 0.004 × χ).  (This formulation 
allows for saturation, in case χ becomes very large, as it can do during plateau potentials.)  
Second, for gK(AHP), the forward rate function in compartment k is αm = min (2×10-5× χk, 0.01), 
again allowing for saturation.  The backward rate function is constant at 0.001, corresponding to 
relaxation with time constant 1 second. 

Formalism for major synaptic conductances.  The major synaptic conductances developing 
across multipolar cell membranes are mediated by AMPA and GABAA receptors, excitatory and 
inhibitory respectively.  A unitary AMPA conductance follows an alpha function and is equal to 
gAMPA t exp (-t / τ), where τ gAMPA is a scaling constant that depends on the presynaptic cell type, 
and which varies with the simulation, t is time in ms, and τ is a time constant in ms (in this case, 
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2 ms).  A unitary GABAA conductance also has a scaling constant, rises in one integration time 
step, and decays exponentially: for multipolar neurons, the decay time constant is 6 ms. 

Connectivity of multipolar neurons. The endopiriform cells synaptically contact each other, and 
they send output to, and receive input from: piriform layer 2 pyramids, layer 3 pyramids, and 
deep basket (fast-spiking) cells.  A deep basket cell is excited by 10 randomly chosen multipolars 
with gAMPA scaling 0.5; a multipolar cell is inhibited by 15 deep basket cells, with gGABA(A) 
scaling 1.0.  The other connectivity parameters were varied in different simulations. 
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