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I. INTRODUCTION

This model framework was first introduced in Aguas et al. (1). The code is available at https://github.
com/francocarol/covid perc. In Section II we introduce our modifications for the CoMo model structure
(1) to account for particularities in the Brazilian health system. Nevertheless, modifications to better
reflect other localities should be easily included in the model. Section II-A describes the equations, along
with the explanation and sources of the parameters used. Section II-B describes how non-pharmaceutical
interventions work in the model. Section II-D thoroughly describes our modifications to model hospital
burden in Brazil. Section II-C lists the interventions used in the main paper. Finally, Section III shows
the procedure used to fit the model to data.

II. MODEL STRUCTURE

A. Model equations
The model consists in an expanded SEIR model to account for asymptomatic individuals and detailed

structure of the Brazilian health system. We write such epidemiological dynamics as

https://github.com/francocarol/covid_perc
https://github.com/francocarol/covid_perc
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dS

dt
= −λS+ ωR+ Āg · S+ µb − µdS

dE

dt
= λS− γE+ Āg · E− µdE

dA

dt
= γ(1− Pclin)(1− IHR)E− νiA+ Āg ·A− µdA

dI

dt
= γPclin(1− Pselfis)(1− IHR)E− νiI+ Āg · I− µdI

dX

dt
= γPselfisPclin(1− IHR)E− νiX+ Āg ·X− µdX

dH

dt
= γIHR(1− Picu)(1−Hc)E− νsH+ Āg ·H− µdH

dHC

dt
= γIHR(1− Picu)HcE− νscHC+ Āg ·HC− µdHC

dICU

dt
= γIHRPicu(1− ICUc)E− νicuICU+ Āg · ICU− µdICU

dICUH

dt
= γIHR PicuICUc(1− ICU Hc)E− νicuhICUH+ Āg · ICUH− µdICUH

dICUC

dt
= γIHR PicuICUcICU HcE− νicucICUC+ Āg · ICUC− µdICUC

dR

dt
= νiA− ωR+ νiX+ νiI+ Āg ·R− µdR+ νs(1− PdIHFRh)H

+ νicu(1− PdicuIHFRicu)ICU+ νicuc(1− PdicucIHFRicu)ICUC

+ νsc(1− PdhcIHFRh)HC+ νicuh(1− PdicuhIHFRicu)ICUH

and, to represent the report dynamics, we also write the cumulative cases and deaths, respectively, as:

dC

dt
= rγ(1− IHR)(1− Pclin)E+ rcγ(1− IHR)PclinE+ rhγIHRE

dD

dt
= νsPdhIHFRhH+ νscPdhcIHFRhHC+ νicuPdicuIHFRicuICU+ νicucPdicucIHFRicuICUC

+ νicuhPdicuhIHFRicuICUH+ µd(H+HC+ ICU+ ICUC+ ICUH+ I+X)
(1)

where each of the dynamic variables (corresponding to the compartments shown in Table I) is further
subdivided in D = 19 age classes consisting of 5 years age bins (0-4,5-9, up to 90+). Thereby, each of
the parameters written in the model, aside from Āg (ageing matrix), should be thought of as diagonal
matrices containing parameter values corresponding to each age class. Take, as an example, the natural
mortality rate, given by

µ̂d = diag(µd1, µd2, ..., µdD) = diag(µ⃗d). (2)

Note that, in the system of equations presented above, we suppress the hat or bold notation from all
diagonal matrices to avoid an overloaded notation, but we choose to keep all dynamic variables in bold
as a reminder that each of them actually represents a vector of dimension D = 19. Hence, the dimension
of the ordinary differential equation system that needs to be solved is D · 11, where 11 is the number of
compartments in the system. A description of each parameter from the model is available at table II.

B. Contact matrices and the force of infection
The model has over 300 equations, but the main mechanisms regarding infection and NPI effects are

encoded in its force of infection, λ, which is describe in this subsection. Basically, a Susceptible individual
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Code Equations Description
S S Susceptible population
E E Infected and presymptomatic population
I A Infected population, asymptomatic and not isolated

CL I Infected population, mildly symptomatic and not isolated
X X Infected population, mildly symptomatic and self-isolated at home
H H Infected population, hospitalized in simple bed.

HC HC Infected population that require hospital treatment but but are denied,
due to healthcare system overload

ICU ICU Infected population, hospitalised in Intensive Care Units (ICU).
ICUH ICUH Infected population that require ICU but are hospitalised in simple beds,

due to unavailability in ICU beds.
ICUC ICUC Infected population that require ICU but are denied both

an ICU or hospital simple bed, due to healthcare system overload.
R R Recovered population
C C Cumulative reported cases

CM D Cumulative reported deaths

TABLE I: List of model variables definitions and notations both for the equations and the R code.

in the n-th age class, written as Sn, can have contact with any of the infected groups of all age classes,
so we would have

dSn

dt
∝ −Sn

∑
j

cn,j(a
A
j Aj + aEj Ej + aIjIj + ...) (3)

where cn,j measures the contact strength between people of n-th and j-th age classes, forming the
contact matrix ĉ, of dimension D ×D. The aAj , a

E
j , a

I
j , ... measures how infectious these different model

compartments are. For example, asymptomatic people, A, may be more infectious than the symptomatic
ones, I, since they may not be isolating themselves, given they are unaware of their infectious state.
The NPIs are considered as modifications on both ĉ, reducing contacts between people, and also on the
different aAj , a

I
j , .., accounting for behavioural aspects, such as increased hand hygiene.

Given the definitions above, we are finally able to breakdown the general structure of ĉ. It is mainly
composed of 4 matrices, ĉhome - which measures the amount of contacts of people at home, ĉwork - for
contacts at work, ĉschool - for contacts at school and ĉother - for other kinds of human interactions, such
as going to restaurants, movies and churches. Therefore, in absence of any NPIs, the resultant contacts
matrix would be simply

ĉ = ĉhome + ĉwork + ĉschool + ĉother (4)

But as NPIs are inserted, the contact matrix is modified. Suppose the simple case of home-office
policies, that is, people should work at home for a period of workdur weeks. A fraction workcov of the
population is able to adhere to such policies, and they have an effectiveness workeff in reducing this kind
of contact, then we have that the contact matrix becomes

ĉ = (1− fperc)ĉhome + (1− workcovworkeffθwork(t))ĉwork + ĉschool + ĉother (5)

Here, fperc is as defined as in section 2.2 of the main paper, whilst θwork(t) is a function that measures
if either home office policies are being applied or not, and is usually a step function, being 1 during the
period workdur, defined by starting and finishing dates of such policies, and 0 out of said period. We
could apply this same mathematical form for other interventions, such as school closing, commerce and
restaurants functioning in reduced periods or not functioning at all, and many other NPIs we have seen
being tried out in order to contain virus spread. We would get
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Code Equation Description Value Source

lam λ force of infection Variable Eq. (16)
mort µd natural mortality (days−1) Age dependent IBGE (9)
ageing Āg speed of population ageing (days−1) - -
birth µb birth rate (days−1) - IBGE (10)
gamma γ Inverse of incubation period (days−1) 1/5.8 Wei et al. (18)
ihr IHR Infection hospitalisation rate Age dependent Salje et al. (13)

omega ω
Rate of which recovered people become
susceptible again (days−1) 0 Assumed

rho ρ Relative infectiousness of presymptomatic individuals 0.105 Wei et al. (17)

rhos ρs
Relative infectiousness of hospitalised individuals
(reduced due to hospitalisation) 0.10 Assumed

pclin Pclin Proportion of symptomatic individuals
0.30 (0-19)
0.56 (20-59)
0.69 (60+)

SMSSP
Sun et al. (15)
Sun et al. (15)

selfis Pselfis
Proportion of symptomatic individuals
who self-isolate Variable Section II-B

prob icu Picu
Proportion of hospitalised individuals
who need ICU beds Age dependent SIVEP (6)

critH Hc
Proportion of hospitalised individuals
who have not received attendance Variable Section II-D

critICU ICUc

Proportion of hospitalised individuals
who need ICU beds and
have not received one

Variable Section II-D

critICUH ICUh

Proportion of hospitalised individuals
who need ICU beds and have not
received one and also not have received
simple beds

Variable Section II-D

nui νi
Recovery rate of mild
symptomatic/asymptomatic individuals (days−1) 1/9 Cevik et al. (4)

nus νs
Recovery/death rate of hospitalised
individuals (days−1) 1/8.3 SIVEP (6)

nusc νsc

Recovery/death rate of hospitalised
individuals who have not received
attendance (days−1)

1/11 Assumed

nu icu νicu
Recovery/death rate of hospitalised
individuals in ICU beds (days−1) 1/14.7 SIVEP (6)

nu icuh νicuh

Recovery/death rate of hospitalised
individuals who need ICU beds
but received simple beds (days−1)

1/11 Assumed

nu icuc νicuc

Recovery/death rate of hospitalised
individuals who need ICU beds and
have not received attendance (days−1)

1/11 Assumed

ifr[,3] IHFRicu In hospital fatality rate (ICU required) Age dependent Portella et al. (12)
ifr[,4] IHFRh In hospital fatality rate (common bed) Age dependent Portella et al. (12)

pdeath h Pd
Maximum probability of death for
a hospitalised infection requiring common bed 45.9 SIVEP (6)

pdeath icu Pdicu
Maximum probability of death for
a hospitalised infection requiring ICU 69 SIVEP (6)

pdeath hc Pdhc

Maximum probability of death for
a hospitalised infection requiring common bed
but not receiving attendance

80 Assumed

pdeath icuh Pdicuh

Maximum probability of death for
a hospitalised infection requiring ICU
but receiving common bed attendance

97 Assumed

pdeath icuc Pdicuc

Maximum probability of death for
a hospitalised infection requiring ICU
but not receiving attendance

99 Assumed

report r Report rate of asymptomatic cases 0.00 Assumed
reportc rc Report rate of symptomatic cases 0.01 Assumed
reporth rh Report rate of hospitalized cases 0.95 Assumed
give q Threshold of occupancy for loss of health system efficiency 0.65 Assumed

TABLE II: List of model parameters in equations on supplementary material and in the code. These variables are restricted to epidemiological
variables (not the NPI-related ones).
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ĉ = (1− fperc)ĉhome + (6)
(1− workcovworkeffθwork(t))ĉwork +

(1− schoolcovschooleffθschool(t))ĉschool +

(1− distcovdisteffθdist(t))ĉother

With this final form of contact matrix we can add yet another possible NPI, cocooning the elderly. That
means they are more isolated and protected, since they are one of the most vulnerable to COVID-19 death.
When cocooning is applied, the contacts of people above a certain age, let’s say agecocoon, are reduced
by cocooncovcocooneff , implying that ĉ values from the D† (the index from which cocooning starts) to D
lines and rows must be reduced. If we recall that in our model we have 19 age classes defined from 0-4
to 90+, we would have, for instance, D† = 13 if cocooning is applied for people over 65 years old, since
this threshold would correspond to the 13th class index. Defining the proportional reduction of contacts
between the elderly as η = 1− cocooncovcocooneffθcocoon(t) we write

ĝD†(η) = diag(⃗1D† , η1⃗D−D†) (7)

and with it, make the final contacts matrix

c = ĝD†(η)ĉĝD†(η) (8)

Note that

ĝD†(η)ĉĝD†(η) =



c1,1 c1,2 ... c1,D†−1 ηc1,D† ... ηc1,D
c2,1 c2,2 ... c1,D†−1 ηc1,D† ... ηc1,D

...
... . . . ...

...
...

... . . . ...
...

ηcD†,1 ηcD†,2 ... ηcD†,D†−1 η2cD†,D† ... η2cD†,D
...

...
...

... . . . ...
ηcD,1 ηcD,2 ... ηcD,D†−1 η2cD,D† ... η2cD,D


(9)

so the elderly are more isolated among themselves, since η < 1 =⇒ η2 < η, whilst still having
reduced contacts with the other age classes.

C. Non-pharmaceutical interventions
In all three model versions, we have implemented different NPI that affected the age-dependent contact

rates encoded by the setting-specific contact matrices. Here we describe each of the seven NPI implemented
in our model, followed by the resultant formulation of the system’s force of infection (λ).

• Self-Isolation: Symptomatic individuals that do not require hospitalization voluntarily isolate them-
selves during the time of infection and reduce the chance of infecting others. The beginning and
end period of this intervention is defined by θselfis(t) and represents the days t when the population
adheres to this behavior. The impact of this NPI depends on its adherence to self-isolation selfiscov
and estimated reduction in contacts by self-isolation selfiseff values, where

Pselfis = selfiscov(t)selfiseffθselfis(t) (10)

• Social Distancing: the population avoids or reduces contacts in the community setting (ĉcom). This
intervention comprises reduction of contacts on churches, markets, social events and gatherings,
shopping activities, gyms, and others. The beginning and end period of this intervention is defined
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by θdist(t). The impact of this NPI depends on its adherence to social distancing at community
level (distcov) and reduction of contacts in the community among those adhering to social distancing
(disteff ) values, where:

dist(t) = distcov(t)disteffθdist(t); (11)

• Use of masks: This intervention comprises individual protection measures, given by the adoption of
mask usage. The beginning and end period of this intervention is defined by θmask(t). The impact
of this NPI depends on its adherence to mask usage (maskcov) and effectiveness (maskeff ), where

mask(t) = maskcov(t)maskeffθmask(t); (12)

• Work from home: This intervention reduces contacts in the work environment (ĉwork) as workers
perform their activities from their home. The beginning and end period of this intervention is defined
by θwork(t). The impact of this NPI depends on the adherence to home-office (workcov) and reduction
of contacts at work among those adhering to home-office (workeff ), where:

work(t) = workcov(t)workeffθwork(t); (13)

• School closure: This intervention reduces the contacts in the school setting (ĉschool) due to limitation
of in-school activities or school closures. The beginning and end period of this intervention is defined
by θschool(t). The effectiveness of this NPI depends on the adherence to online (not in-person) school
activities (schoolcov) and the reduction of contacts in school upon school closure (schooleff ), where:

school(t) = schoolcov(t)schooleffθschool(t); (14)

Note that in the main text, schoolcov is also referred as PCS (potential contacts in school).
• Cocoon elderly: This intervention reduces the contacts to a proportion of the older adult popu-

lation, given a minimum age D†. The beginning and end period of this intervention is defined
by θcocoon(t).The effectiveness of this NPI depends on the adherence to cocooning of older adults
(cocooncov) and reduction of contacts with older adults in all settings as a results of cocooning older
adults (cocooneff ).

• Travel ban: This intervention models the interruption of travel flow from outside the city and the
isolation of cases coming from outside, which reduces or eliminate import cases. This intervention
is given by:

imports = (1− traveleff )mean imports (15)

where (mean imports) is the mean value of imported cases, traveleff the effectiveness of this
intervention, and imports the number of new cases that are added to the population per day.

Taking into account that Self-Isolated (X) individuals are only able to infect through home and “other”
matrices, we can wrap everything in a force of infection given by:

λ = (1−mask(t))pc[ρE+A+ I+ imports+ ρs(H+ ICU+ ICUH)]/P

+ (1−mask(t))p(chome + cother)(X+HC+ ICUC)/P (16)

A thorough description of the NPI related parameters can be found in Tables III and IV. All definitions
are valid across all three model versions, although all adherence values are increased by 30% (not
surpassing 1) in the model with 30% more NPI adherence. Hence, we include an additional table with
the parameter values used in the model with stronger interventions (Table V). Figure 1 shows coverages
(NPIcovθNPI(t)), efficiencies (NPIeff ) and their corresponding product NPIcovNPIeffθNPI(t) over
time (valid for the standard and percolation model versions).
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Code Equation Description Value Source

mask cov maskcov Adherence to mask usage See Table IV (8; 14; 16)
mask eff maskeff Estimated reduction of contact due to mask use 0.85 Chu et al. (5)
selfis cov selfiscov Adherence to self-isolation See Table IV (8; 14; 16)
selfis eff selfiseff Estimated reduction of contact due to self-isolation if symptomatic 0.80 Assumed
dist cov distcov Adherence to social distancing in community level See Table IV (8; 14; 16)

dist eff disteff
Reduction of contacts in the community among those
adhering to social distancing 0.95 Assumed

work cov workcov Adherence to work from home policies See Table IV (8; 14; 16)

work eff workeff
Reduction of contacts at work among those adhering to
work from home policies 0.95 Assumed

school cov schoolcov Adherence to online (not in-person) school activities See Table IV (8; 14; 16)
school eff schooleff Reduction of contacts in school upon school closure 1.00 Assumed
cocoon cov cocooncov Adherence to cocooning of older adults See Table IV (8; 14; 16)

cocoon eff cocooneff
Reduction of contacts with older adults in all settings
as a result of cocooning older adults 0.95 Assumed

travel eff traveleff Effectiveness of travel interruption policies See Table IV Assumed
mean imports mean imports Mean number of infected individuals that travel to the study site 0.2 Assumed

TABLE III: Brief description of intervention parameters, together with values (if not time-dependent) and sources. In the case of time-
dependent parameters, we supply additional tables with dates of interventions for the models standard and percolation (Table IV) and standard
+30% NPIs (Table V).

Parameter Start date End date Value

selfiscov 2020-03-24 2020-08-31 0.70

distcov 2020-03-18 2020-05-31 0.70
distcov 2020-06-01 2020-06-30 0.59
distcov 2020-07-01 2020-08-31 0.45

schoolcov 2020-03-21 2020-08-31 0.95

maskcov 2020-03-19 2020-05-31 0.20
maskcov 2020-06-01 2020-06-30 0.35
maskcov 2020-07-01 2020-08-31 0.42

workcov 2020-03-16 2020-05-31 0.60
workcov 2020-06-01 2020-06-30 0.48
workcov 2020-07-01 2020-08-31 0.36

cocooncov 2020-03-14 2020-05-31 0.10
cocooncov 2020-06-01 2020-06-30 0.40
cocooncov 2020-07-01 2020-07-31 0.50
cocooncov 2020-08-01 2020-08-31 0.60

traveleff 2020-02-19 2020-03-18 0.00
traveleff 2020-03-19 2020-08-31 0.70

TABLE IV: Values of time-dependent interventions used for model fitting in the case of Standard and Percolation model. The patterns
observed in (8; 14; 16) were used as qualitative proxies for intervention coverage values.

D. Hospital burden
We slightly change the way hospital burden is added to the model from Aguas et al. (1). We assume

that, if the occupation of beds is under some threshold value the health system infrastructure is able
to handle correctly any new entrance to the hospital. After this threshold q, some of the patients might
not find the needed support due to hospital overload, until full capacity, where patients are not accepted
anymore. This is modelled by the following function:
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Parameter Start date End date Value

selfiscov 2020-03-24 2020-08-31 0.910

distcov 2020-03-18 2020-05-31 0.910
distcov 2020-06-01 2020-06-30 0.767
distcov 2020-07-01 2020-08-31 0.585

schoolcov 2020-03-21 2020-08-31 1.000

maskcov 2020-03-19 2020-05-31 0.258
maskcov 2020-06-01 2020-06-30 0.458
maskcov 2020-07-01 2020-08-31 0.552

workcov 2020-03-16 2020-05-31 0.780
workcov 2020-06-01 2020-06-30 0.624
workcov 2020-07-01 2020-08-31 0.468

cocooncov 2020-03-14 2020-05-31 0.130
cocooncov 2020-06-01 2020-06-30 0.520
cocooncov 2020-07-01 2020-07-31 0.650
cocooncov 2020-08-01 2020-08-31 0.780

mean imports 2020-02-19 2020-08-31 0.140
traveleff 2020-02-19 2020-03-18 0.000
traveleff 2020-03-19 2020-08-31 0.700

TABLE V: Values of time dependent interventions used for model fitting with stronger interventions (Standard model + 30% NPIs). Here
we created an hypothetical intervention scenario with adherence 30% higher than the ones described in Table IV.

Social Distancing Use of mask Work from Home

Cocoon Elderly School Closure Self−Isolation

Apr May Jun Jul Aug Sep Apr May Jun Jul Aug Sep Apr May Jun Jul Aug Sep

Apr May Jun Jul Aug Sep Apr May Jun Jul Aug Sep Apr May Jun Jul Aug Sep
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Fig. 1: Diagram of adherence, efficiency (estimated reduction of contact due to each NPI) and their product over time
(NPIcovNPIeffθwork(t)), for each of the non-pharmaceutical interventions considered both in the standard model and the model with
percolation. The diagrams for the model with 30% more NPI adherence are similar, only with 30% higher values for adherence and the
product.

f(x) =


0, if x < q,

1− (x(b− ax) + c), if q ≤ x ≤ 1

1, if x > 1

(17)
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Where x is the ratio between number of patients and available beds and a, b, c are computed in a way
to ensure continuity of the function and its first derivative:

a =
1

q(q − 1) + (q2 − 1)

b = 2aq

c = a− b

We have then ICUc being computed using ICU/# ICU beds, Hc computed using (ICUH+H)/# common beds
(as ICUH uses common beds). Finally, to model priority of common beds to ICU needing individuals
compared to H we simply assume that ICUh = H2

c , since these values are between 0 and 1, therefore
ICUh ≤ Hc. The figure 2 shows these values assuming that q = 0.65.
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Fig. 2: Probability of not finding a bed as function of the current occupancy. q = 0.65.

E. Basic Reproduction Number
To calculate the Basic Reproduction Number (R0) through the Next Generation Matrix (NGM) Method

(2, Chapter 6) we need to redefine the model as a system of differential equations subdivided into two
groups: the infected one, y = (E,A, I,X,H,HC, ICU, ICUH, ICUC)T , and the non-infected one,
z = (S,R,D)T . We can then write the system as

ẏ = F (y, z)−G(y, z) (18)
ż = J(y, z) , (19)

where F stands for the transition of Susceptible individuals, S, into infected ones, y, whilst G accounts for
transitions within infected classes, from exposed to all other classes in y, as well as recoveries and deceases.
The function J accounts for the counterparts of these same effects into the z equations. Then, to calculate
R0, we linearize the system around disease free equilibrium, where y ≈ 0 and z ≈ (P(t = 0),0,0)T ,
where P(t) is the population age distribution at time t. That way, the y equation becomes
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ẏ = (F̂ − Ĝ)y , (20)

where F̂ and Ĝ are the linearized matrices that come from the functions F and G, respectively. Noticing
that the only entrance of new infected comes from the λS terms in the exposed classes, E. That way,
only the first D lines/rows of F̂ are not null. That way, defining

σ̂ = diag(S) c̄ diag(P(t = 0))−1 (21)

and

σ̂ho = diag(S) (c̄home + c̄other) diag(P(t = 0))−1 (22)

allow us to write

F̂ = (1− hand(t))p


ρσ̂ σ̂ σ̂ σ̂ho ρsσ σ̂ho ρsσ ρsσ σ̂ho

08D,9D

 (23)

The matrix Ĝ will have its first D columns as terms of exposed, E, becoming the other infected
compartments considered, that is, (A, I,X,H,HC, ICU, ICUH, ICUC). It’s diagonal blocks are terms
of recovery, decease and ageing effects. For the sake of simplifying notation, let ϕ̂j = νj − Āg + µd, for
j = i, s, sc, icu, icuh, icuc , so that the full form of Ĝ can be given by

Ĝ =



γ − Āg + µd 0 . . . 0
−(1− Pclin)(1− IHR)γ ϕ̂i

−Pclin(1− Pselfis)(1− IHR)γ 0 ϕ̂i

−PclinPselfis(1− IHR)γ ϕ̂i
. . . ...

−IHR(1− Picu)(1−Hc)γ ϕ̂s

−IHR(1− Picu)Hcγ
... . . . ϕ̂sc

−IHR Picu(1− ICUc)γ ϕ̂icu

−IHR PicuICUc(1− ICUHc)γ ϕ̂icuh 0
−IHR PicuICUcICUHcγ 0 . . . 0 ϕ̂icuc


(24)

Finally, we can define the NGM as in chapter 6 of Allen et al. (2), M̂NGM = F̂ Ĝ−1. With that, R0 is
defined as the spectral radius of M̂NGM , which in the simplest cases is just its dominant eigenvalue, here
calculated with rARPACK R package.

III. MODEL FITTING

To fit the model onto epidemiological data, we have used time series from Severe Acute Respiratory
Infection (SARI) hospitalisations and deaths in São Paulo between 15 March and 31 August 2020. The
data were retrieved the from the Brazilian Government database on SARI cases and deaths (SIVEP-
Gripe, 31/05/2021 (6)). In Brazil, SARI cases notification is compulsory (leading to high reporting rates)
and SARS-CoV-2 suspected and confirmed severe cases are included as a SARI category. As we have
consistently monitored both SRAG and confirmed SARS-CoV-2 time-series, it was clear that SARS-CoV-2
cases comprised the great majority of SARI notifications since the beginning of 2020 and they were more
reliable, since SARS-CoV-2 tests were scarce and testing protocols were inconsistent throughout the first
few months of the pandemic in Brazil (11).

Hence, we assume that SARI cases are a better approximation to the number of SARS-CoV-2, rather
than only cases recorded as confirmed by laboratory tests. Also, note that we used data on severe cases and,
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therefore, hospitalised. Hence, we are fitting SARI cases to the sum over all hospitalised compartments
of the model.

We specifically chose to use weekly time series for new cases and new deaths to avoid carrying past
information into current values, as could happen if we used time series of cumulative data.

To perform a nonlinear least squares fitting of the free parameters (p, Tperc, hsteep, startdate) to the
data, we used the Levenberg-Marquardt algorithm implemented in the minpack.lm R package (7).

In order to fit both new cases (C) and new deaths (D), we had to account for residuals in different
scales. One way to do that was by normalising each of the variables in respect to their total sum. The
resulting residual (R) is, therefore:

R =

∑
(Cmodel − Cobserved)∑

Cobserved

+

∑
(Dmodel −Dobserved)∑

Dobserved

(25)

The algorithm minimise the square of this quantity, while evaluating the respective negative log-
likelihood and minimising it.

To perform this kind of non-linear optimisation, we need to input the algorithm with a series of initial
guesses. We tested a wide range of startdate values (from 2020 − 10 − 01 to 2020 − 02 − 24) and for
each one we ran the fitting algorithm using several reasonable initial guesses for the other free parameters.
Hence, this method gives us fitted p, Tperc and hsteep for each startdate considered.

With the goal to find a probability distribution for the fitted parameters (3), we selected the run which
returned the lowest residual for each startdate, with its respective (p, Tperc, hsteep) set. We then computed
the negative log-likelihood for each start date, Lt:

Lt = N ln

(
1

N

N∑
i=1

R2
i,t,

)
(26)

from which we can therefore derive the probability for each startdate, given by

Pt =
exp(−Lt +min({Lt}))∑
t exp(−Lt +min({Lt}))

. (27)

Finally, maximising the probability (equivalent to minimising the negative log-likelihood), we find sets
of best fitted parameters for each of the model versions considered (See Table VI).

We selected the model that was best supported by the data trough the Akaike Information Criteria
(AIC):

AICi = 2NLLmin + 2npar (28)

where NLLmin is the minimum negative log-likelihood obtained from fitting each model, and npar is the
number of fitted parameters (two free parameters for the standard models and four for the model with
percolation).

The AIC estimates the loss of information in data of each model, and thus the model with the lowest
AIC is the best supported by the data. To compare the models we thus use ∆AIC:

∆AICi = AICi − AICmin (29)

where AICmin is the minimum over all AIC values obtained.
The resultant AIC and ∆AIC obtained for each model version can be found in Table 1, in the main

paper.
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Model Parameter Mean SD Quantile 2.5% Quantile 50% Quantile 97.5%

Percolation startdate 2020-01-30 - 2020-01-30 2020-01-30 2020-01-30
Percolation p 0.0461 0.0002 0.0461 0.0461 0.0462
Percolation Tperc 0.516 0.003 0.513 0.516 0.520
Percolation hsteep 4.83 0.02 4.81 4.83 4.84
Standard startdate 2020-01-15 - 2020-01-15 2020-01-15 2020-01-15
Standard p 0.0294 ≈ 0 0.0294 0.0294 0.0294
Standard + 30% NPIs startdate 2020-01-30 - 2020-01-30 2020-01-30 2020-02-01
Standard + 30% NPIs p 0.0402 0.0003 0.0401 0.0401 0.0411

TABLE VI: List of parameters values for the three models with mean, standard deviation (SD), and 2.5th, 50th and 97.5th percentiles.
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